电力通信网可靠性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力通信网是服务于电力系统的通信专网,它的通信业务具有高级别的实时性、可靠性和安全性需求,电力通信网的可靠性是影响电力系统安全、稳定运行的重要因素之一,是评价电网性能和管理水平的重要方面,也是制定电力通信网发展规划的重要参考依据。与公用通信网相比,电力通信专网的可靠性研究相对滞后。论文在全面分析电力通信业务可靠性需求的基础上,针对如何建立客观、准确的可靠性模型,提出符合电力通信网运行管理特点的可靠性综合评价方法开展研究。
     论文分析了电力通信网的构成形式和业务类型,明确了各类业务的可靠性需求。通过比较可靠性、有效性、生存性和安全性四种概念,选择有效性作为可靠性测度,研究电力通信网的综合可靠性问题。
     在考虑通信设备内部结构和电源系统构成的基础上,给出了专用、复用和主备用光纤电路的有效性模型,该模型较完善地体现了通信设备内部各模块之间的逻辑关系,同时考虑了供电电源系统对通信电路有效性的影响,使得分析结果更加符合实际。针对通信设施基本有效性参数的分散性问题,提出了一种通信设备和光纤设施的模糊有效性模型,并由此导出通信电路的模糊有效性模型,给出了模糊有效性分析方法,有效地解决了参数的不确定性问题。
     针对通信网业务有效性分析问题,对电力通信网业务进行了重要度评估,提出了一种基于业务重要度的网络有效性模型,并给出了相应的有效性分析算法,该方法考虑了共享网络单元对业务有效性的影响,分析了不同业务量阈值条件下,网络业务有效性的变化趋势。基于风险理论对共享网络单元的业务重要性进行了评估,评估结果能够反映网络脆弱性的分布情况。
     论文结合电力通信网管理的特点,对电力通信网管理方式、运行环境及影响可靠性的因素进行了分析,参考标准的端到端通信安全体系结构和电力通信安全性行业评价办法,确定了可靠性分层,建立了电力通信网可靠性综合评价指标体系。为了减少指标权重的主观性,提高评价结果的客观性和可信性,提出了一种基于改进模糊层次法的综合可靠性评价方法,该方法基于对数最小二乘法(LLSM)进行模糊权重计算,利用限位系数法来实现评价结果的解模糊过程,解决了电力通信网可靠性评价中不确定性问题,实例评估验证了该方法的有效性和可行性。
Power communication network is a private communication network for power system. It has high requirements of real-time, reliability, and security in services. The reliability of power communication network is one of the most important factors influencing security and stability of power system. It takes an important role in performance evaluation and management assessment of the power systems. In power communication network planning, reliability is a key constraint. Compared to public communication network, reliability research of power communication network lags behind relatively. On the basis of the analysis for power communication network reliability requirements, establishing an objective and accurate reliability model, proposing comprehensive evaluation method corresponding to the characteristic of power communication network reliability, are main research topics.
     The structure and services types of power communication network are analyzed, the requirement of each services are clarified. By comparing the concepts of reliability, availability, survivability and security, the concept of availability is used as reliability measure to research the comprehensive reliability of power communication network.
     The internal structure of the equipments and the power supply systems are taken into account, and then availability models of dedicated, multiplexing and active-standby optical channels are constructed. These models can reflect the logic relation of internal components in communication equipments states and the influence of power supply system on circuit availability is considered. The analytic results are in conformity with the needs of reality. In view of the dispersion of availability parameters for communication infrastructures, the triangle fuzzy number method based fuzzy availability models of communication circuits and its analysis method are proposed. This method has solved the uncertainty problem of parameters effectively.
     Aiming at the question of availability analysis of power communication network services, the importance of power communication services is evaluated. The service availability model based on service importance and its analytic algorithm are proposed. The algorithm considers the influence of shared network elements on services availability. The variation trend of network services availability at different services traffic threshold is analyzed. The risk theory based importance assessment of shared network elements is provided. Evaluation results show the distribution of network’s vulnerabilities.
     Combining the characteristic of power communication network management and operation environment of power communication network, the influence factors for reliability are analyzed. Consulting the standard end-to-end communication security system architecture and evaluation mechanism in the industry of electric power communication, security layering is defined and the reliability comprehensive evaluation indicator system is established. To reduce the subjectivity of indicator weight, improve the objectivity and credibility of evaluation results, a comprehensive evaluation method of reliability based on improved Fuzzy-AHP is proposed. The fuzzy weights are calculated on the basis of LLSM. The restricted coefficient method is used to de-fuzzy the evaluation results. The uncertainty of reliability assessment in power communication network is solved; the effectiveness and feasibility are verified by evaluation examples.
引文
[1]丁道齐.中国电力通信必须适应电力市场发展的需要.电力系统通信,2003,5:1~7,32
    [2]柳明,何光宇,沈沉.IECSA项目介绍.电力系统自动化,2006,30(13):99~104
    [3] J.W. Hughes, D.W. Von, Dollen. Developing an integrated energy and communications systems architecture: the initial steps. in:Proceeding of the Power Systems Conference and Exposition, 2004. IEEE PES 10-13. 2004.1651~1654
    [4] C.H. Hauser, D.E. Bakken, A. Bose. A failure to communicate: next generation communication requirements, technologies, and architecture for the electric power grid.IEEE Power& Energy Magazine,2005,3(2):47~55
    [5] X. Zhaoxia, G. Manimaran, V. Vittal. An information architecture for future power systems and its reliability analysis.IEEE Transactions on Power Systems, 2002, 17(3): 857~863
    [6]丁道齐.一体化的电力与通信系统体系结构.电力系统通信,2008,29(183):1~9
    [7] Electricity Innovation Institute Consortium for Electric Infrastructure to Support a Digital Society (CEIDS).The integrated energy and communication systems architecture, Volume I: User guidelines and recommendations.EPRI, 2004,http:// www.intelligrid.info/IntelliGrid_Architecture/IECSA_Volumes /IECSA_ VolumeI .pdf
    [8] CEIDS. The integrated energy and communication systems architecture, Volume II: Functional Requirements.EPRI, 2004, http://www.intelligrid.info/IntelliGrid_ Architecture/ IECSA_Volumes/IECSA_VolumeII .pdf
    [9] CEIDS. The integrated energy and communication systems architecture, Volume III: Models.EPRI, 2004, http://www.intelligrid.info/ IntelliGrid_Architecture/IECSA_ Volumes/IECSA_VolumeIII .pdf
    [10] CEIDS. The integrated energy and communication systems architecture, Volume IV: Technical Analysis.EPRI, 2004, http://www.intelligrid.info/ IntelliGrid_Architecture/ IECSA_Volumes/IECSA_VolumeIV.pdf
    [11]梁雄健,孙青华.通信网可靠性管理.北京:北京邮电大学出版社,2004
    [12]罗鹏程,金光,周经伦,等.通信网可靠性研究综述.小型微型计算机系统,2000, 21(10): 1073~1077
    [13]赵子岩,陈希,刘建明.建立电力系统通信网可靠性管理体系相关问题的探讨.电力系统通信,2006,27(168): 58~61
    [14] E. Zio. Reliability engineering: Old problems and new challenges. Reliability Engineering and System Safety, 2009, 94(6):125~141
    [15] C.E. Ebeling. An introduction to reliability and maintainability engineering. Boston.McGraw Hill publication, 1997
    [16] ITU-T Recommendation E.800-1994.Telephone Network and ISDN Quality of Service, Network Management and Traffic Engineering: Terms and Definitions Related to Quality of Service and Network Performance Including Dependability
    [17]陈家鼎.生存分析与可靠性.北京:北京大学出版社,2005.
    [18]张学渊,梁雄健.关于通信网可靠性定义的探讨.北京邮电大学学报,1997,20(2):30~35
    [19]丁开盛,张学渊,梁雄健.通信网可靠性的定义及其综合测度指标.通信学报,1999,20(10):75~78
    [20]熊蔚明,刘有恒.关于通信网可靠性的研究进展.通信学报,1990,11(4):43~49
    [21]张凤林,武洁,郭波.地域通信网可靠性测度指标研究进展.小型微型计算机系统,2004,25(4):567~571
    [22] A.H. Mohamed, K. Nicholas, H. Sayed. Towards a standardized terminology for network performance. IEEE Transactions on Reliability, 2008, 57(2): 267~271
    [23] Cong Jin, Shu-Wei Jin. Invulnerability assessment for mobile ad hoc networks. in:Proceeding of Power Electronics and Intelligent Transportation System, 2008. PEITS '08.Workshop on.2008 .48~51
    [24] Zh. Narisa, Zh. Xianfeng. The model of the invulnerability of scale-free networks based on "honeypot". in:Proceeding of the Wireless Communications, Networking and Mobile Computing, 2008. WiCOM '08. 4th International Conference. 2008 ,1~4
    [25]常太一,陈长嘉.通信网的可靠性.电信科学,1992,8(5):18~25
    [26] A. Glenn. Methodology for quantitatively evaluating satellite communication network survivability. IEEE Communications Magazine,1985,23(6):28~33
    [27] J. Manchester, P. Bonenfant, C. Newton. The evolution of transport network survivability. IEEE Communications Magazine, 1999, 37(8): 44~51
    [28] R. Kawamura,H. Ohta. Architectures for atm network survivability and their field deployment. IEEE Communications Magazine, 1999, 37(8): 88~94
    [29] O. Gerstel, R. Ramaswami. Optical layer survivability: a services perspective. IEEE Communications Magazine,2000,38(3):104~113
    [30] Z. Dongyun, S. Subramaniam. Survivability in optical networks. IEEE Network, 2000, 14(6):16~23
    [31] A.P. Snow, U. Varshney, A.D. Malloy. Reliability and survivability of wireless and mobile networks. Computer,2000,33(7): 49~55
    [32] D. Colle, C. Develder, S. Maesschalck. Data-centric optical networks and their survivability. IEEE Journal on Selected Areas in Communications, 2002,20(1):6~20
    [33] S. Maesschalck, A. Groebbens, D. Colle. Intelligent optical networking for multilayer survivability. IEEE Communications Magazine,2002,40(1):42~49
    [34] R. Shenai, K. Sivalingam. Hybrid survivability approaches for optical WDM mesh networks. Journal of Lightwave Technology, 2005, 23(10):3046~3055
    [35] P. Sangjoon, S. Jiyoung, K. Byunggi. A survivability strategy in mobile networks.IEEE Transactions on Vehicular Technology,2006,55(1):328~340
    [36] A. Wood. Availability modeling. IEEE Circuits & Devices, 1994, 10(3):22~27
    [37] A. Antonopoulos, J.J. O'Reilly, and P. Lane. A framework for the availability assessment of SDH transport networks. In:Proceeding of the Second IEEE Symposium on Computers and Communications,1997:666~670
    [38] G. Wayne. High availability path design in ring-based optical networks. IEEE/ACM Transactions on Networking, 1999 ,7 (4): 558~574
    [39] I. Rados, P. Turalija, T. Sunaric. Availability model of bidirectional line switched ring transparent optical networks. in:Proceedings of the 3rd International Conference on, 2001:312~316
    [40] T. Dong, K.S. Trivedi. Hierarchical computation of interval availability and related metrics. in:Proceeding of Dependable Systems and Networks, 2004 International Conference on, 2004.693– 698.
    [41] T. Massimo, M. Guido, P. Achille. Availability design of optical transport networks. IEEE Journal on Selected Areas in Communications, 2005, 23(8): 1520~1532
    [42] S. Verbrugge, D. Colle, P. Demeester. General availability model for multilayer transport networks. in:Design of Reliable Communication Networks, 2005: 85~92
    [43] S. Mehmet, D. L. Libby, R. D. Sunil. Measuring availability indexes with small samples for component and network reliability using the sahinoglu–libby probability model. IEEE Transactions on Instrumentation and Measurement, 2005, 54(3): 1283 ~ 1295
    [44] R. Clemente, M. Bartoli, M.C. Bossi, G. D'Orazio, G. Cosmo. Risk management in availability SLA. in : Proceedings of 5th International. Design of Reliable Communication Networks. 2005:411~418
    [45] M.C. Scheffel. Topology design of transport networks considering path protection against single and dual failures. in:Optical Network Design and Modeling, Conference on, 2005:303~309
    [46]刘普寅,张维明.通信网络可靠性研究中的数学问题.通信学报,2000,21(10):50~57
    [47] CH. Shen-neng, K.O. Victor. Reliability analysis of a communication network with multimode components. IEEE Journal on Selected Areas in Communications, 1986, SAC4(7):1156~1161
    [48] M. Balakrishnan, A. Reibman. Characterizing a lumping heuristic for a Markov network reliability model. Fault-Tolerant Computing. in : Proceeding of The Twenty-Third International Symposium.1993.56~65
    [49] J. Kim, J. Patel, H. Singh, L. Anneberg. Petri net approach for determining the paths and terminal reliability of a hypercube network. in:Proceeding of TENCON '92. Technology Enabling Tomorrow: Computers, Communications and Automation towards the 21st Century. 1992 IEEE Region 10 International Conference: 1992,928~932
    [50] D. Remondo, R. Srinivasan, and F. Victor. Adaptive importance sampling for performance evaluation and parameter optimization of communication systems. IEEE Transactions on Communications, 2000, 48(4): 557~565
    [51] Y. Kun-Wah, N. Tung-Sang. Efficient simulation of digital transmission over wssus channels. IEEE Transactions on Communications, 1995, 43(12): 2907~2913
    [52] A. Wael, D. Michael, J.T. Keith. Stochastic gradient optimization of importance sampling for the efficient simulation of digital communication systems. IEEE Transactions on Communications, 1995, 43(12): 2975~2985
    [53]张学渊,梁雄健.关于通信网可靠性的研究方法.通信学报,1997,18(4):54~58
    [54]张学渊,梁雄健.基于运行统计的通信网可靠性的综合实用评价方法.电子学报,1999,27(4):43~46
    [55] S. Kevin, L. Chen-Ching, P. Jean-Philippe. Assessment of interactions between power and telecommunications infrastructures. IEEE Transactions on Power Systems, 2006,21 (3):1123~1130.
    [56] J. Hughes. IntelliGrid architecture concepts and IEC61850. in : Proceeding of Transmission and Distribution Conference and Exhibition, 2005/2006 IEEE PES . 2006.401~404.
    [57] A.A. Mohamad, B. Robert, and Y. Meng. Electrical substation reliability evaluation with emphasis on evolving interdependence on communication infrastructure. in:Proceeding of 8th International Conference on Probabilistic Methods Applied to Power Systems. 2004.487~491
    [58] M. Khademi. Reliability of telecommunications for bulk power system teleprotection. IEEE Transactions on Power Delivery, 1997, 12 (2): 601~606
    [59] J.F. Martinez, A.P. Ponce. Reliability assessment for system control telecommunication circuits. In: CIGRE 2006, D2-204:1~8
    [60]邢宁哲,闫海峰.电力通信系统可靠性研究.电力系统通信,2007,28 (176): 26~30,38
    [61] L. Andersson, K.P. Brand, C. Brunner. Reliability investigations for SA communication architectures based on IEC 61850. Power Tech, IEEE Russia:2005.1~7
    [62] G. Wayne, J. Doucette, C. Matthieu. New options and insights for survivable transport networks. IEEE Communications Magazine,2002,20(3):34~41
    [63]彭清卿,向力,卢长燕.国家电力调度数据网组网研究.电力系统自动化,2004,28(8):10~14
    [64]中华人民共和国国家质量监督检验检疫总局.GB/T 14285.中华人民共和国国家标准-继电保护和安全自动装置技术规程.北京:中国标准出版社,2006-12-1
    [65] L.E. Robert, R.S. Dileepaxena, G.B. Gary. A view of reliability and quality measurements for telecommunications systems. IEEE Journal on Selected Areas in Communications, 1990, 8(2),:219~223
    [66] A.S. Fabio, Information Systems: A challenge for computers and communications reliability. IEEE Journal on Selected Areas in Communications, 1986, SAC4(6):1077~1083
    [67] V. M. Vyasaraj. Quality and reliability in communications. IEEE Journal on Selected Areas in Communications,1988,6(8):1284~1286
    [68] R. Ivan, S. Tanja, T. Pero. Availability comparison of different protection mechanisms in sdh ring network. in:Proceedings of the International Conference. Modern Problems of Radio Engineering, Telecommunications and Computer Science .2002: 287~290
    [69] R.A. Crinks, W.J. Renter, M.G. Gibby. Evolution of network architectures. in:Proceeding of the 21st Century Military Communications Conference 2000.1204~1208
    [70]林雪纲,熊华,叶进星,许榕生.信息系统生存性分析研究综述.计算机工程,2006,32(5):1~3,6
    [71]中华人民共和国国家质量监督检验检疫总局. GB/T 20984.中华人民共和国国家标准-信息安全风险评估规范.北京:中国标准出版社,2007-06-14
    [72]冯登国,张阳,张玉清.信息安全风险评估综述.通信学报,2004,25(7):10~18
    [73] G.N. Ericsson. Toward a framework for managing information security for an electric power utility-cigre experiences. IEEE Transactions on Power Delivery, 2007, 22 (3): 721~726
    [74]中华人民共和国电力工业部.DL/T 544.中华人民共和国电力行业标准-电力系统通信管理规程.北京:中国电力出版社,1994-07-14
    [75]刘会永,孟洛明.传送网运行有效性评价模型.北京邮电大学学报,2006, 29(4):14~17,29
    [76]邓歆,孟洛明.一种新的SDH传送网的业务可用性分析方法.计算机工程,2007,33(3): 108~110
    [77]中华人民共和国国家技术监督局.GB/T 14429.中华人民共和国国家标准-远动设备及系统--术语.北京:中国标准出版社,1993-06-05
    [78] K. Harold, R. J. Alan, D. A. George. Design Considerations for a fiber optic communications network for power systems. IEEE Transactions on Power Delivery,1994,9(1):510~518
    [79] I.S. OTTO. Reliability of optical fibers, cables, and splices. IEEE Journal on Selected Areas in Communications, 1986, SAC4(9):1502~1508
    [80] M.K. Rahmat, S. Jovanovic, K.L.Lo. Reliability modelling of the DC uninterruptible power supply. in: Proceeding of the 3rd IET International Conference on Power Electronics, Machines and Drives Conference 2006.368~372
    [81] B. Lech, F. Jerzy. Application of fuzzy sets in evaluation of failure likelihood. in: Proceedings of the 18th International Conference. Systems Engineering (ISCEng’05). 2005.1~6
    [82] D. James, W. S. Ihab, W. Donald. A theory of independent fuzzy probability for system reliability. Transactions on Fuzzy Systems, 1999,7(2): 286~294
    [83]徐玖平,吴巍.多属性决策的理论与方法.北京:清华大学出版社.2006
    [84] C. Gopa, H. Kuolung, A.Nader. A New Approach to System Reliability. IEEE Transactions on Reliability,2001,50(1):75~84
    [85] Y. Wei-Chang. A path-based algorithm for evaluating the k-out-of-n flow network reliability. Reliability Engineering and System Safety, 2005,8(7):243~251
    [86] Y. Wei-Chang. A new algorithm for generating minimal cut sets in k-out-of-n networks. Reliability Engineering and System Safety, 2006,9(1): 36~43
    [87] H. Masahiro, A. Takeo. Evaluating reliability of telecommunications networks using traffic path information. IEEE Transactions on Reliability,2008,57(2):283~294
    [88] Zh. Jing, B. Mukheriee. A review of fault management in WDM mesh networks: basic concepts and research challenges. IEEE Network, 2004, 18(2): 41~48
    [89]赵焕臣,许树柏,和金生.层次分析法—一种简易的新决策方法.北京:科学出版社.1986
    [90]韦乐平.光同步数字传输网.北京:人民邮电出版社.1993
    [91] A.M. Jrad, C.K. Chan, T.B. Morawski. Incorporating the downtime due to disaster events in the network reliability model. In: Telecommunications Network Strategy and Planning Symposium. Networks 2004:365~372
    [92]张学渊,梁雄健,V.B.Iversen.通信网可靠性管理的框架.北京邮电大学学报,2000,23(1):85~89
    [93] P.S. Andrew. Network Reliability: The Concurrent Challenges of Innovation, Competition, and Complexity. IEEE Transactions on Reliability,2001,50(1):38~40
    [94] R.B. Thomas, M.B, Jane, K. Sallie. Testing the Untestable: Reliability in the 21st Century. IEEE Transactions on Reliability,2003,52(1):118~124
    [95] ITU-T Recommendation. X.805-2003. Data Networks and Open System Communication: Security- Security architecture for systems providing end-to-end communications
    [96]国家电网公司.电网调度系统安全性评价(网、省调部分)查评依据.北京:电力出版社.2004.
    [97]毛得华.评价指标体系分析及其权重系数的确定.系统工程,1991,9(1):20~25
    [98]严鸿和,陈玉祥.专家评分机理与最优综合评价模型.系统工程理论与实践,1989,9(2):19~23
    [99]秦寿康.综合评价原理与应用.北京:电子工业出版社,2003
    [100]李随成,陈敬东,赵海刚.定性决策指标体系评价研究.系统工程理论与实践,2001,11(9):22~28
    [101] M.A. DeSousa, J. Machado, R.V. Ribeiro. Risk evaluation in broadband telecommunications planning under services' imprecise penetration - a fuzzy approach. in: Proceeding of the 10th IEEE International Conference .Fuzzy Systems.2001. 601~ 605
    [102]徐泽水.对方案有偏好的三角模糊数型多属性决策方法研究.系统工程与电子技术,2002,24(8):9~12
    [103] Z.N. Masoud, M. Reza, A. Mohammad. The application of fuzzy analytic hierarchy process (FAHP) approach to selection of optimum underground mining method for Jajarm Bauxite Mine. Expert Systems with Applications, 2009,36 (2) :8218~8226
    [104] G.Zulal, S. Gurkan, E.K. Saadettin. A fuzzy AHP approach to personnel selection problem. Applied Soft Computing, 2009, 9 (2) :641~646
    [105] F. JianCao, Y. Feng. A new method for VE partner selection and evaluation based on AHP and fuzzy theory. in: Proceeding of The 8th International Conference on Computer Cooperative Work in Design.2003.563~566
    [106] W. Ying-Ming, E. Taha, H. Zhongsheng. A modified fuzzy logarithmic least squares method for fuzzy analytic hierarchy process. Fuzzy Sets and Systems, 2006, 157 (2) :3055~3071
    [107] C. Jim, Zh. Gengui, W. Xiaojuan. A group evaluation method based on AHP and theory of triangular fuzzy number. in: Proceeding of the 5th World Congress on Intelligent Control and Automation. 2004.2064~2067

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700