文冠果壳苷对β淀粉样蛋白致痴呆小鼠学习记忆障碍的改善作用及线粒体相关机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:文冠果壳苷是一种从文冠果果壳中提取获得的单体化合物,前期研究证实其对多种痴呆模型动物的学习记忆障碍具有改善作用。为进一步探讨文冠果壳苷对阿尔茨海默病(AD)的防治作用及作用机制,本文考察了文冠果壳苷对一次性侧脑室注射Aβ1-42致痴呆模型小鼠学习记忆障碍的改善作用及线粒体相关机制。方法:一次性侧脑室注射Aβ1-42制备痴呆小鼠模型,通过水迷宫、Y迷宫、新物体辨别及避暗实验考察文冠果壳苷对模型小鼠学习记忆障碍的影响;通过透射电镜观察小鼠大脑皮层及海马CA1区神经细胞线粒体的超微结构,并利用生物化学发光法考察大脑皮层及海马ATP的水平;利用Percoll密度梯度离心的方法分离小鼠大脑皮层线粒体,透射电镜观察获得线粒体的超微结构,并通过测定乳酸脱氢酶(LDH)的含量及线粒体呼吸链复合体Ⅳ(即细胞色素c氧化酶,COX)的活性验证分离线粒体的纯度及活性。利用分离获得的线粒体测定COX、丙酮酸脱氢酶复合体(PDHC)及a-酮戊二酸脱氢酶复合体(KGDHC)的活性。利用荧光分光光度法考察小鼠大脑皮层及海马活性氧(ROS)的水平。通过免疫组织化学方法考察小鼠大脑皮层及海马内DNA氧化损伤生物标志物8-羟基鸟苷(8-OH-dG)的表达,并考察线粒体细胞色素c的释放情况。结果:文冠果壳苷对一次性侧脑室注射Aβ1-42致痴呆模型小鼠学习记忆障碍具有显著的改善作用。与模型组比较,文冠果壳苷(0.16~0.32mg/kg)显著缩短水迷宫实验中小鼠到达安全台的逃避潜伏期及游泳路程,并显著增加小鼠在原安全台所在象限游泳时间和游泳路程百分比;显著提高Y迷宫实验中小鼠自发交替反应率;显著提高新物体辨别实验中小鼠对新物体的优先指数和辨别系数;显著提高避暗实验中小鼠进入暗室的潜伏期。文冠果壳苷可改善神经细胞线粒体的超微结构并显著增加模型小鼠大脑皮层及海马ATP的水平,改善线粒体的功能。文冠果壳苷显著对抗模型小鼠线粒体COX、PDHC及KGDHC活性的下降;显著逆转模型小鼠大脑皮层及海马ROS水平的异常升高。免疫组化结果显示,文冠果壳苷能够显著降低模型小鼠大脑皮层及海马8-OH-dG的表达;显著减少模型小鼠线粒体细胞色素c的释放。结论:文冠果壳苷对一次性侧脑室注射Aβ1-42致痴呆模型小鼠的学习记忆障碍具有显著的改善作用,并且能够改善线粒体功能,减少ROS的产生及对抗氧化应激;其对线粒体功能的改善作用可能与对抗Ap引起的线粒体呼吸链及三羧酸循环的损伤,减少线粒体细胞色素c的释放,从而对抗Ap诱导的神经细胞死亡有关。因此,本研究及前期试验结果提示,文冠果壳苷具有显著的改善学习记忆障碍及神经保护作用,可能成为治疗AD新药研发中的优良候选化合物。
Aim: Xanthoceraside is a monomer extracted from the shell of the fruit of Xanthoceras sorbifolia Bunge. Our previous study showed that xanthoceraside could significantly improve learning and memory impairment in several AD animal models. In this study, we further investigated the effects of xanthoceraside on learning and memory impairment and the possible mechanism associated with the protection of mitochondria in Alzheimer's disease (AD) model mice induced by Aβ1-42, which aims to explore the anti-AD effects and possible related mechanisms of xanthoceraside. Methods:We acquired learning and memory impairment mice model by intracerebroventricular (i.c.v.) injection of the aggregated Aβ1-42. Learning and memory ability was examined using Morris water-maze test, Y-maze test, novel object recognition test and step-through test in mice. Transmission electron microscope was used to observe the ultra-structure of mitochondria of neurons in cerebral cortex and hippocampus. The level of ATP in cerebral cortex and hippocampus was detected by bioluminescence assay. Percoll density gradient centrifugation method was applied to isolate free mitochondria from mice cerebral cortex. Transmission electron microscope observation, lactate dehydrogenase(LDH) level and cytochrome c oxidase (COX) activity assay were applied to confirm whether the mitochondria are intact and pure with good metabolic activity. The activities of COX, pyruvate dehydrogenase complex (PDHC) and a-ketoglutarate dehydrogenase complex (KGDHC) were detected using assay kits respectively with isolated free mitochondria. The ROS level in cerebral cortex and hippocampus was detected using fluorescence spectrophotometry. Immunohistochemistry was used to investigate the expression of8-OH-dG, the biomarker of DNA oxidative damage, and the release of cytochrome c from mitochondria. Results:Xanthoceraside significantly improved learning and memory impairment in mice induced by i.c.v. injection of Aβ1-42. Compared with model group, xanthoceraside (0.16~0.32mg/kg) significantly decreased the escape latency and swimming distance, increased the swimming time and percentage of the swimming distance in the fourth quadrant where the platform had been located in Morris-water maze test; increased the percentage of alternation behaviors in Y-maze test; increased the preferential index and discrimination index for the novel object in novel objective recognition test; and decreased the step-through latency in step-through test. Xanthoceraside improved the ultra-structure of mitochondria and increased the ATP level in cerebra cortex and hippocampus of model mice. Xanthoceraside significantly reversed the decrease of the activity of COX, PDHC and KGDHC and inhibited the abnormal increase of ROS induced by Aβ. Moreover, the results of immunohistochemistry showed that xanthoceraside significantly decreased the expression of8-OH-dG and reduced the release of cytochrome c from mitochondria in model mice. Conclusion:Xanthoceraside could improve learning and memory impairment, promote the function of mitochondria, decrease the production of ROS and inhibit oxidative stress. The improvement effects to mitochondria may be through withstanding the damage of Aβ to mitochondrial respiratory chain and the key enzymes in Kreb's circle, decreasing the release of cytochrome c, and finally reducing the death of neurons. Therefore, the results from present study and previous study indicate that xanthoceraside could be a competitive candidate for the treatment of AD.
引文
[1]Stephen D. S. Alzheimer's disease and amyloid: culprit or coincidence? Neurobiology.2012,102: 277-301.
    [2]Alzheimer's Association.2013 Alzheimer's Disease Facts and Figures. Alzheimer's & Dementia. 2013,9 (2).
    [3]刘爽,张玉莲,周震.老年性痴呆流行病学研究现况.中国老年学杂志.2010,30:1455-1457.
    [4]Laferla F.M., Green K.N. and Oddo S. Intracellular amyloid-β in Alzheimer's disease. Nature Rev. Neurosci.2007,8 (7):499-509.
    [5]Kanemitsu H., Tomiyama T. and Mori H. Human neprilysin is capable of degrading amyloid beta peptide not only in the monomeric form but also the pathological oligomeric form. Neurosci Lett. 2003,350(2):113-116.
    [6]Vekrellis K. Neurons regulate extracellular levels of amyloid beta-protein via proteolysis by insulin-degrading enzyme. J Neurosci.2000,20:1657-1665.
    [7]Tomiyama T., Matsuyama S., Iso H., et al. A mouse model of amyloid β oligomers: their contribution to synaptic alteration, abnormal tau phosphorylation, glial activation, and neuronal loss in vivo. J. Neurosci.2010,30(14):4845-4856.
    [8]Tillement L., Lecanu L. and Papadopoulos V. Alzheimer's disease: effects of β-amyloid on mitochondria. Mitochondrion.2001,11:13-21.
    [9]Murphy M.P. How mitochondria produce reactive oxygen species. Biochem. J.2009,417(1): 1-13.
    [10]Tamagno E., Parola M., Bardini P., et al. β-Site APP cleaving enzyme upregulation induced by 4-hydroxynonenal is mediated by stress-activated protein kinases pathways. J. Neurochem.2005, 92(3):628-636.
    [11]Eckert A., Hauptmann S., Scherping I., et al. Soluble beta-amyloid leads to mitochondrial defects in amyloid precursor protein and tau transgenic mice. Neurodegener Dis.2008,5(3-4): 157-159.
    [12]强静,马芹颖,铭维.线粒体功能障碍在阿尔茨海默病发病中的作用.临床荟萃.2012,27(4):349-352.
    [13]Valko M., Leibfritz D., Moncol J., et al. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol.2007,39(1):44-84.
    [14]Addabbo F., Montagnani M. and Goligorsky M. Mitochondria and reactive oxygen species. Hypertension.2009,53(6):885-892.
    [15]Hansson C.A., Alikhani N., Behbahani H., et al. The amyloid β-peptide is imported into mitochondria via the TOM import machinery and localized to mitochondrial cristae. Proc Natl Acad Sci USA.2008,105(35):13145-13150.
    [16]徐淑君,刘桂兰.β淀粉样蛋白导致的线粒体损伤研究进展.生物化学与生物物理进展.2010,37(6):589-593.
    [17]Wang X., Su B., Zheng L., et al. The role of abnormal mitochondrial dynamics in the pathogenesis of Alzheimer's Disease. J Neurochem.2009,109(1):153-159.
    [18]Wang X., Su B., Siedlak S. L., et al. Amyloid-beta overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins. Proc Natl Acad Sci.2008,105(49):19318-19323.
    [19]Reddy P.H., Tripathi R., Troung Q., et al. Abnormal mitochondrial dynamics and synaptic degeneration as early events in Alzheimer's disease: Implications to mitochondria-targeted antioxidant therapeutics. Biochimica et Biophysica Acta.2012,1822:639-649.
    [20]林如意,邓天翔.Ca2+失调与阿尔茨海默病发生发展关系的研究进展.生命科学.2012,24(2):297-303.
    [21]Bezprozvanny L. and Mattson M.P. Neuronal calcium mishandling and the pathogenesis of Alzheimer's disease. Trends in Neurosciences.2008,31(9):454-63.
    [22]Sepulveda F.J., Parodi J., Peoples R.W., et al. Synaptotoxicity of Alzheimer beta amyloid can be explained by its membrane property. PLOS One.2010,5 (7):11820.
    [23]Reddy P.H. Amyloid beta, mitochondrial structural and functional dynamics in Alzheimer's disease. Experimental Neurology.2009,218:286-292.
    [24]Decker H., Lo K.Y., Unger S.M., et al. Amyloid-β peptide oligomers disrupt axonal transport through an NMDA receptor-dependent mechanism that is mediated by glycogen synthase kinase 3β in primary cultured hippocampal neurons. J. Neurosci.2010,30 (27):9166-9171.
    [25]Lauren J., Gimbel D.A., Nygaard H.B., et al. Cellular prion protein mediates impairment of synaptic plasticity by amyloid-β oligomers. Nature.2009,457(7233):1128-1132.
    [26]Chang D.T. and Reynolds I. J. Mitochondrial trafficking and morphology in healthy and injured neurons. Prog Neurobiol.2006,80:241-268. [27] Cai Q. and Sheng Z.H. Mitochondrial transport and docking in axons. Exp Neurol.2009,218: 257-267.
    [28]Mocanu M.M., Nissen A., Eckermann K., et al. The potential for β-structure in the repeat domain of tau protein determines aggregation, synaptic decay, neuronal loss, and coassembly with endogenous Tau in inducible mouse models of tau opathy. J Neurosci.2008,28(3):737-748.
    [29]Steinhilb M.L., Dias-Santagata D, Fulga T.A., et al. Tau phosphorylation sites work in concert to promote neurotoxicity in vivo. Mol Biol Cell.2007,18(12):5060-5068.
    [30]Castellani R.J., Nunomura A., Lee H.G., et al. Phosphorylated tau: Toxic, protective, or none of the above. J Alzheimers Dis.2008,14(4):377-383.
    [31]Bellucci A., Luccarini I., Scali C., et al. Cholinergic dysfunction, neuronal damage and axonal loss in TgCRND8 mice. Neurobiol Dis.2006,23(2):260-272.
    [32]Reyes A.E., Chacon M.A., Dinamarca M.C., et al. Acetylcholinesterase-Aβ complexes are more toxic than Aβ fibrils in rat hippocampus:effect on rat beta-amyloid aggregation, laminin expression, reactive astrocytosis, and neuronal cell loss. Am J Patho.2004,164(6):2163-2174.
    [33]Rogers J., Strohmeyer R., Kovelowski C.J., et al. Microglia and inflammatory mechanisms in the clearance of amyloid-peptide. Glia.2002,40(2):260-269.
    [34]唐丽莉.阿尔茨海默病的治疗策略:神经营养因子.生命科学.2005,17:328-335.
    [35]Neugroschl I. and Sano M. Current treatment and recent clinical research in Alzheimer's disease. MtSinai J Med.2010,77(1):3-16.
    [36]朱依谆,殷明主编.药理学.人民卫生出版社.2011年.
    [37]Thimmappa S., Anekonda P. and Reddy P. Can herbs provide a new generation of drugs for treating Alzheimer's disease? Brain Research Reviews.2005,50:361-376.
    [39]Thamas S.I. and Grossberg G.T. Memantine: a review of studies into its safety and efficacy in treating Alzheimer's disease and other dementias. Clin Interv Aging.2009,4:367-377.
    [40]靳慧,张英东,丁斌蓉等.淀粉样p肽相关阿尔茨海默病治疗进展.中风与神经疾病杂志.2011,28(4):378-380.
    [41]Wisniewski T. and Konietzko U. Amyloid-β immunisation for Alzheimer's disease. Lancet Neurol.2008,7:805-11.
    [42]刘新霞,杨新爱,屈婵等.文冠果果壳提取物对学习记忆障碍的改善作用.中药新药与临床药理.2007,18(1):23-25.
    [43]迟天燕,王力华,纪雪飞等.文冠果壳苷对侧脑室注射Aβ1-42致痴呆模型小鼠学习记忆障碍的改善作用.沈阳药科大学学报.2010,27(4):314-319.
    [44]Chi T.Y., Wang L.H., Qu C. et al. Protective effects of xanthoceraside on learning and memory impairment induced by Aβ25-35 in mice. Journal of Asian Natural Products Research.2009,11(12): 1019-1027.
    [45]迟天燕,王力华,纪雪飞等.文冠果壳苷对侧脑室注射Aβl-42致小鼠学习记忆障碍的改善作用.中国医科大学学报,2009,38(10):734-736.
    [46]Lu P., Mamiya Y., Lu L.L. et al. Xanthoceraside attenuates amyloid β peptide25-35-induced learning and memory impairments in mice. Psychopharmacology.2012,219:181-190.
    [47]Dragicevic N. and Mamcarz M. Mitochondrial amyloid-β levels are associated with the extent of mitochondrial dysfunction in different brain regions and the degree of cognitive impairment in Alzheimer's transgenic mice. Journal of Alzheimer's Disease.2010,20:535-550.
    [48]Jhoo J.H., Kimb H.C., Nabeshima T., et al. β-Amyloid(1-42)-induced learning and memory deficits in mice: involvement of oxidative burdens in the hippocampus and cerebral cortex. J Behavioural Brain Research.2004,155:185-196.
    [49]Yan J.J., Kim D.H., Moon Y.S., et al. Protection against β-amyloid peptide-induced memory impairment with long-term administration of extract of Angelica gigas or decursinol in mice. J Progress in Neuro-Psychopharmacology & Biological Psychiatry.2004,28:25-30.
    [50]Nakamura S., Murayama N., Noshita T., et al. Progressive brain dysfunction following intracerebroventricular infusion of beta-amyloid peptide. Brain Res.2001,912:128-36.
    [51]Fernandez F. and Garner C.C. Object recognition memory is conserved in a mouse model of Down syndrome. Neuroscience Letters.2007,421:137-141.
    [52]刘玲玲,盛柏杨,龚锴等.淀粉样肽Ap导致线粒体功能紊乱的体内和体外研究.生物化学与生物物理进展.2010,37(2):154-160.
    [53]Sims N.R. Rapid Isolation of Metabolically active mitochondria from rat brain and subregions using Percoll density gradient centrifugation. Journal of Neurochemistry.1990,55(2):698-707.
    [54]Anderson M.F. and Sims N.R. Improved recovery of highly enriched mitochondrial fractions from small brain tissue samples. Brain Research Protocols.2000,5:95-101.
    [55]Sims N.R. and Anderson M.F. Isolation of mitochondria from rat brain using percoll density gradient centrifrigation. Nature Protocols.2008,3(7):1228-1239.
    [56]Hansson M.J. and Mansson R. Calcium-induced generation of reactive oxygen species in brain mitochondria is mediated by permeability transition. Free Radical Biology and Medicine.2008,45: 284-294.
    [57]Du H, Guo L., Zhang W., et al. Cyclophilin D deficiency improves mitochondrial function and learning/memory in aging Alzheimer disease mouse model. Neurobiology of Aging.2011,32: 398-406.
    [58]Hauptmann S., Scherping I., Droseb S., et al. Mitochondrial dysfunction: An early event in Alzheimer pathology accumulates with age in AD transgenic mice. Neurobiology of Aging.2009,30: 1574-1586.
    [59]Jacob K.D., Hooten N.N., Trzeciak A.R., et al. Markers of oxidant stress that are clinically relevant in aging and age-related disease. Mechanisms of Aging and Development 134 (2013):139-157
    [60]Ansari M.A. and Joshi G. In vivo administration of D609 leads to protection of subsequently isolated gerbil brain mitochondria subjected to in vitro oxidative stress induced by amyloid beta-peptide and other oxidative stressors: Relevance to Alzheimer's disease and other oxidative stress-related neurodegenerative disorders. Free Radical Biology & Medicine.2006,41:1694-1703.
    [61]Devi L. and Ohno M. Mitochondrial dysfunction and accumulation of the β-secretase-cleaved C-terminal fragment of APP in Alzheimer's disease transgenic mice. Neurobiology of Disease.2012, 45:417-424.
    [62]Hansson P., Alikhani N, Behbahani H, et al. The amyloid beta-peptide is imported into mitochondria via the TOM import machinery and localized to mitochondrial cristae. Proc Natl Acad Sci U S A.2008,105:13145-13150.
    [63]Lustbader J.W., Cirilli M., Lin C., et al. ABAD Directly Links A{beta} to Mitochondrial Toxicity in Alzheimer's Disease. Science.2004,304:448-452.
    [64]Parks J.K., Smith T.S., Trimmer P.A., et al. Neurotoxic Abeta peptides increase oxidative stress in vivo through NMDA-receptor and nitric-oxide-synthase mechanisms, and inhibit complex IV activity and induce a mitochondrial permeability transition in vitro. J Neurochem.2001,76: 1050-1056.
    Mao P.Z. and Reddy P.H.. Aging and amyloid beta-induced oxidative DNA damage and mitochondrial dysfunction in Alzheimer's disease:Implications for early intervention and therapeutics. Biochimica et Biophysica Acta.2011,1812:1359-1370.
    [66]Duboff B., Feany M., and Gotz J.. Why size matters-balancing mitochondrial dynamics in Alzheimer's disease.Trends in Neurosciences (2012):1-11
    [67]Findeis M.A. The role of amyloid beta peptide 42 in Alzheimer's disease. Pharmacol. Ther. 2007,116:266-286.
    [68]Chambon C, Wegener N., Gravius A., et al. Behavioural and cellular effects of exogenous amyloid-β peptides in rodents. Behavioral Brain Research.2011,225:623-641.
    [69]Reddy P.H., Tripathi R., Troung Q., et al. Abnormal mitochondrial dynamics and synaptic degeneration as early events in Alzheimer's disease: Implications to mitochondria-targeted antioxidant therapeutics. Biochimica et Biophysica Acta.2012,1822:639-649.
    [70]Rui Y., Tiwari P., Xie Z., et al. Acute impairment of mitochondrial trafficking by beta-amyloid peptides in hippocampal neurons. J. Neurosci.2006,26:10480-10487.
    [71]Wang X., Perry G., Smith M.A., et al. Amyloid-beta-derived diffusible ligands cause impaired axonal transport of mitochondria in neurons. Neurodegener. Dis.2010,7:56-59.
    [72]Zhao X.L., Wang W.A., Tan J.X., et al. Expression of beta-amyloid induced age-dependent presynaptic and axonal changes in Drosophila. J. Neurosci.2010,30:1512-1522.
    [73]武福军,詹永乐,朱飞奇等.线粒体变化机制与阿尔茨海默病.中国老年学杂志.2011,31:354-357.
    [74]Baloyannis S., Costa V. and Michmizos D. Mitochondrial alterations in Alzheimer's Disease. Am J Alzheimer's Dis.2004,19:89-93.
    [75]张葳,刘丽华,车翠娇等.阿尔茨海默病与氧化应激.中风与神经疾病杂志.2011,28(2):1141-1142.
    [76]Seo J.S., Lee K.W., Kim T.K., et al. Behavioral stress causes mitochondrial dysfunction via ABAD up-regulation and aggravates plaque pathology in the brain of a mouse model of Alzheimer disease. Free Radical Biology & Medicine 50 (2011) 1526-1535
    [77]Marques A.T. and Fernandes P.A.. Molecular dynamics simulations of the amyloid-beta binding alcohol dehydrogenase (ABAD) enzyme. Bioorganic & Medicinal Chemistry 16 (2008) 9511-9518
    [78]潘晓黎,钟春玖.Aβ对线粒体功能的影响在阿尔茨海默病发生发展中的作用.中华神经医 学杂志.2009,8(2):204-206.
    [79]Sullivan P.G. and Brown M.R. Mitochondrial aging and dysfunction in Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry.2005,29(3):407-410.
    [80]王友政,丛潇,王磊等.阿尔茨海默病中Aβ损伤线粒体的研究进展.病理生理杂志.2010,26(11):2259-2263.
    [81]Auld D.S., Kornecook T.J., Bastianetto S., et al. Alzheimer's disease and the basal forebrain cholinergic system: relations to β-amyloid peptides, cognition, and treatment strategies. Prog Neurobio J.2002,68(3):209-245.
    [82]Alexeyev M.F., Ledoux S.P. and Wilson G.L. Mitochondrial DNA and aging. Clin. Sci.2004, 107:355-364.
    [83]Chauhan V. and Chauhan A.. Oxidative stress in Alzheimer's disease. Pathophysiology.2006, 13:195-208.
    [84]Coppede F. and Migliore L. DNA damage and repair in Alzheimer's disease. Curr. Alzheimer Res.2009,6:36-47.
    [85]Migliore L., Fontana I., Colognato R., et al. Searching for the role and the most suitable biomarkers for oxidative stress in Alzheimer's disease and in other neurodegenerative diseases. Neurobiol Aging.2005,26(5):587-595.
    [86]Parfait B., Chretien D., Rotig A., et al. Compound heterozygous mutations in the flavoprotein gene of the respiratory chain complex II in a patient with Leigh syndrome. Hum. Genet.2000,106: 236-243.
    [87]Suram A., Hegde M.L. and Rao K.S. A new evidence for DNA nicking property of amyloid beta-peptide (1-42):relevance to Alzheimer's disease, Arch. Biochem. Biophys.2007,463:245-252.
    [88]Cardoso S.M., Santana I., Swerdlow R.H., et al. Mitochondria dysfunction of Alzheimer's disease hybrids enhances Abeta toxicity. J. Neurochem.2004,89(6):1417-1426.
    [89]郑春艳,章海燕,唐希灿.p-淀粉样肽的细胞内毒性与线粒体通透性转变通道.生命科学.2008,20(4):593-598.
    [90]Adam-vizi V. Production of reactive oxygen species in brain mitochondria: contribution by electron transport chain and non-electron transport chain sources. Antioxid Redox Signal.2005, 7(9-10):1140-1149.
    [91]Chen, C.Y., Jang, J.H., Park M.H., et al. Attenuation of Abeta-induced apoptosis of plant extract (Saengshik) mediated by the inhibition of mitochondrial dysfunction and antioxidative effect. Ann. N. Y. Acad. Sci.2007,1095:399-411.
    [92]Abramov A.Y., Canevari L. and Duchen M.R.. Calcium signals induced by amyloid beta peptide and their consequences in neurons and astrocytes in culture. Biochim. Biophys. Acta.2004, 1742 (1-3):81-87.
    [93]Gunter T.E., Buntinas L., Sparagna G., et al. Mitochondrial calcium transport: mechanisms and functions. Cell Calcium.2000,28 (5-6):285-296.
    [94]Praceri I., Rinnoci V., Bagnoli S, et al. Mitochondria and Alzheimer's disease. Journal of the Neurological Sciences. (2012),doi:10.1016/j.jns.2012.05.033
    [95]Marshall K.A. and Daniel S.E. Up regulation of the anti-apoptotic protein bcl-2 may be an early event in the neurdegeneration: studies on Parkinson's and incidental Lewy body disease. Biochem. Biophys. Res. Commun.1997,240:84-87.
    [96]Yang J., Liu X., Bhalla K., et al. Prevention of apoptosis by Bcl-2:release of cytochrome c from mitochondria blocked.Science.1998,275:1129-1132.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700