基于声发射信号多特征分析与融合的刀具磨损分类与预测技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着制造装备自动化与制造模式集成化的发展,刀具切削状态的实时监测成为实现加工过程自动化的一项关键技术,也是目前尚没解决的重要难题。因此,研究加工过程中的刀具状态监控技术对实现加工过程自动化、提升产品加工质量、提高生产率是至关重要的也是非常迫切的。
     本文针对变切削条件下刀具磨损的分类及磨损量预测这一课题,通过大量的切削实验,在实验数据基础上,将现代信号处理方法,如:经验模态分解,高阶谱分析和小波变换等,引入刀具磨损特征的提取中,提出了基于最小二乘支持向量机的声发射信号多特征分析与融合的刀具磨损分类与磨损量预测方法。主要研究内容包括以下几个方面:
     1、以往的刀具状态监测中,多数都采用传统的信号处理方法,如:时域统计分析、傅里叶变换、功率谱估计等,提取对应刀具不同磨损状态的信号特征。由于刀具在磨损过程中发出的各种信号的非平稳、非线性及非高斯特性,传统的信号处理方法,已经远远的不能满足特征提取的要求。本文将更适于非平稳、非线性、非高斯信号处理的现代信号处理方法,如:经验模态分解、高阶谱分析和小波包分析,引入刀具磨损信号的特征提取。
     首先,提出了基于EMD与AR模型相结合的刀具磨损特征提取方法。通过EMD分解将非平稳的声发射信号分解为有限个平稳的IMF分量之和,针对不同磨损阶段信号EMD分解后得到IMF分量个数不同的问题,提出了基于相关系数法的IMF分量选择方法。建立各IMF分量的AR模型,提取模型系数构造特征向量。结合声发射信号实例,讨论了AR模型的定阶问题,利用所建模型对各IMF分量进行预测,预测误差分析结果证明了建立4阶AR模型的准确性,从而间接的证明了AR模型系数作为表征刀具磨损特征向量的有效性。
     其次,将双谱分析理论引入刀具磨损状态监测信号的特征提取中,提出了基于双谱奇异值分解的刀具磨损特征提取方法。在对不同切削条件、不同磨损阶段的实验数据去均值及归一化处理的基础上,进行双谱分析,构造基于双谱的特征向量矩阵,然后对特征向量矩阵进行奇异值分解,选取奇异谱构造特征向量。实验结果表明:该方法可以有效的减少切削条件的影响,更适于变切削条件下刀具磨损特征的提取。
     第三,提出了建立在小波包最优基基础之上的小波包能量及时域统计特征的信号特征提取方法。结合声发射信号实例,探讨了小波包分解层次的确定方法和小波包最优基的选择方法。在此基础上,提取最优小波包能量和时域统计特征构造特征向量,通过引入基于类内、类间距离评估因子的特征评估方法对所得的高维时域统计特征进行评估,将时域统计特征从72维降至13维,有效的减少了特征的维数,提高了特征分类的性能,避免了由于高维输入特征而产生的“维数灾难”。
     2、提出了信号多特征分析与融合的刀具磨损特征提取方法。在传统的刀具磨损监测系统中,为了提高监测的准确率,许多学者提出了基于传感器融合的监测方法,但是这种方法用于实际的监测,却存在一定的弊端:首先,多传感器融合大大增加了监测系统的成本,其次,基于多传感器融合的监测系统在安装上可能会干涉加工人员的操作,甚至影响到加工机床的性能。鉴于此,本文采用上述提及的现代信号处理技术,提取同一信号在不同域内的特征,从不同的角度反映刀具的磨损状态,构造联合多特征向量。然后利用核主元分析法对联合多特征向量进行融合降维处理,通过提取累积贡献率大于85%的主元,生成对应刀具磨损的融合特征,有效剔除了联合多特征中与刀磨损相关性较小或冗余的特征。降维后融合特征的散度图表明:所保留的融合特征具有更好的聚类性。
     3、将最小二乘支持向量机引入刀具磨损的分类与磨损量预测。针对人工神经网络训练需要大量样本,学习算法收敛速度慢,且训练过程中易陷入局部极小值等缺点,将最小二乘支持向量机引入刀具磨损的分类,实例分析的结果证明,在正确选定最小二乘支持向量机核函数参数的前提下,融合特征对刀具磨损的识别率要高于联合特征及单一特征的识别率,基于最小二乘支持向量机的分类模型要优于基于神经网络的分类模型。采用最小二乘支持向量机回归算法,通过构造并联的双回归支持向量机,有效的实现了刀具磨损量提前10s预测。
     4、开发了基于数字信号处理器的刀具磨损监测系统。该系统运算速度快,完全满足监测系统实时性的要求;系统柔性强,所有分类与预测算法均通过软件实现;提供通用的传感器信号接口,传感器可根据实际监测信号的变化方便更换;对于不同的加工方法,在未知信号特征及监测算法的情况下,本系统可以做为一个数据采集器,通过系统提供的高速USB接口,可将现场数据及时上传计算机,经技术人员分析与处理,编写新的特征提取、分类和预测算法程序,再回传给系统,实现不同加工方法下刀具的状态监测。因此系统通用性强,在理论上适用于任何加工方法刀具状态监测。
With the development of automation of manufacturing equipment and integration of manufacturing mode, real-time tool condition monitoring has become key technology in achieving automatic machining process and is an important problem not solved currently. The research on tools condition monitoring in machining process is of great importance and urgent to the realization of automatic machining process, improvement of product quality, and high productivity.
     To classify tools wearing and forecast wearing capacity under alternating cutting conditions, a multi-feature fusion method based on least squares support vector machines (LS-SVM) was established through the analysis of large quantity of experimental data. Modern digital signal processing (DSP) methods such as empirical mode decomposition, high-order spectral analysis and wavelet transform were used in the characteristics extraction of tools wearing. The main accomplishments are summarized as follows:
     1、In the past, traditional signal processing methods are mostly used in characteristics extraction in monitoring tools wearing. Methods such as statistical analysis in time domain, Fourier transform and PSD estimation cannot meet the signal processing requirements because signals from tools wearing are non-stationary, non-linear and non-Gaussian. In this paper, Modern signal processing methods such as empirical mode decomposition, high-order spectral analysis and wavelet transform are introduced tool wear signal extraction.
     First, the method of characteristics extraction of tools wearing based on the combination of Empirical mode decomposition (EMD) and autoregressive (AR) model is proposed. EMD can decompose non-stationary emission signals into finite intrinsic mode function (IMF) components. The method of IMF selection based on correlation coefficient method was proposed with the aim of addressing the issue that EMD of acoustic emission signals at different wearing stages produce different numbers of IMF. AR model coefficient contains important information of system and is most sensitive to status changes, so AR model was established for each IMF component after constructing feature vectors via extracting model coefficient. The order of AR model directly influences the accuracy of model and system identification. The order determination of AR model was addressed using sample acoustic emission signals of tools wearing. Forth-order AR model proved to be accurate by prediction error analysis. It is indirectly proved that the AR model coefficients as feature vectors characterize the effectiveness of the tool wear.
     Second, the theory of bispectrum analysis was successfully applied to the characteristics extraction of tools wearing. As a result, a method of feature extraction based on bispectrum singular value decomposition was proposed. After the removal of mean values and the normalization process of experimental data from different cutting conditions and different wearing stages, an eigenvector matrix was constructed on the basis of the bispectrum analysis of experimental data. The eigenvector was subsequently constructed by extracting singular spectrum through singular value decomposition of eigenvector matrix. By analyzing sample acoustic emission signals of tools wearing, this method proved to be effective in reducing the influence of cutting conditions and suitable for feature extraction of tools wearing under alternating cutting conditions.
     Next, The energy characteristics extraction of wavelet package and statistical feature of time domain, which is established on the basis of the best bases of wavelet package, was proposed. Determination of decomposing levels and selection of best bases of wavelet package were investigated using sample acoustic emission signals. High dimensional time domain statistical features was evaluated on the distance ratio of within/between class. As a result, the dimension of time domain was reduced from 72 to 13. This improved the performance of feature classification and avoids the Dimensional disaster.
     2、A characteristics extraction method of tools wearing based on multi-feature fusion was proposed. In the traditional monitoring system of tools wearing, the sensor fusion based monitoring method is used by many researchers to improve the accuracy of monitoring. But this traditional method has some limitations in its practical applications. First, it largely increases the cost of the monitoring system. Second, installing of monitoring system may interfere the operator, even impede the performance of machine tools. In view of this, multiple feature joint base on modern signal processing methods was proposed. The characteristics of the same signal in different domains was extracted by modern signal processing technology, then the joint multi-feature vector was contructed. By using the Kernel principal component analysis method, the joint multi-feature vector was fused. Select the principal components whose Cumulative contribution rate is greater than 85% and generate fusion feature vector corresponding to the tool wear, which can effectively exclude features that is redundant or has little relevance to tool wear. Divergence diagram of the fusion feature after descending dimension shows that: the fusion features retained have better character of clustering.
     3、Introduced the least squares support vector machines to tool wear classification and wear prediction. To overcome shortcomings such as large quantities of samples required in artificial neural network training, low convergence rate of learning algorithm and trapped in local minimum in training, least squares support vector machines was applied to classifying and forecasting tools wearing. The analysis of sample data proved that the identification rate of fusion characteristic is higher than that of single one, and the model of classification and forecasting based on least squares support vector machines is superior to the one based on artificial neural network. Using least squares support vector machine regression algorithm, by constructing a parallel dual regression support vector machine, tool wear prediction 10s ahead is effectively realized.
     4、A monitoring system of tools wearing based on digital signal processor was developed. The features of this system are: fast computing speed to meet the requirement of real-time monitoring; high flexibility because all algorithms for classification and forecasting are realized using software only; and universal interface for sensor signals so that sensors can be replaced at any time as required by real-time signals. This system can be used as a digital collector even the signal characteristics and algorithms are unknown because the high speed USB interface can transfer data to computer for prompt processing. After being analyzed and reprogrammed for classification and forecasting by the users, the data are fed back to the system. As a result, monitoring of cutting conditions by different processing methods can be realized. Theoretically, this monitoring system can be applied to any processing method.
引文
[1] Erkki Jantunen. A summary of methods applied to tool condition monitoring in drilling [J]. International Journal of Machine Tool & Manufacture. 42 (2002) 997-1010.
    [2] XiaoLi Li.A brief review:acoustic emission method for tool wear monitoring during turning[J]. International Journal of Machine Tool & Manufacture. 42(2002) 157-165.
    [3] Zhu Kunpeng, Wong Yoke San, Hong Geok Soon. Wavelet analysis of sensor signals for tool condition monitoring: A review and some new results[J]. International Journal of Machine Tools & Manufacture. 49 (2009) 537-553.
    [4] D.E. Dimla. Sensor signals for tool-wear monitoring in metal cutting operations- a review of methods[J]. International Journal of Machine Tools & Manufacture. 40(2000) 1033-1098.
    [5] D.E. Dimla JR, P.M. LISTER, N.J. LEIGHTON. Neural network solutions to the tool condition monitoring problem in metal cutting– a critical review of methods[J]. International Journal of Machine Tool & Manufacture. 37(1997) 1219-1241.
    [6] Bernhard Sick. On-line and indirect tool wear monitoring in turning with artificial neural networks:A review of more than a decade of research[J]. Mechanical Systems and Signal Processing. 16(2002) 487-546.
    [7] P.W.Prickett, C.Johns. An overview of approaches to end milling tool monitoring[J]. International Journal of Machine Tools & Manufacture. 39(1999) 105-122.
    [8] A.Ghasempoor,T.N.Moore,J.Jeswiet. On-line wear estimation using neural networks[J]. Proceedings of the Institution of Mechanical Engineers-B,1998,.vol.212,105-112.
    [9] R.G. Silva, K.J. Baker, S.J. Wilcox et al. The adaptability of a tool wear monitoring system under changing cutting conditions[J]. Mechanical Systems and Signal Processing 14(2) (2000) 287-298.
    [10] C.S. Leem, D.A. Dornfeld. Design and implementation of sensor-based tool-wear monitoring systems[J]. Mechanical Systems and Signal Processing 10(1996) 439-458.
    [11] L.Dan, J.Mathew. Tool wear and failure monitoring techniques for turning—A review[J]. International Journal of Mchine Tools and Manufacture 30(1990) 579-598.
    [12] H.M.Ertunc,Cuneyt Oysu. Drill wear monitoring using cutting force signals[J].Mechatronics 14(2004) 533-548.
    [13] H.M.Ertunc,K.A.Loparo.A decision fusion algorithm for tool wear condition monitoring in drilling[J]. International Journal of Machine Tool & Manufacture. 41(2001) 1347-1362.
    [14] G.S.Li,W.S.Lau,Y.Z.Zhang. In-Process drill wear and breakage monitoring for a machining centre base on cutting force[J]. International Journal of Machine Tool & Manufacture. 32(6)(1992)855-867.
    [15] S.A.jalali,W.J.Kolarik. Tool life and machinability models for drilling steels[J]. International Journal of Machine Tool & Manufacture. 31(3)(1991) 273-282.
    [16] D.E.Dimla Sr, P.M.Lister. On-line metal cutting tool condition monitoring I: force and vibration analyses[J]. International Journal of Machine Tools & Manufacture 40 (2000) 739-768.
    [17] M.Cemal Cakir, Yahya Isik. Detecting tool breakage in turning aisi 1050 steel using Coated and uncoated cutting tools[J]. Journal of Materials Processing Technology 159(2005) 191-198.
    [18] A Ghasempoor,J.Jeswiet.T.N.Moore. Real time implementation of on-line tool condition monitoring in turning[J]. International Journal of Machine Tool & Manufacture. 39(1999) 1883-1902.
    [19] Qiang Liu,Yusuf Altintas.On-line monitoring of flank wear in turning with nultilayered feed-forward neural network[J]. International Journal of Machine Tools & Manufacture. 39 (1999) 1945-1959.
    [20] S.k.Choudhury,K.K.Kishore. Tool wear measurement in turning using force ratio[J]. International Journal of Machine Tool & Manufacture. 40(2000)899-909.
    [21] J.H.Lee. D.E.Kim. Statistical analysis of cutting force ratios for flank-wear monitoring[J] Journal of Materials Technology 74(1998) 104-114
    [22] C.Chungchoo,D.Saini. The total energy and the total entropy of force signals– new parameter for monitoring oblique turning operations[J]. International Journal of Machine Tools & Manufacture. 40(2000) 1879-1897.
    [23] Toshiyuki Obikawa. Monitoring of flank wear of coated tools in hight speed machining with a neural network ART2[J]. International Journal of Machine Tools & Manufacture 44 (2004) 1311-1318.
    [24] E.Lenz,J.E.Mayer. Investigation in drilling [J]. Annals of the CIPP 27(1)(1978) 49-53.
    [25] I.N.Tansel, C.Mekdeci, O.Rodriguez et al. Monitoring drill conditions with wavelet based encoding and neural network[J]. Int. J. Mach. Tool Manuf. 33(4)(1993)559-575.
    [26] I.N.Tansel,O.Rodriguez,C.Mekdeci.Detection of tool breakage in microdrilling operation with REC neural networks,PED,ASME 47(1)(1992)83-88.
    [27] S.C.Lin,C.J.Ting.Tool wear monitoring in drilling using force signals[J]. Wear 180(1-2) (1995) 53-60.
    [28] E.Jantunen, H.Jokinen. Automated On-line Diagnosis of Cutting Tool Condition[J]. International Journal of Flexible Automation and Integrated Manufacturing 4(3-4) (1996) 273-287.
    [29] M.Routio,M.Saynatjoki. Tool wear and failure in the drilling of stainless stree[J].Journal of Materials Processing Technology 52(1)(1995) 35-43.
    [30] Thangaraj A,Wright PK. Drill wear sensing and failure prediction for untended machining[J] Robotic Comput-Integr Manuf 1998; 4:429-435.
    [31] G.Sutter, A. Molinari. Analysis of the cutting force components and friction in high speed machining[J]. Journal of Manufacturing Science and Engineering-Transactions of the ASME. 127(2005) 245-250.
    [32] H.Saglam, A.Unuvar. Tool condition monitoring in milling based on cutting forces by a neural network[J]. International Journal of Production Research 41(7)(2003)1519-1532.
    [33] C.Scheffer, P.S.Heyns. Wear monitoring in turning operations using vibration and strain measurement[J].Mechanical Systems and Signal Processing 15(6) (2001) 1185-1202.
    [34] R.E.Haber, J.E.Jimenez, C.R.Peres at el. An investigation of tool-wear monitoring in a high-speed machining process[J]. Sensors and Actuators A 116(3)(2004) 539-545.
    [35] Issam Abu-Mahfouz. Drilling wear detection and classification using vibration signals and artificial neural network[J]. International Journal of Machine & Tools Manufacture 43 (2003) 707-720.
    [36] R.G.Silva, R.L.Reuben, K.J.Baker at el. Tool wear monitoring of turning operations by neural network and expert system classification of a feature set generated from multiple sensors[J]. Mechanical Systems and Signal Processing 12(2) (1998) 319-332.
    [37] J.Sun, G.S.Hong, M.Rhman, Y.S.Wong. Identification of feature set for effective tool condition monitoring by acoustic emission sensing[J]. International Journal of Production Research 42(5) (2004) 901-918.
    [38] F.J.Alonso,D.R.Salgado. Analysis of the structure of vibration signals for tool wear detection[J]. Mechancial Systems and Signal Processing 22(2008) 735-748.
    [39] D.R.Salgado,F.J.Alonso.Tool wear detection in turning operation using singular spectrum analysis[J]. Journal of Materials Processing Technology 171(2006) 451-458.
    [40] Weiguo Gong,Weihong Li,T.Shirakashi et al. An active method of monitoring tool wear states by impact diagnositic excitation[J]. International Journal of Machine Tools & Manufacture. 44(2004)847-854.
    [41] Shang-Liang Chen,Y.W.Jen. Data fusion neural network for tool condition monitoring in CNC milling machining[J]. International Journal of Machine Tools & Manufacture 40 (2000) 381-400.
    [42] D.E.Dimal Sr,P.M.Lister. On-line metal cutting tool condition monitoring II: tool-state classification using multi-layer perceptron neural network[J]. International Journal of Machine Tools & Manufacture 40 (2000) 769-781.
    [43] N.Ghosh, Y.B.Ravi, A.Patra et al. Estimation of tool wear during CNC milling using neural network-based sensor fusion[J]. Mechanical Systems and Signal Processing 21 (2007) 466-479.
    [44] J.C.Chen, W.L.Chen. A tool breakage detection system using an accelerometer sensor[J]. Journal of Intelligent Manufacturing. 10(2)(1999)187-197.
    [45] T.I.EI-Wardany, D.Gaoand, M.A. Eibestawi. Tool condition monitoring in drilling using vibration signature analysis[J]. International Journal of Machine Tools & Manufacture. 36(1996) 687-711.
    [46] Tomas Kalvode, Yean-Ren Hwang. A cutter tool monitoring in machining process using Hilbert-Huang transform[J]. International Journal of Machine Tools & Manufacture. 50(2010) 495-501.
    [47] S.Pittner, S.V.Kamarthi, Q.Gao. Wavelet networks for sensor signal classification in flank wear assessment[J]. Journal of Intelligent Manufacutring. 9(1998) 315-322.
    [48] Dimla E.Dimla Snr. Sensor signals for tool wear monitoring in metal cutting operations—a review of methods[J]. International Journal of Machine Tools & Manufacture. 40(2000) 1073-1098.
    [49] L.C. Lee, K.S.Lee, C.S.Gan. On the correlation between dynami cutting force and tool wear[J]. International Journal of Machine Tools & Manufacture 29(3) (1989) 295-303.
    [50] Tomas Kalvode, Yean-Ren Hwang. A cutter tool monitoring in machining process using Hilbert-Huang transform[J]. International Journal of Machine Tools & Manufacture. (2010) 495-501.
    [51] Rodolfo E.Haber, Jose E.Jimenez et al. An investigation of tool-wear monitoring in high speed machining process[J]. Sensors and Actuators A 116(2004)539-545.
    [52] S.Liang,D.Dornfeld. Tool wear detection using time series analysis of acoustic emission [J]. J.Eng.Ind.Tran. ASME111(3)(1989) 199-205.
    [53] I.Tansel, M.Trujillo, A.Nedbouyan et al. Micro-end-milling—III. Wear estimation and tool breakage detection using acoustic emission signals[J]. International Journal of Machine Tools & Manufacture. 38 (1998)1449-1466.
    [54] Slavko Dolinsek, Janez Kopac. Acoustic emission signals for tool wear identification[J]. wear 225-229 (1999)295-303.
    [55] H.V.Ravidra,Y.G.Srinivasa,R.Krishnamurthy. Acoustic emission for tool condition monitoring in metal cutting[J].wear 212(1997)78-84.
    [56] J.Sun, M.Rahman, Y.S.Wong et al. Multiclassification of tool wear with support vector machine by manufacturing loss consideration[J]. International Journal of Machine Tools & Manufacture. 44(2004) 1179-1187.
    [57] Li Xiaoli, Yuan Zhejun. Tool wear monitoring with wavelet packet transform-fuzzy clustering method[J]. Wear 219(1998)145-154.
    [58] M.Liu, S.Y.Liang. Analytical modeling of acoustic emmission for monitoring of peripheral milling process[J]. International Journal of Machine Tools & Manufacture. 31(4) (1991) 589-606.
    [59] Iulian Marinescu, Dragos A. Axinte. A critical analysis of effectiveness of acoustic emission signals to detect tool and workpiece malfunctions in milling operations[J]. International Journal of Machine Tools & Manufacture. 48 (2008) 1148-1160.
    [60] Alexandre L.Quadro, J.R.T.Branco. Analysis of the acoustic emission during drilling test[J]. Surface and Coating Technology 94-95(1997) 691-695.
    [61] K.Jemielniak,O.Otman. Tool failure detection based on analysis of accoustic emission signals[J]. Journal of Material Proessing Technology 76(1998) 192-197.
    [62] K.Jemielniak,S.bombinski. Tool condition monitoring in micromilling base on hierarchical integration of signal measures[J]. CIPP Annals Manufacturing Technology 57(2008)121-124.
    [63] Y.Quan,M.Zhou.Online robust identification of tool-wear via multi-sensor neural network fusion[J]. Engineering Application of Artificial Intelligence 11(1998) 717-722.
    [64] Dragos, A.Axinte,Nabil Gindy. Tool condition monitoring in Broaching[J]. wear 254(2003)370-382.
    [65] Romero-Troncoso Rene de Jesus,Herrera Ruiz Cilberto,Terol-villalobos Ivan et al. Driver current analysis for sensorless tool breakage monitoring of CNC millingmachines[J]. Int.J. Mach. Tool Manuf.43(2003) 1529-1534.
    [66] H.Shao, H.L.Wang, X.M.Zhao. A cutting power model for tool wear monitoring in milling[J]. Int.J. Mach. Tool Manuf. 44(2004) 1503-1509.
    [67] D.R.Salgado,.F.J.Alonso. An approach besed on current and sound signals for in-process tool wear monitoring[J]. Int.J. Mach. Tool Manuf. 47 (2007) 2140-2152.
    [68] M.A.Mannan, Ashraf A.Kassim, Ma Jing. Application of image and sound analysis techniques to monitor the condition of cutting tools[J].Pattern Recognition Letters 21(2000) 969-979.
    [69]谢政.基于切削声音信号的刀具状态识别研究[D].上海:上海交通大学,2008.
    [70] Kacar Hulya,Saglam Haci. Cutting tool condition monitoring using surface texture via neural network[J]. Mathematical and computational applications,2003,8(1-3)435-443.
    [71] N.H.Abu-Zahra. Calibrated method for ultrasonic on-line monitoring of gradual wear during turning operation[J]. International Journal of Machine Tools & Manufacture. 37(1997)1475-1484.
    [72] S.K.Jetley, A.Gollajesse. Measuring tool wear using magnetism, in:Proceedings:Japan- USA Symposium Flexible Automation—A Pacific Rim Conference,July 11-18,Kobe,Japan, 1994,pp.345-347.
    [73]郑建明.基于HMM的多特征融合钻头磨损监测技术的研究[D].西安:西安理工大学,2004.
    [74] T.Moriwaki, M.Tobito. A new approach to automatic detection of life of coated tool based on acoustic emission measurement[J]. ASME Trans. Journal of Engineering for industry 112(3)(1990) 212-218.
    [75] A.Al-Habaibeh, F.Zorriassatine, N.Gindy. Comprehensive experimental evaluation of a systematic approach for cost effective and rapid design of condition monitoring systems using Taguchi’s method[J]. Journal of Materials Processing Technology 124 (2002) 372-383.
    [76] Ibrhim Deiab, Khaled Assaleh, Firas Hammad. On modeling of tool wear using sensor fusion and polymonial classifiers[J]. Mechanical Systems and Signal Processing 23(2009) 1719-1729.
    [77] D.Shi, N.Gindy. Tool wear predictive model based on least squares support vector machines[J]. Mechanical Systems and Signal Processing 21(4) (2007) 1799-1814.
    [78] S.Rangwala, D.Dornfeld. Sensor integration using neural networks for intelligent tool condition monitoring[J]. Journal of Engineering for Industry, Transactions of theASME 112 (1990) 219-228.
    [79] L.Monostori. A step towards intelligent manufacturing: Modelling and monitoring of manufacturing processes through artificial neural networks[C]. 1993 Annals of the CIRP 42, 485-488.
    [80] C. Scheffer, H. Kratz, P. S. Heyns et al. Development of a tool wear-monitoring system for hard turning[J]. International Journal of Machine Tools & Manufacture. 43(2003) 973-985.
    [81] R.J.Kuo, P.H.Cohen. Intellignet tool wear estimation system through artificial neural networks and fuzzy modling[J]. Artificial Intelligence in Engineering 12(1998) 229-242.
    [82] R.J.Kuo. Multi-sensor integration for on-line tool wear estimation through artificial neural networks and fuzzy neural network[J]. Engineering Applications of Artificial Intelligence 13(2000) 249-261.
    [83] P.Bhattacharyya,D.Sengupta,S.Mukhopadhyay. Cutting force-based real-time estiation of tool wear in face milling using a combination of signal processing techniques[J]. Mechanical System and Signal Processing 21(2007) 2665-2683.
    [84] Y.Wu, R.Du. Feature extraction and assessment using wavelet packets for monitoring of machining processes[J]. Mechanical Systems and Signal Processing 10 (1996) 29-53.
    [85] X.Li. Real-time detection of breakage of small diameter drills with wavelet transform[J]. Int.J.Adv.Manuf. Technol. 14(8)(1998)539-543.
    [86] Weihong Li, Weiguo Gong, T.Obikawa et al. A method of recognizing tool-wear states based on a fast algorithm of wavelet transform[J]. Journal of Materials processing Technology 170(2005) 374-380.
    [87] W.Gong, T.Obikawa, T.Shirakashi. Monitoring tool wear states in turning based on wavelet analysis[J]. JSME International (Series C) 40 (1997) 447-453.
    [88] X.Li,Y.Yao,Z.Yaun. On-line tool condition monitoring system with wavelet fuzzy neural network[J]. Journal of Intelligent Manufacturing 8 (1997) 71-276.
    [89] Luis Alfonso Franco-Gasca, Gilberto Herrera-Ruiz, Rocio Peniche-Vera et al. Sensorless tool failure monitoring system for drilling machines[J]. International Journal of Machine Tools & Manufacture 46(2006) 381-386.
    [90] Y.M.Niu, Y.S. Wong, G.S. Hong et al. Multi-category classification of tool conditions using wavelet packets and ART2 network[C]. 1998 Journal of Manufacturing Science and Engineering, Transactions of the ASME 120, 807-816.
    [91] E.Serrano,M.Fabio. Application of the wavelet transform to acoustic emmission signals processing[J]. IEEE Trans. Signal Process 44(5) (1996) 1270-1275.
    [92] B.W.Gillespie, L.E.Atlas. Optimizing Time-Frequency Kernels for Classification[J]. IEEE Transactions on Signal Processing 49(3) (2001) 485-496.
    [93] S.K.Lee, P.R.White. Higher-order time-frequency analysis and its application to fault detection in rotating machinery[J]. Mechanical Systems and Signal Processing 11(4) (1997) 637-650.
    [94] W.J.Staszewski, K.Worden, G.R.Tomlinson. Time-frequency analysis in gearbox fault detection using the Wigner-Ville distribution and pattern recognition[J]. Mechanical Systems and Signal Processing 11(5) (1997) 673-692.
    [95]孙斌,黄胜全,周云龙等.一种基于经验模式分解的气液两相流流型识别方法[J].仪器仪表学报,2008,29(5): 1011-1015.
    [96]行鸿彦,许瑞庆,王长松.基于经验模态分解的脉搏信号特征研究[J].仪器仪表学报, 2009, 30(3): 596-602.
    [97] Tomas Kalvode, Yean-Ren Hwang. A cutter tool monitoring in machining process using Hilbert-Huang transfom[J]. International Journal of Machine Tools & Manufacture 50 (2010) 495-501.
    [98]贺灵敏. EMD和支持向量机在刀具故障诊断中的应用[D].成都:西华大学,2010.
    [99] T.Obikawa,C.Kaseda,T.Matsumura et al. Tool wear monitoring for optimizing cutting conditions[J]. Journal of Materials Pocessing Technology 62(1996) 374-379.
    [100]王海丽,马春翔,邵华等.车削过程中刀具磨损和破损状态的自动识别[J].上海交通大学学报,2006,40(12): 2057-2062
    [101]李旗号,赵卫东,许少平.刀具磨损监测的神经网络实践[J],合肥工业大学学报,1998,21(6):103-106.
    [102]刘钟,朱名铨.刀具状态监测的信息处理技术[J],航空工艺技术, 1996,5:35-36.
    [103] S.T.S.Bukkapatnam, S.R.T.Kumara, A.Lakhtakia. Fractal estimation of flank wear in turning[C]. 2000 Journal of Dynamic Systems, Measurement, and Control, Transactions of the ASME 122, 89-94.
    [104]郑建明,李言,肖继明等.分形在钻头磨损切削力特征提取中的应用[J].应用科学学报,2004, 22(3): 337-341.
    [105]郑建明,李言,袁启龙等.一种新的小波分维数及其在钻头磨损监测中的应用[J].西安理工大学学报,2006,22(2): 128-131.
    [106]郗长青.基于钻削力信号的钻头磨损状态监测技术的研究[D].西安:西安理式大学,2005.
    [107] Myung Chang Kang, Jeong Suk Kim, Kwang Ho Kim. Fractal dimension analysis of machined surface depending on coated tool wear[J]. Surface & Coatings Technology 193 (2005) 259-265
    [108]王忠民,王信义,陈爱弟等.基于分形维数的刀具状态在线监测新方法[J].北京理工大学学报,2000,20(4):441-444.
    [109]朱丽琴.基于分形理论的刀具磨损状态识别研究[D].成都:西南交通大学,2009.
    [110]张大吉.基于双谱与分形技术及神经网络的刀具智能诊断技术研究[D].成都:西南交通大学,2008.
    [111]徐创文,陈花玲,刘彦国等.铣削刀具不同磨损期振动信号的分维特征[J].农业机械学报,2007,38(6):164-168.
    [112] Y. Altintas. In-process detection of tool breakages using time series monitoring of cutting forces[J]. International Journal of Machine Tools and Manufacture 28 (2) (1988) 157-172.
    [113] S.Y.Liang, D.A.Dornfeld. Detection of cutting tool-wear using adaptive time series modeling of acoustic emission signal[J]. Sensors for Manufacturing-Transactions of the ASME (1987) 27–38.
    [114] S.A.Kumar, H.V.Ravindra, Y.G.Srinivasa. In-process tool wear monitoring through time series modeling and pattern recognition[J]. International Journal of Production Research 35 (3) (1997) 739–751.
    [115] G.Chryssolouris, M.Domroese. Sensor integration for tool wear estimation in machineing, in: Sensors and Controls for Manufacturing[C]. Proceedings of the Winter Annual Meeting, USA ASME, 1988, pp. 115-123.
    [116] J.H.Lee, D.E.Kim, S.J.Lee. Application of neural networks to flank wear prediction[J]. Mechanical System and Signal Processing 10(3) (1996) 265-276.
    [117] S.C.Lin, R.J.Lin. Tool wear monitoring in face milling using force signals[J]. wear 198 (1996) 136-142.
    [118]魏春燕.小波分析与神经网络在刀具故障诊断中的应用[D].成都:西华大学,2008.
    [119]周缓婧.基于遗传算法的BP神经网络在刀具磨损状态监测中的应用[D].成都:西南交通大学,2010.
    [120]潘旭辉.基于切削加工声音信号的刀具状态监测技术基础研究[D].南京:南京航空航天大学,2006.
    [121]李锡文,杨明金,谢守勇等.基于神经网络信息融合的铣刀磨损状态监测[J].农业机械学报,2007,38(7):160-163.
    [122]王海丽,赵曙伟,翁世修等.刀具磨损监控中神经网络训练的模糊方法[J].振动、测试与诊断,1998,18(2):103-107
    [123]李旗号,赵卫东.刀具磨损的人工神经网络估计[J].天津大学学报,2000,33(4): 447-450
    [124]汤为.基于声发射的铣刀磨损状态识别研究[D].上海:上海交通大学,2009.
    [125]蒋丽英,王蕾,席剑辉等.基于RBF网络的刀具磨损状态预测技术研究[J].仪器仪表学报,2009,30(6): 196-199
    [126]徐创文,陈花玲,郭攀成等.基于径向基函数网络的刀具磨损识别[J].测试技术学报,2007,21(3):219-224.
    [127]雷萍.基于PSO优化的小波神经网络在刀具磨损识别的应用[J].工具技术,2007,41(6):91-94.
    [128]朱云芳,戴朝华,陈维荣.基于递归小波神经网络的刀具状态在线监测[J].机床与液压,2007,35(2):172-175.
    [129]冯冀宁,刘彬,刁哲军等.基于小波神经网络的切削刀具状态监测[J].中国机械工程,2004,15(4):321-324.
    [130]舒服华.基于小波神经网络的刀具状态监测[J].组合机床与自动化加工技术,2006,(1):69-70.
    [131]高宏力,傅攀,许明恒.基于B样条模糊神经网络的刀具磨损监测[J].机械科学与技术,2005,24(6):751-753.
    [132]高宏力.切削加工过程中刀具磨损的智能监测技术研究[D].成都:西南交通大学,2005.
    [133]曹伟青. B样条模糊神经网络在刀具故障诊断中的应用[D].成都:西南交通大学,2005.
    [134] Yingxue Yao, Xiaoli Li, Zhejun Yuan. Tool wear detection with fuzzy classification and wavelet fuzzy neural network[J]. International Journal of Machine Tools & Manufacture 39 (1999) 1525-1538.
    [135] C.Chungchoo, D.Saini. On-line tool wear estimation in CNC truning operation using fuzzy neuran network model[J]. International Journal of Machine Tools & Manufacture 42 (2002) 29-40.
    [136] Y. Niu, Y.Wong, G. Hong. Intelligent sensor system approach for reliable tool flank wear recognition[J]. Int. J. Adv. Manuf. Technol. 14(2) (1998) 77-84.
    [137]王海丽,翁德玮,胡兆燕等.基于模糊神经网络的刀具磨损识别[J].上海交通大学学报,2002,36(8): 1086-1090
    [138]高宏力,许明恒,傅攀.基于集成神经网络的刀具磨损量监测[J].西南交通大学学报,2005, 40(10): 461-464.
    [139]高龙.基于小波分析和集成神经网络的刀具磨损监测技术研究[D].成都:西南交通大学,2007.
    [140]庄子杰.基于声发射和振动法的刀具磨损状态检测研究[D].上海:上海交通大学,2009.
    [141]高宏力,许明恒,傅攀等.基于动态树理论的刀具磨损监测技术[J].机械工程学报,2006,42(7):227-230.
    [142]杨晓波,冯冀宁,刘鸿运.基于小波神经网络纹理图像识别的刀具状态监测[J].组合机床与自动化加工技术,2007,(12):46-49.
    [143]陈爱弟,王信义,王忠民等.基于模糊聚类的刀具磨损量在线监测方法[J].北京理工大学学报,2000,20(3):276-280.
    [144]李鹏阳,郝重阳,祝双武等.基于脉冲耦合神经网络的刀具磨损检测[J].中国机械工程,2008,19(5):547-550.
    [145] J.Sun, G.S.Hong, Y.S.Wong et al. Effective training data selection in tool condition monitoring system[J]. International Journal of Machine Tools & Manufacture. 46 (2006) 218-224.
    [146]吕冬梅.支持向量机在刀具故障诊断中的应用[D].成都:西华大学,2009.
    [147] S.Li, M.A.Elbestawi. Fuzzy clustering for automated tool condition monitoring in machining[J]. Mechanical System and Signal Processing 10(5) (1996) 533-550.
    [148]黄遂.切削加工过程中刀具磨损智能监测与切削力技术研究[D].成都:西南交通大学,2010.
    [149] P.Baruah, R.B.Chinnam. HMMs for diagnostics and prognostics in machining processes[J]. International Journal of Production Research 43 (6) (2005) 1275-1293.
    [150] Litao Wang, Mostafa G, Mehrabi et al. Hidden Markov model-based tool wear monitoring in turning[J]. Journal of Manufacturing Science and Engineering– Transactions of the ASME 124 (August) (2002) 652-658.
    [151] Randal K.Fish, M.Ostendorf, G.D.Bernard et al. Multilevel classification of milling tool wear with confidence estimation[J]. IEEE trans. Pattern Anal. Mach. Intell. 25 (1) (2003) 75-85.
    [152]罗杰.基于钻削力和噪声信号的HMM钻头磨损监测技术研究[D].西安:西安理工大学,2006.
    [153]刘震.基于隐Markov模型切削过程监测系统研究[D].福州:福建农林大学.
    [154]艾长胜,王宝光,董全成等.基于声信号HMM的刀具磨损程度分级识别[J].组合机床与自动化加工技术,2007,(7):26-29.
    [155] C.Jiaa, D.Dornfeld. Self-organizing approach to the prediction and detection of tool wear[J]. ISA Trans 37(4)(1998) 239-255.
    [156] S.Das, A.B.Chattopadhyay. On-line tool wear monitoring with multiple regression and GMDH algorithm[C]. ICAUTO-95, Indore, India(1995) 521-525.
    [157] Z.J.Pasek. Exploration of rough sets theory use for manufacturing process monitoring[C]. ImechE 2006 Proceedings ImechE, vol. 220, Part B: Journal of Engineering Manufacture, pp. 335-374.
    [158]徐创文,陈花玲,程仲文等.基于时序分析与模糊聚类的铣削刀具磨损状态识别[J].机械强度,2007,29(4):525-531.
    [159] N.E.Huang, Z.Shen, S.R.Long, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[C]. Proc. R. Soc. Lond. A 1998, 454:903-995.
    [160]沈毅,沈志远.一种非线性非平稳自适应信号处理方法-希尔伯特-黄变换综述:发展与应用[J],自动化技术与应用,2010,29(5):1-5.
    [161] RUQIANG YAN, GAO R X. A tour of the Hilbert-Huang transform:an empirical tool for signal analysis[J]. IEEE Instrumentation & Measurement Magazine,2007,10(5):40-45.
    [162]孙斌,黄胜全,周云龙等.一种基于经验模式分解的气液两相流流型识别方法[J].仪器仪表学报,2008,29(5): 1011-1015.
    [163]行鸿彦,许瑞庆,王长松.基于经验模态分解的脉搏信号特征研究[J].仪器仪表学报, 2009, 30(3): 596-602.
    [164]程军圣,于德介,杨宇.基于内稟模太奇异值分解和支持向量机的故障诊断方法[J].自动化学报, 2006,32(3): 476-480.
    [165]杨存祥,仝战营,万钰昊等.基于HHT的电力系统暂态复合扰动信号的提取分析与研究[J].电力系统保护与控制,2009,37(11): 6-9.
    [166]张树京,齐立心.时间序列分析简明教程[M],北京:清华大学出版社,2003.
    [167]吴怀宇.时间序列分析与综合[M],武汉:武汉大学出版社,2004.
    [168]贾嵘,王小宇,张丽等.基于EMD和AR模型的水轮机尾水管动态特征信息提取[J].电力系统自动化,2006,30(22):77-80
    [169]李勇,徐震. MATLAB辅助现代工程数字信号处理[M],西安:西安电子科技大学出版社,2002.
    [170]飞思科技产品研发中心. MATLAB7辅助信号处理技术与应用[M].北京:电子工业出版社,2005.
    [171]刘占生,窦唯,王晓伟.基于主元-双谱支持向量机的旋转机械故障诊断方法[J].振动与冲击,2007,26(12): 23-27.
    [172]林勇,胡夏夏,朱根兴等.基于振动谱图像识别的智能故障诊断[J].振动、测试与诊断,2010,30(2): 175-180.
    [173]严可国,柳亦兵,徐鸿等.基于双谱分析的大型汽轮机振动故障特性提取[J].中国电机工程学报,2010,30(2): 98-103.
    [174]杨其俊,徐长航.双谱分析在往复泵故障诊断中的应用研究[J].振动工程学报,2001,14(4): 465-469.
    [175]孙云岭,朴甲哲,张永祥.基于瞬时转速和双谱的内燃机故障诊断研究[J].内燃机学报,2004,22(3): 241-244.
    [176] Liu Yibing, Yan Keguo, Zhou Yanbing et al. Bispectral analysis for diagnosis of gear pitting fault[C]. Proceeding of the 7th Word Congress on Intelligent Control and Automation(WCICA08), Chongqing, 2008.
    [177] Hernandez F E, Medina C O. The application of bispectrum on diagnosis of rolling element bearings: a theoretical approach[J]. Mechanical Systems and Signal Processing, 2008, 22(3): 588-596.
    [178]杨江天,陈家骥,曾子平.基于高阶谱的旋转机械故障征兆提取[J].振动工程学报,2001,14(1): 14-17.
    [179]李志农,丁启全,吴昭同等.旋转机械典型故障的高阶谱特性分析[J].汽轮机技术,2002,44(1): 42-44.
    [180]赵艳菊.强噪声背景下机械设备微弱信号的提取与检测技术研究[D].天津:天津大学,2008
    [181]程军圣,于德介,杨宇.基于EMD和奇异值分解技术的滚动轴承故障诊断方法[J].数据采集与处理,2004,19(2): 204-208.
    [182]陈恩利,吴勇军,申永军等.基于改进奇异值分解技术的齿轮调制故障特征提取[J].振动工程学报,2008,21(5): 530-534.
    [183]袁小宏,史东峰.奇异值分解技术在齿轮箱故障诊断中的应用[J].振动、测试与诊断,2000,20(2): 91-96.
    [184]程军圣,于德介,杨宇.基于内稟模态奇异值分解和支持向量机的故障诊断方法[J].自动化学报,2006,32(3): 475-480.
    [185]李如强,陈进,伍星.基于奇异值分解、模糊聚类和粗糙集理论的旋转机械故障诊断[J].振动与冲击,2005,24(4): 46-49.
    [186]蒋正新,施国梁.矩阵理论及应用[M].北京:北京航空学院出版社,1988.
    [187]杨建国.小波分析及其工程应用[M].北京:机械工业出版社,2005.
    [188]刘涛,曾祥利,曾军.实用小波分析入门[M].北京:国防工业出版社,2006.
    [189]唐晓初.小波分析及其应用[M].重庆:重庆大学出版社,2006.
    [190]飞思科技产品研发中心.小波分析理论与Matlab7实现[M].北京:电子工业出版社,2005.
    [191]聂鹏,谌鑫.基于主元分析和BP神经网络对刀具VB值预测[J].北京航空航天大学学报,2011,37(3): 364-367.
    [192]孙斌,周云龙.基于支持向量机和小波包能量特征的气液两相流流型识别方法[J].中国电机工程学报,2005,25(17): 93-99.
    [193]孙斌,周云龙,向新星等.基于经验模式分解和概率神经网络的气液两相流识别[J].中国电机工程学报,2007,27(17): 72-77.
    [194]谢中华. Matlab统计分析与应用:40个案例分析[M].北京:北京航空航天大学出版社,2010.
    [195]陈超. Matlab应用实例精讲-数学数值计算与统计分析篇[M].北京:电子工业出版社,2010.
    [196]朱宁,冯志刚,王祁.基于KPCA和SVM的火箭发动机试验台故障诊断方法[J].哈尔滨工业大学学报,2009,41(3): 81-84.
    [197]孙斌,刘天栋,周云龙.小波包主成分分析在气液两相流流型识别中的应用[J].吉林大学学报(工学版),2009,39(6).1532-1537.
    [198]王新峰,邱静,刘冠军.核主元分析中核函数参数选优方法研究[J].振动、测试与诊断,2007,27(1): 62-64.
    [199]毕小龙,王洪跃,司风琪.基于KPCA和PNN的高加系统故障诊断[J].汽轮机技术,2006,48(5): 386-388.
    [200]曾庆虎,邱静,刘冠军等.基于KPCA-HSMM设备退化状态识别与故障预测方法研究[J].仪器仪表学报,2009,30(7): 1341-1346.
    [201]丛瑜,肖怀铁,付强.基于核主分量分析的高分辨雷达目标特征提取与识别[J].电光与控制,2008,15(2): 31-35.
    [202]黄国宏,邵惠鹤.核主元分析及其在人脸识别中的应用[J].计算机工程,2004,30(3):13-14
    [203]袁艳.基于KPCA的人脸识别中核函数参数的研究[D].大连:大连海事大学,2008.6
    [204]谢永华,陈伏兵,张生亮等.融合小波变换与KPCA的分块人脸特征抽取与识别算法[J].中国图象图形学报,2007,12(4): 666-672.
    [205] Cortes C, Vapnik V N. Support-Vector Networks[J]. Machine Learning, 1995, 20(3): 273-297.
    [206] Boser B, Guyon I, Vapnik V N. A training algorithm for optimal margin classifiers[C]. In: Haussler D eds. Proceedings of Fifth Annual Workshop on Computational Learning Theory. Pittsburgh, PA: ACM Press,1992: 144-152.
    [207] Scholkopf B, Burges C, Vapnik V N. Extracting support data for a given task[C]. In: Fayyad U M, Uthurusamy R eds. Proceedings of First International Conference on Knowledge Discovery and DataMining. Menlo Park, CA: AAAI Press, 1995: 262-267.
    [208] Suykens J A K, Vandewalle J. Least squares support vector machine classifiers[J]. Neural Processing Letter, 1999, 9: 293-300.
    [209]雷亚国,何正嘉,訾艳阳.基于混合智能新模型的故障诊断[J].机械工程学报,2008,44(7): 112-117

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700