江淮下游典型平原水网地区水循环变异的洪涝响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
“变化环境下的水循环研究”是全球水系统计划(GWSP)的核心科学问题,也是当前水文科学的热点问题之一。洪涝是全球最为频繁的自然灾害之一,我国洪涝亦呈高频态势。随着气候变化和人类活动对水循环过程与要素影响的加剧,偏离常态的水循环变异越来越频繁,往往导致极端降水洪涝事件。因而,在变化环境背景下,关于水循环变异对洪涝的影响研究是一个重要的基础科学问题。
     里下河平原水网地区位于江淮下游,地处我国南北气候过渡带区域,受季风环流影响显著,降水异常是该地区洪涝的直接致灾因子。近年来,里下河地区洪涝严重,2003年洪涝直接经济损失高达81亿元。因此,探讨该地区水循环变异对洪涝的影响,是一个在理论和实践上都具有重要意义的课题。
     本文以低海拔的里下河腹部平原水网地区为研究对象,综合应用GIS技术、时间序列检验、等级分析、小波分析和大气环流场分析等方法,围绕水循环的过程、要素变异及洪涝成灾机制链分析等关键问题,从检测分析、响应过程、影响因子、驱动机制四个层面,分析了降水的多时间尺度变化规律,探讨了洪涝的响应特征,阐明了水循环变异的大气环流配置形势,揭示了洪涝成灾机制。主要研究涉及以下四个方面:
     (1)降水的多时间尺度变化分析。研究区近50年的年、汛期、时段及梅雨等不同时间尺度的降水量皆呈减少趋势,但变化趋势不显著,这是水循环降水要素变异的宏观背景,且梅雨异常偏多年都出现了严重洪涝。年、汛期降水量的年际波动较大,1970年代显著偏少,且都存在3年、6-8年左右的变化周期。其中,年降水在1966、2003、2005年,汛期降水在1960年代中后期、1970年代初和1980年都出现了降水异常的突变过程。
     降水强度上,年降水集中期与集中度皆为减小趋势,1990年代降水集中度偏低,但在1991年变异偏高导致大洪涝。在汛期降水趋于减少的背景下,汛期高等级降水日数呈微弱减少趋势,说明降水更为集中,且中等级降水的贡献率相对较大。基于汛期标准化降水指数的洪涝等级划分可更好的反映洪涝实际,典型丰水年分别代表了梅雨(1980、1991、2003年)、梅雨加台风(1962、1965年)两大洪涝类型。
     (2)洪涝水位的响应特征。年最高日均水位较好的响应于降水变异的直接影响,典型丰水年1962、1965、1980年的洪涝由长时段的持续较高水位引发,而1991、2003年则是显著集中的高水位洪涝效应。低、中等级水位日数呈增加趋势,而高等级水位日数为较大减少趋势,说明了近年来洪涝水位趋于升高的事实。尽管汛期降水量趋于减少,但超警戒水位日数均值却自1970年代以后逐渐增加,显示了降水强度异常和人类活动影响的综合水循环变异结果。
     最高日均水位、超警戒水位日数与年、汛期降水量呈正相关,汛期降水越集中,高等级水位日数越少,水位越高,且降水的贡献率大小决定水位日数。梅雨降水与水位呈较好的正相关,但具南北空间差异,南部兴化、溱潼、安丰站相关程度较大,而北部射阳镇、盐城和建湖站较小。
     汛期2-5年左右重现期的降水即可导致超过2.0m的警戒水位出现,表明短时强降水的直接洪涝效应;而较大重现期的汛期、长时段降水往往导致更高水位,是持续降水的累积效应。30dMax降水是年最高水位的主要水量来源,但水位对3dMax、7dMax、15dMax降水量的显著响应关系更具实践参考价值。
     (3)季风驱动下水循环过程变异的大气环流分析。季风驱动是研究区水循环中降水要素异常的主导因素,研究区以弱季风强降水类型最多,其次为强季风强降水类型,且丰水年以弱季风强降水居多。东亚夏季风与汛期降水变化在3、6年左右的共振周期上存在较好的位相对应关系。西太平洋副高强度、面积与汛期降水呈正相关,而其脊线位置、西伸脊点则反之。汛期降水同亚洲区纬向环流呈负相关,而与经向环流略呈正相关,但纬向环流的影响更为显著。弱季风强降水年纬向环流指数偏低、经向环流指数相对较高,而强季风强降水年则反之。弱季风强降水年的亚洲区极涡强度和面积指数皆偏小,这一关系有利于降水偏多,而强季风强降水年二者指数则皆偏大。且ENSO遥相关分析表明,ENSO事件翌年降水偏多者皆为弱季风强降水和强季风弱降水类型,也印证了季风是水循环变异的最重要因子。
     大气环流场的综合分析发现,降水变异与季风、西太平洋副高、ENSO等及其相互影响密切关联。降水偏多的大气环流异常配置可概括为两类,其一为:季风偏弱时,西太平洋副高位置偏西偏北,但主体偏南,东亚经向环流呈“+、-、+”位势高度距平,研究区中低层为偏西南风,存在明显的梅雨锋面,利于雨带停留,这一形势降水量总体更为偏多;其二为:季风偏强时,副高位置偏东偏北收缩,东亚经向环流呈“-、-”位势高度距平,研究区低层为西南风距平,中层为偏东南风、高空亦为偏东风,缺少梅雨锋面,这一形势降水偏多程度相对较小。这两类大气环流形势较好的揭示了“季风驱动-水循环变异-降水异常”灾害链的大气环流异常背景。
     (4)洪涝成灾机制的综合分析。自然因素上,暴雨降水异常是洪涝的直接致灾因子,“锅底洼”地形是洪涝的孕灾环境大背景,低海拔平原的河网水系格局加剧了洪涝灾情。而人类活动影响上,闸坝建设导致河道淤积致使河道容蓄能力降低,大范围的圩垸围垦导致湖荡萎缩,减弱了河湖水体的调蓄能力,使得洪涝水位趋高。同时,城镇化的不利水文效应也加强了洪涝效应,反映了地表水循环过程变异的影响。结合降水变异的大气环流配置异常分析、自然因素和人类活动影响的综合分析表明,研究区的洪涝成灾机制是大气环流过程异常导致降水变异和地表水循环过程变异双重影响下的“季风驱动-水循环变异-降水异常-洪涝事件”作用链过程。
Research on the hydrological cycle under changing environment is one of the key scientific questions addressed by the Global Water System Project (GWSP) and one of the current hot issues in the hydrology science as well. Flood is one of the most frequent disaster in the word and it's also quite often in China. With the strong impact of climate change and human activities on the process and factors of the hydrological cycle, frequent hydrological cycle anomalies (HCA) resulted in flood disasters caused by the extreme precipitation event. Therefore, studies on the impact of HCA on flood disaster under the changing environment is of great scientific importance and a fundamental science issue.
     Located in the climatically south-north transitional zone, Lixiahe plain river region situates in the Lower Reaches of the Yangtze-Huai river basin which is greatly controlled by the monsoon circulation system, the direct influencing factor of the flood is the extreme precipitation anomalies in this area. Lixiahe region had undergone serious floods recently wit a total flood economic losses of 8.1 billion Chinese Yuan in 2003. Thus, the understanding of how the flood responds to the HCA plays a theoretical and practical critic role in this region.
     It takes the inner Lixiahe region, climatically south-north transitional zone, as the study area to explore the impact of the HCA on the flood systematically utilizing GIS technique, time series analysis, ranking classification, wavelet detection and the atmospheric circulation reanalysis. Focused on the key scientific questions of the process and influencing factor of the HCA and the flood chain constructing, from four inter-related aspects, which are trend detection, response process, impact factors and driving mechanism, we try to discus how the precipitation changes on a multiple temporal scale, how the flood water level responses to the precipitation anomalies, what the atmospheric circulation configuration is for HCA and what flood chain is under the impact of the HCA. Thereby, we cover our research on the main four parts which are as follows:
     (1) Precipitation variation characteristics on a multiple temporal scale. The annual rainfall, rainfall in flooding season, rainfall of different days maximum and the Plum rain show an insignificant decreasing trend in the inner Lixiahe region in the recent 50 years, and serious flood occurred in the year of plum rain anomalies, this is the main background of the HCA in the study area. The annual rainfall, rainfall in flooding season had undergone a higher amplitude fluctuation and the 1970s witnessed a significant lower precipitation on decadal scale, and a 3 year and a 6-8 year period are detected in both annual rainfall, rainfall in flooding season rainfall series. Abrupt changes are detected in 1966,2003,2005 in annual rainfall and the late 1960s, early 1970s and 1980 in the rainfall in flooding season respectively.
     Both annual precipitation concentration period and the concentration degree show a slight decreasing trend in recent 50 years. However, due to precipitation concentration degree anomalies, serious flood occurred in 1991 though decadal concentration degree is relatively low in 1990s which implied a HCA event. Precipitation days of higher grade in flooding season decreases slightly, this implies that the precipitation in flooding season could be more concentrated and the middle rank days of precipitation contributes more to the flood precipitation. Flood ranking classification based on the standardized precipitation index in flooding season can be closer to the actual flood in the study area. Typical flooding years in the inner Lixiahe region could be representative of two flood types, the plum rain caused flood (1980,1991,2003) and flood caused by plum rain plus typhoon precipitation (1962,1965).
     (2) Response of flood to the precipitation change. Annual daily mean water level maximum shows a nice response to the precipitation change, the year of 1962,1965 and 1980 demonstrated to be an effect of continuous long time of relatively high water level, while the flooding year 1991, and 2003 are the effect of the significant higher water level. High grade water level days have a relatively decreasing trend while middle and lower grade water level days increase, this suggests a fact that the water level tends to be higher in the typical years. However days of warning water level increase gradually from 1970s to present, it could be a composite precipitation anomalies and human activities induced HCA effect.
     Both annual daily mean water level, days of warning water level show a positive correlation with annual and flood season rainfall, but the high grade water level days has a negative correlation with rainfall in flood season, and the precipitation is more concentrated, the less days of high grade water level are, and the water level either. Plum rain and the water level has a positive relationship, but it varies in the south and the north, it is more significant in the south and less correlated in the north, and the Xinghua, Qintong, Anfeng and Yancheng, Sheyangzhen, Jianhu hydrological stations are the corresponding stations respectively.
     Rainfall of relative small return period at 2-5 years can result in water level over 2.0 m warning level which shows a flood effect of short-period high rainfall intensity, it is the direct flood response to precipitation variation. Similarly, rainfall of large return period and long-period precipitation can lead to much higher water level, reflecting an accumulative effect of continuous precipitation in the study area. Thirty-day precipitation totals maximum constitutes the main water source for the annual daily mean water level maximum, however, three-day, seven-day and fifteen-day precipitation totals maximum are more useful in flood practice.
     (3) Identification of the specific atmospheric circulation configuration driven by monsoon system. Monsoon system is the dominating factor for the precipitation anomalies in the study area, more positive precipitation anomalies can appear in weak monsoon year while relatively less positive precipitation in strong monsoon year, but the typical flooding years are mostly constituted by strong precipitation in weak monsoon year. At period of about 3 yr and 6 yr, nice in-phase and anti-phase behavior can be found between East Asia summer monsoon and precipitation in summer. As for the main atmospheric circulation factors, the intensity and area of west Pacific subtropical high are positive to the rainfall in summer while the west Pacific subtropical high ridge line position and western point had a negative relationship with rainfall in summer. Asia zonal circulation and Asia meridian circulation had negative and positive correlation with summer precipitation respectively, but the Asia zonal circulation is more significant in correlation to the summer precipitation. The Asia polar vortex intensity index is relatively lower in the corresponding weak monsoon year which is helpful to more precipitation in the inner Lixiahe region but that is higher in strong monsoon years. And results of the teleconnections between ENSO and summer precipitation show that positive precipitation anomalies years following the ENSO event are consist of strong precipitation in weak and strong monsoon year, which also confirmed that the monsoon is the most dominant driving forces for the summer precipitation in the study area.
     Based on the analysis of different year groups positive precipitation anomalies, typical HCA related atmospheric circulation configuration is in tight connected with monsoon system, west Pacific subtropical high, ENSO and etc, the feature atmospheric circulation configuration can be concluded into two types, one is that when the monsoon system is weaker and the west Pacific subtropical high position lies more to the west and the north but the main part is in the south, the east Asia meridian circulation appears to be a "+,-,+" geopotential height anomaly, southwest wind prevails in the middle and lower troposphere and there is an obvious plum rain frontal surface in the inner Lixiahe region which is beneficial for the staying of the precipitation belt, this specific atmospheric circulation configuration tends to be more precipitation; and the other is that when the monsoon system is stronger and the west Pacific subtropical high position tends to shrink back to the east and the north, the east Asia meridian circulation appears to be a "-,-" geopotential height anomaly, southwest wind prevail in the lower troposphere and southeast wind and east wind in the middle and high troposphere respectively, there is no obvious plum rain frontal surface, this specific atmospheric circulation configuration tends to be relatively less positive precipitation anomalies in the study area. These two types of atmospheric circulation configuration nicely reveal the background of the general atmospheric circulation that is directly connected to the HCA induced flood chain, which can be identified as a "monsoon-hydrological cycle anomalies-precipitation anomalies"
     (4) Synthetical analysis for the flood mechanism. For the natural causes, rainstorm anomalies can be regard as the direct flood factors, and the pot shaped geomorphology constructs the main flood breeding environment while the complicated lower plain river network intensified the flood disaster. And more, irrational anthropogenic activity is another part for the flooding mechanism, accumulation of mud caused by dam construction resulted in the lower capacity of river channel, the building of dyke and embankment greatly decreases the lake area which evidently weakens the capacity of the lake system made the continuance of high flooding water level, and the increase of runoff coefficient caused by hydrological effect of urbanization such as the increase of imperviousness with the sprawl of urban also leads to great flood in the inner Lixiahe region. Therefore, HCA induced flood mechanism in the inner Lixiahe region can be integrated from two aspects, natural cause and anthropogenic factor. The driving mechanism for the flood disaster can be generalized as "monsoon-hydrological cycle anomalies-precipitation anomalies-flood disaster", a coupled process of double impacts of the atmospheric and land surface hydrological cycle anomalies in the inner Lixiahe region.
引文
1. Aondover, T., M. Woo. Changes in rainfall characteristics in northern Nigeria. Intl. J. Climatol.,1998.18: 1261-1271.
    2. Ashok K. Mishra, Mehmet Ozger, V P. Singh. An entropy-based investigation into the variability of precipitation. Journal of Hydrology,2009,370:139-154.
    3. Beighley R E, Melack J M, Dunne T. Impacts of Climatic Regimes and Urbanization on Streamflow in California Coastal Watersheds. Journal of the American Water Resources Association,2003,39(6):1419-1433.
    4. Bhaduri B. A geographic information system-based model of the Long-Term impact of land use change on non-point source pollution at watershed scale. Ph.D. Dissertation. Purdue University, West Lafayette,1998.
    5. Blakie C, Davis I., et al.. At Risk:Natural Hazards, People's Vulnerability and Disasters. London:Routledge,1994.
    6. Bronstert Axel, Daniel Niehoff, Gerd Burger. Effects of climate and land-use change on storm runoff generation: present knowledge and modeling capabilities. Hydrological Processes,2002,16(2):509-529.
    7. Chang H. Comparative streamflow characteristics in urbanizing basins in the Portland Metropolitan Area, Oregon, USA. Hydrological Processes,2007,21(2):211-222.
    8. Chang T. J., M. H. Hsu, W. H. Teng et al.. Flood simulation and submerged analysis by GIS. Journal of the American Water Resources Association,2000,36(5):70-83.
    9. Chen Longxun, Li Wei, Zhao Ping, et al. On the process of summer monsoon onset over East Asia. Acta Meteorologica Sinica,2001,15(4):4362449.
    10. Chen Y., Zhang Q., Xu C.Y., et Al.,Change-point alterations of extreme water levels and underlying causes in the Pearl River Delta, China. River Research and Applications,2009,25:1153-1168.
    11. Chin A. Urban transformation of river landscapes in a global context. Geomorphology,2006,79:460-487.
    12. DeFries R, Eshleman K N. Land-use change and hydrologic processes:A major focus for the future. Hydrological Processes,2004,18(11):2183-2186.
    13. Ding Y, Wang Z, Sun Y. Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I:Observed evidences. Int J Climatol,2007,28:1139-1161.
    14. Disse M. and Engel,H. Flood Events in the Rhine Basin:Genesis, Influences and Mitigation. Natural Hazards, 2001,23:271-290.
    15. Entekhabi Dara, Ghassem R Asrar.Alan K. Betts. An agenda for land surface hydrology research on a call for the Second International Hydrological Decade. Bulletin of the American Meteorological Society,1999.80:2043-2059.
    16. Garbrecht, J. and L.W. Martz. Network and subwatershed parameters extracted from digital elevation models:The Bill's Creek experience. Water Resources Bulletin. American Water Resources Association,1993,29(6):909-916.
    17. Garbrecht, J. and L.W. Martz. TOPAZ Version 1.20:An automated digital landscape analysis tool for topographic evaluation, drainage identification, watershed segmentation and subcatchment parameterization-Overview. Rep. GRL 97-2. Grazinglands Research Laboratory,USDA. Agricultural Research,1997.
    18. Gremillion P,Gonyeau A,Wanielista M. Application of alternative hydrograph separation models to detect changes in flow paths in a watershed undergoing urban development. Hydrological Processes,2000,14(8):1485-1501.
    19. Grinsted A, Moore J. C, Jevrejeva S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes in Geophysics,2004.11:561-566.
    20. Gu W, Li C, Wang X, et al.,Linkage Between Mei-yu Precipitation and North Atlantic SST on the Decadal Timescale. Advances In Atmospheric Sciences,2009,26(1):101-108.
    21. Hannaford Jamie and Marsh Terry J.High-flow and flood trends in a network of undisturbed catchments in the UK. Int. J. Climatol.2008,28:1325-1338.
    22. Hooke J M. Human impacts on fluvial systems in the Mediterranean region. Geomorphology,2006.79:311-335.
    23.IPCC. Climate Change 2007:The Physical Science Basis:Summary for Policy Makers. Cambridge and New York: Cambridge University Press,2007.
    24. James C. Knox. Floodplain sedimentation in the Upper Mississippi Valley:Natural versus human accelerated. Geomorphology,2006.79:286-310.
    25. Jiang T. Kundzewicz.Z W, Su B D. Changes in monthly precipitation and flood hazard in the Yangtze River Basin. China. International Journal of Climatology.2008.(28):1471-1481.
    26. Jiang Tong, Zhang Qiang, Zhu Deming, et al.,Yangtze floods and droughts (China) and teleconnections with ENSO activities (1470-2003). Quaternary International,2006,144(1):29-37.
    27. Jurgens C. Application of a hydrologic model with integration of remote sensing and GIS-techniques for the analysis of land-use change effects upon river discharge. In:Owe, M.,et al. (Eds.), Remote Sensing and Hydrology. IAHS Press, Wallingford, UK.2001, pp.598-600.
    28. Kaczmarek Z. The Impact of Climate Variability on Flood Risk in Poland. Risk Analysis,2003,23(3):559-566.
    29. Karl T R, Knight R W. Secular trends of precipitation amount frequency and intensity in the United States. Bulletin of the American Meteorological Society,1998,79:231-241.
    30. Kite G W, U. Haberlandt. Atmospheric model data for macroscale hydrology. Journal of Hydrology,1999, (217):303-313.
    31. Kondoh A., Nishiyama J.. Changes in hydrological cycle due to urbanization in the suburb of Tokyo metropolitan area, Japan. Adv. Space Res,2000,26(7):1173-1176.
    32. Labat D, Godderis Y, Probst J L, Guyot J L. Evidence for global runoff increase related to climate warming. Adv Water Resour,2004,27:631-642.
    33. Lahmer W, Pfutzner B, Becker A. Assessment of land use and climate change impacts on the Mesoscale. Physics and Chemistry of the Earth,2001,26:565-575.
    34. Leopold L B. Hydrology for Urban Planning:A Guidebook on the Hydrologic Effects of Urban Land Use. U.S. Geological Survey Circular, Washington, D.C.,1968,554-556.
    35. Li, J. and Q. Zeng. A unified monsoon index,Geophysical Research Letters,2002,29(8):1274-1285.
    36. Liang Ping, Li Wei, Chen Longxun, et al. Features and sources of the anomalous moisture transport for the severe summer rainfall over the upper reaches of the Yangtze River. Acta Meteorologica Sinica,2005,19 (2):202-215.
    37. Liu Y B, Gebremeskel S,De Smedt F. et al. Predicting storm runoff from different land-use classes using a geographical information system-based distributed model. Hydrological processes,2006,20(3):533-548.
    38. Lloyd-Hughes, B., Saunders. M. A.. A drought climatology for Europe. Int. J. Climatol..2002,22,1571-1592.
    39. Lu, R. and Z. Lin. Role of subtropical precipitation anomalies in maintaining the summertime meridional teleconnection over the western North Pacific and East Asia. J. Climate,2009,22:2058-2072.
    40. Lu, R., Y. Li and B. Dong. External and internal summer atmospheric variability in the western North Pacific and East Asia. J. Meteor. Soc. Jpn.,2006,84:447-462.
    41. Macdonald N., Phillips I. D., Mayle G. Spatial and temporal variability of flood seasonality in Wales. Hydrological Processes,2010,24:1806-1820.
    42. Mann HB. Nonparametric tests against trend. Econometrica.1945,13:245-259.
    43. Marshall E. Randhir T O. Spatial modeling of land cover change and watershed response using Markovian cellular automata and simulation. Water Resources Research,2008,44(4):1-11.
    44. Maskrey A.. Disaster Mitigation:A Community Based Approach M. Oxford:Oxfam,1989.
    45. McColl C. Aggett G. Land-use forecasting and hydrological model integration for improved land-use decision support. Journal of Enviromental Management,2007,84:494-512.
    46. McKee, T. B., Doesken. N.J.,Kleist,J.. The relationship of drought frequency and duration of time scales. In: Eighth Conference on Applied Climatology. American Meteorological Society, Anaheim CA,1993,179-186.
    47. Milly, P.C.D.,Wetherald, R.T.,Dunne. K.A.,Delworth T.L.. Increasing risk of great floods in a changing climate. Nature.2002,415:514-517.
    48. Moramarco T., F. Melone and V.P. Singh. Assessment of flooding in urbanized ungauged basins:a case study in the Upper Tiber area. Italy. Hydrol. Process.2005.19:1909-1924.
    49. Mudelsee M., Borngen M.Tetzlaff G,et al.. No upward trend in the occurrence of extreme floods in central Europe. Nature,2003,425:166-169.
    50. Oliver, J. E.. Monthly precipitation distribution:a comparative index. Prof. Geogr,1980.32.300-309.
    51. Osborn, T. J., Hulmc, M.,Jones. P. D.,et al.. Observed trends in the daily intensity of United Kingdom precipitation. International Journal of Climatology,2000,20.347-364.
    52. Pettitt. A. N.. A non-parametric approach to the change point problem. Appl. Stat.,1979,28:126-135.
    53. Puech Christian, Raclot Damien. Using geographical information systems and aerial photographs to determine water levels during floods. Hydrol. Process,2002,16,1593-1602.
    54. Ramadhar S., K.N. Tiwari, B.C. Mal. Hydrological studies for small watershed in India using the ANSWKRS model. Journal of Hydrology,2006, (318):184-199.
    55. Robert M, John W T, Wayne A L. Variations of Box Plots. The American Statistician.1978.32(1):12-16.
    56. Robson A J, Jones T K, Reed D W, et al.. A study of national trend and variation in UK floods. International Journal of Climatology,1998,18:165-182.
    57. Shankman David, Keimb Barry, Song Jie.. Flood Frequency in China's Poyang Lake Region:Trends and Tele-connections. Int. J. Climatol,2006,26:1255-1266.
    58. Smith T M. Reynolds R W. Improved extended reconstruction of SST (1854-1997). J Clim,2004,17:2466-2477.
    59. Sneyers, R.. On the statistical analysis of series of observations. WMO Technical Note 143. WMO No.415, TP-103, Geneva, World Meteorological Organization. Geneva,1992,192-201.
    60. Soroochian S, Law ford R G, Try P, e t al. Water and energy cycles:investigating the links. WMO Bulletin,2005,54: 1-7.
    61. Sun Xiurong, Chen Longxun, He Jinhai. Interannal variation of index of East Asian land-sea thermal difference and its relation to monsoon circulation and rainfall over China. Act a Meteorologica Sinica,2001,15(1):71-85.
    62. Tang Z, Engel B A, Pijanowski B C, et al. Forecasting land use change and its environmental impact at a watershed scale. Journal of Environmental Management,2005,76:35-45.
    63. Tao Shiyan. Chen Longxun. A review on the East Asian Summer monsoon. M Krishnamurti. Chang C P. Monsoon Meteorology. U K:Oxford University Press,1987:60-92.
    64. Tao Shiyan, Chen Longxun. The East Asian Summer Monsoon. Proceedings of International Conference on Monsoon in the Far East, Tokyo,1985:1-11.
    65. Tawatchai Tingsanchali and Karim M. F.. Flood hazard and risk analysis in the southwest region of Bangladesh. Hydrol. Process,2005,19:2055-2069.
    66. Torrence C, Compo G P. A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, 1998,79:61-78.
    67. United Nations, Department of Humanitarian Affairs. Mitigating Natural Disasters:Phenomena,Effects and Options:A Manual for Policy Makers and Planners. New York:United Nations,1991,1-164.
    68. Vorosmarty C, Lettenmaier D, Leveque C, et al. Humans transforming the global water system. EOS,2004,85:48.
    69. Wang B, Fan Z.. Choice of South Asian Summer Monsoon Indices. Bull.Amer. Meteor. Soc.,1999,80:629-638.
    70. Wang Y F, Wang Bin. Impact of preceding El Nino on the East Asian Summer Atmosphere Circulation. J Meteor Soc Japan,2001,79:575-588.
    71. Wang Yafei, Takahashi. A case study on the relationship between a preceding La Nina event and East Asian summer atmospheric circulation. Acta Meteor Sinica,2004.18(4):387-396.
    72. Webster P. J. and S. Yang,1992. Monsoon and ENSO:selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118:887-926.
    73. Xu C Y. Modeling the effects of climate change on water resources in Central Sweden. Water Resour Manag,2000. 14(3):177-189.
    74. Yates Rhonda,Waldron Brian. Arsdale Van Roy. Urban effects on flood plain natural hazards:Wolf River. Tennessee,USA. Engineering Geology,2003,70:1-15.
    75. Yin H. F., Li G. R., Pi J. G., et al.. On the river-lake relationship of the middle Yangtze reaches. Geomorphology 2007,85:197-207.
    76. Yin, H.,Li. C.. Human impact on floods and disasters on the Yangtze River. Geomorphology,2001,41:105-109.
    77. Zhang Qiang, Chong-yu Xu,Tong Jiang, et al.. Possible influence of ENSO on annual maximum stream flow of the Yangtze River, China. Journal of Hydrology,2007.333:265-274.
    78. Zhang S., Lu X.X.,David L. H.,et al.. Recent changes of water discharge and sediment load in the Zhujiang (Pearl River) Basin, China. Global and Planetary Change,2008,60:365-380.
    79. Zhang W., Yan Y.,Zheng J.H., et al.. Temporal and spatial variability of annual extreme water level in the Pearl River Delta region, China. Global and Planetary Change.2009.35:35-47.
    80.包为民.卞毓明.感潮河段水位演算模型研究.水利学报.1997.18(11):34-38.
    81.岑思弦,巩远发.王霄.2007年夏季淮河流域洪涝与亚洲地区大气低频振荡的关系.大气科学.2009.33(6):1286-1296
    82.陈菊英,冷春香,程华琼.江淮流域强暴雨过程对阻高和副高逐日变化的响应关系.地球物理学报,2006,21(3):1012-1022.
    83.陈烈庭,吴仁广.中国东部的降水区划及各区旱涝变化的特征.大气科学,1994,18(5):586-595.
    84.陈隆勋,丁一汇Murakam,等.亚洲季风机制研究新进展.北京:气象出版社,1998:12-34.
    85.陈隆勋,金祖辉.夏季东亚季风环流系统内中期变化的南北半球相互作用M5会议文集6编辑组.全国热带夏季风学术学术会议文集.昆明:云南人民出版社,1982,218-232.
    86.陈隆勋,王予辉,缪群.南极冰雪覆盖变异对南、北半球大气环流影响的数值试验M地磁大气空间研究及应用:庆贺朱岗昆教授八十寿辰.北京:地震出版社,1996,322-332.
    87.陈隆勋,张博,张瑛.东亚季风研究的进展.应用气象学报,2006,17(6):711-724.
    88.陈锡林,闻余华,罗俐雅.里下河地区暴雨与致涝关系分析.江苏水利,2008,(4):17-18,20.
    89.陈晓宏,涂新军,谢平,等.水文要素变异的人类活动影响研究进展.地球科学进展,2010,25(8):800-811.
    90.陈晓宏,陈永勤.珠江三角洲河网区水文与地貌特征变异及其成因.地理学报,2002,57(4):429-436.
    91.陈秀万.洪水灾害损失评估系统.遥感与GIS技术应用研究.北京:中国水利水电出版社,1997.
    92.陈艺敏,钱永甫.116a长江中下游梅雨的气候特征.南京气象学院学报,2004,27(1):65-72.
    93.陈莹,许有鹏,陈兴伟.长江三角洲地区中小流域未来城镇化的水文效应.资源科学,2011,33(1):64-69.
    94.陈莹,许有鹏,尹义星.基于土地利用分析的长期水文效应研究.自然资源学报,2009,24(2):351-359.
    95.陈月娟,周任君,武海峰.Ninnol+2海区冷、暖水期西太平洋副高的特征及其对东亚季风的影响.大气科学,2002,26(3):373-386.
    96.单树模,王庭槐,金其铭.江苏省地理.江苏教育出版社,1986.
    97.丁一汇,任国玉,石广玉,等.气候变化国家评估报告(I):中国气候变化的历史和未来趋势.气候变化研究进展,2006,2(1):3-8.
    98.董全,陈星,陈铁喜,等.淮河流域极端降水与极端流量关系的研究.南京大学学报(自然科学),2009,45(6):790-801.
    99.都金康,王腊春,许有鹏.防洪减灾决策中分解协调优化方法.南京大学学报(自然版),2001,37(3):288-295.
    100.高超,朱继业,戴科伟,等.快速城市化进程中的太湖水环境保护:困境与出路地理科学,2003,23(6):746-750.
    101.高吉喜,潘英姿,柳海鹰.区域洪涝灾害易损性评价.环境科学研究,2004,17(6):31-341.
    102.高前兆,仵彦卿.河西内陆河流域的水循环分析.水科学进展,2004,15(3):391-396.
    103.葛全胜,邹铭,郑景云,等中国自然灾害风险综合评估初步研究.北京:科学出版社,2008,3-4.
    104.葛小平,许有鹏,张立峰,等.GIS支持下的洪水淹没范围模拟.水科学进展,2002,13(4):456-460.
    105.葛怡.史培军,周俊华等.土地利用变化驱动下的上海市区水灾灾情模拟.自然灾害学报,2003,12(3):25-30.
    106.龚道溢,朱锦红,王绍武.长江流域夏季降水与前期北极涛动的显著相关.科学通报,2002,47(7):546-549.
    107.龚敬瑜,王谦谦.江淮梅雨期降水不同尺度异常与SSTA的关系.南京气象学院学报,2006,29(5):656-661.
    108.龚振淞,何敏.长江流域夏季降水与全球海温关系的分析.气象,2006,32(11):56-61.
    109.顾万龙.王纪军,朱玉业,等.淮河流域降水量年内分配变化规律分析.长江流域资源与环境,2010,19(4):426-431.
    I10.郭东林,杨梅学,屈鹏,等.能量和水分循环过程研究:回顾与探讨.冰川冻土.2009,31(6):1116-1126.
    111.郭丽君,左其亭.西部干旱区流域水循环关键科学问题研究框架.水资源与水工程学报,2010,21(2):21-25.
    112.韩萍,王鹏新,王彦集,等.多尺度标准化降水指数的AR1MA模型干旱预测研究.干旱地区农业研究,2008,26(2):212-218.
    113.韩贻强.胡晓敏.基于集中期的大沽夹河年内水文特征分析.水土保持研究,2009,(4):87-91.
    114.郝志新,李明启.郑景云,等.长江中下游地区梅雨与旱涝的关系.自然科学进展,2009,19(8):877-882.
    115.何金海,祁莉,韦晋.等.关于东亚副热带季风和热带季风的再认识.大气科学,2007,31(6):1257-1265.
    116.侯兰功,肖洪浪,邹松兵,等.黑河流域水循环特征研究.水土保持研究,2010,17(3):254-258.
    117.胡亮,李耀东,何金海.东亚热带季风与副热带季风降水特征研究的回顾与展望.热带气象学报,2010,26(6):813-818.
    118.胡娅敏,丁一汇,廖菲.江淮地区梅雨的新定义及其气候特征.大气科学,2008,32(1):101-112.
    119.胡娅敏.丁一汇,廖菲.近52年江淮梅雨的降水分型气象学报,2010,68(2):235-247.
    120.胡娅敏,丁一汇.2000年以来江淮梅雨带北移的可能成因分析.气象,2009,35(12):37-43.
    121.黄崇福.综合风险评估的一个基本模式.应用基础与工程科学学报.2008,16(3):371-381.
    122.黄丹青,朱坚,况雪源.江淮梅雨期各类持续性降水频数年代际尺度上的变异及其可能原因的探讨.科学通报,2010,54(35):3408-3415.
    123.黄嘉佑,高守亭.影响长江地区夏季洪涝的大气环流因子研究.自然科学进展,2003,13(2):206-209.
    124.黄荣辉,周连童.我国重大气候灾害特征、形成机理和预测研究.自然灾害学报,2002,11(1):1-9.
    125.黄仕松.副热带高压东西向移动及其预报的研究.气象学报.1963,33(3):320-332.
    126.贾绍凤,王国,夏军等.社会经济系统水循环研究进展,地理学报,2003,58(2):255-262.
    127.贾仰文,王浩,严登华.黑河流域水循环系统的分布式模拟(Ⅰ)--模型应用.水利学报,2006,37(6):655-660.
    128.江苏省水利厅水文总站.江苏省水文特征手册.南京:江苏省水利厅,1980.
    129.江滢,翟盘茂.几种亚洲季风指数与中国夏季主要雨型的关联.应用气象学报,2005,16(S):70-76.
    130.蒋薇,宋连春,王式功,等.长江三角洲夏季降水异常及气候成因.气象科学,2009,29(3):355-361.
    131.蒋卫国,李京,武建军,等.区域洪水灾害风险评估体系(Ⅱ)——模型与应用.自然灾害学报,2008,17(6):105-109.
    132.金祖辉,陈隆勋.夏季东亚季风环流系统的中期变化及其与印度季风环流系统的相互关系M5会议文集6编辑组.全国热带夏季风学术会议文集.昆明:云南人民出版社,1982:204-218..
    133.金祖辉,陶诗言.ENSO循环与中国东部地区夏季和冬季降水关系的研究.大气科学,1999,23(6):6632671.
    134.琚建华,赵尔旭.东亚夏季风区的低频振荡对长江中下游旱涝的影响.热带气象学报,2005,21(2):163-171.
    135.柯长青,秦年秀.过去76年来射阳湖湖沼环境的动态变化.湿地科学,2003,1(2):81-85.
    136.孔春燕,屠其璞,全球背景下厄尔尼诺对中国东部汛期降水的影响,南京气象学院学报,2003,26(1):45-52.
    137.赖锡军,姜加虎,黄群.洞庭湖洪水空间分布和运动特征分析.长江科学院院报,2006,23(6):22-26.
    138.蓝永超.林舒,李州英,等.黄河流域水循环研究的进展和展望.中国沙漠,2006,26(5):849-854.
    139.李昌峰,高俊峰,曹慧.土地利用变化对水资源影响研究的现状和趋势.土壤,2002,4:191-205.
    140.李恒鹏,杨桂山,金洋.太湖流域土地利用变化的水文响应模拟.湖泊科学,2007,19(5):537-543.
    141.李继清,张玉山,王丽萍,等.洪灾综合风险的结构特征分析.长江流域资源与环境,2005,14(6):805-809.
    142.李建平,曾庆存.一个新的季风指数及其年际变化和与雨量的关系.气候与环境研究,2005,10(3):351-365.
    143.李丽娟,姜德娟,李九一,等.土地利用/覆被变化的水文效应研究进展.自然资源学报.2007,22(2):221-224.
    144.李世奎,霍治国,王素艳,等.农业气象灾害风险评估体系及模型研究自然灾害学报,2004,13(1)77-87.
    145.梁萍,丁一汇,何金海,等.江淮区域梅雨的划分指标研究.大气科学,2010,34(2):418-428.
    146.林之光.我国东部地区夏季风雨带进退规律的进一步研究.国家气象局气象科学研究院.气象科学技术集刊(10).京:气象出版社,1987:24-31.
    147.刘昌明,郑红星.黄河流域水循环要素变化趋势分析.自然资源学报,2003,18(2):129-135.
    148.刘昌明.地理水文学的研究进展与21世纪展望.地理学报.1994,49(S):601-608.
    149.刘春蓁.气候变化对陆地水循环影响研究的问题.地球科学进展,2004,19(1):115-119.
    150.刘春蓁.气候变化对我国水资源的可能影响.水科学进展,1997,8(3):220-225.
    151.刘德林,刘贤赵,张继平.大沽夹河流域径流年内分配特征的量化研究.水土保持研究,2006,13(6):107-109.
    152.刘东生.全球变化和可持续发展科学,地学前缘,2002,9(1):1-9.
    153.刘国纬.水文循环的大气过程.北京:科学出版社,1997.
    154.刘苏峡,张士锋,刘昌明.黄河流域水循环研究的进展和展望.地理研究,2001,20(3):257-265.
    155.刘彤,闫天池.我国的主要气象灾害及其经济损失.自然灾害学报,2011.20(2):90-95.
    156.刘雪源.30°N两侧中国近海海平面年际变化及其与INSO的关系.硕士学位论文,中国海洋大学,2010.
    157.陆桂华,何海.全球水循环研究进展.水科学进展,2006,17(3):419-424.
    158.吕俊梅,任菊章,琚建华.东亚夏季风的年代际变化对中国降水的影响.热带气象学报,2004,20(1):73-80.
    159.马定国,刘影,陈洁,等.鄱阳湖区洪灾风险与农户脆弱性分析地理学报,2007,62(3):321-332.
    160.马耀明,姚檀栋,王介民.青藏高原能量和水循环试验研究--(IAME/Tibet与CAMP/Tibet研究进展.高原气象,2006,25(2):344-351.
    161.马逸麟,梅丽辉,刘益辉.江西省长江岸带崩塌及影响因素分析.中国地质灾害与防治学报,2003,9:34-37.
    162.马音,陈文,王林.中国夏季淮河和江南梅雨期降水异常年际变化的气候背景及其比较.气象学报,201 1,69(2):334-343.
    163.马宗晋.中国重大自然灾害及减灾对策(总论).北京:科学出版社,1994,11-21.
    164.毛德华,夏军.洞庭湖区洪涝灾害的形成机制分析.武汉大学学报(理学版),2005,51(2):199-203.
    165.毛江玉,吴国雄.1991年江淮梅雨与副热带高压的低频振荡.气象学报,2005,63(5):762-770.
    166.毛文书,王谦谦,葛旭明,等.近116年江淮梅雨异常及其环流特征分析.气象,2006,32(6):84-90.
    167.毛文书,王谦谦,李国平,等.江淮梅雨的时空变化特征.热带气象学报,2009,25(2):234-240.
    168.毛文书,王谦谦,李国平.江淮梅雨异常的大气环流特征.高原气象,2008c,27(6):1267-1275.
    169.毛文书,王谦谦,李国平等.近50a江淮梅雨的区域特征.气象科学,2008b,28(1):68-73.
    170.毛文书,王谦谦,马慧,等.江淮梅雨的时空变化特征.南京气象学院学报,2008a,31(1):117-122.
    171.梅宽祥,洪希曾.苏北里下河地区水文站网布设方法的探讨.水文,1999,5:34-42.
    172.潘敖大,孙照渤.长江中下游夏季雨带分型及其年代际变化II:数值模拟.南京气象学院学报,2008,31(3):92-97.
    173.钱步东,范钟秀.1991年6月-7月太湖及里下河地区连续暴雨过程中雨团活动分析.水科学进展,1994,5(3):193-199.
    174.钱永甫,王谦谦,黄丹青.江淮流域的旱涝研究.大气科学,2007,31(6):1279-1289.
    175.任美锷,包浩生.中国自然区域及开发整治.北京:科学出版社.1992.
    176.商彦蕊.自然灾害综合研究的新进展--脆弱性研究.地域研究与开发,2000,19(2):73-77.
    177.施能.朱乾根,吴彬贵.近40年东亚夏季风及我国夏季大尺度天气气候异常.大气科学,1996,20(5):575-583.
    178.施小英,徐祥德,王浩.等.长江中下游地区旱涝异常的水汽输送结构特征及其变化趋势.水利学报,2008,39(5):596-603.
    179.石英杰.里下河地区“06.7”涝灾成因分析.治淮,2007,5:12-13.
    180.史培军,王静爱,周俊华,等.中国水灾风险综合管理-平衡大都市区水灾致灾强度与脆弱性.自然灾害学报,2004,13(4):1-7.
    181.史培军,袁艺,陈晋.深圳市土地利用变化对流域径流的影响.生态学报,2001,21(7):1041-1049.
    182.史培军.三论灾害学研究的理论与实践.自然灾害学报,2002,11(3):1-9.
    183.史培军.再论灾害研究的理论与实践.自然灾害学报,1996,5(4):6-17.
    184.史培军.再论灾害研究的理论与实践.自然灾害学报,2009,18(5):1-9.
    185.水利部长江水利委员会水文局.水利水电工程设计洪水计算规范.北京:中国水利水电出版社.2006.
    186.司东.丁一汇,刘艳菊.中国梅雨雨带年代际尺度上的北移及其原因.科学通报,2010,55:68-73.
    187.苏桂武,高庆华.自然灾害风险的行为主体特性与时间尺度问题.自然灾害学报,2003,12(1):9-16.
    188.苏明峰,王会军.中国气候干湿变率与ENSO的关系及其稳定性.中国科学D辑:地球科学,2006,36(10):951-958
    189.孙勇.里下河地区除涝排水优化规划研究河海大学硕士论文,2005.
    190.谭桂容,孙照渤,朱艳峰.江淮地区夏季降水与西北太平洋海温关系的诊断分析和数值试验.南京气象学院学报,2007,30(4):472-478.
    191.陶玫,吕军,于波.江苏夏季旱涝环流演变特征分析.气象科学,2008,28(1):85-89.
    192.陶诗言,卫捷.再论夏季西太平洋副热带高压的西伸北跳.应用气象学报,2006,17(5):513-525.
    193.陶诗言,张庆云.亚洲冬夏季风对ENSO事件的响应.大气科学,1998,22(4):399-407.
    194.陶诗言,朱文妹,赵卫.论梅雨的年际变异.大气科学,1988,12:13-21.
    195.田红.江淮地区极端气候事件的时空变化特征.自然灾害学报,2007,16(6):36-41.
    196.万荣荣.杨桂山.李恒鹏,等.中尺度流域次降雨洪水过程模拟——以太湖上游西苕溪流域为例.湖泊科学.2007,19(2):170-176.
    197.万荣荣,杨桂山,流域土地利用覆被变化的水文效应与洪水响应研究.湖泊科学,2004,16(3):258-264.
    198.汪靖,何金海.刘宣飞.等.江淮梅雨建立的年际变化及其前期强影响信号分析.科学通报,2009,54(1):85-92.
    199.王慧,王谦谦.近49年来淮河流域降水异常及其环流特征.气象科学,2002,22(2):149-158.
    200.王静爱,苏筠,商彦蕊,等.中国旱灾农业承灾体脆弱性诊断与评价.地球科学进展,2006,21(2):161-169.
    201.王腊春,谢顺平,周寅康,等.太湖流域洪涝灾害淹没范围模拟.地理学报,2000,55(1):46-54.
    202.王黎娟.东亚热带一副热带季风活动特征及其与热力强迫的关系.南京信息工程大学博士论文,2007.
    203.王亚非,高桥清利.长江中下游降水以及东亚夏季风环流的年代际变化.热带气象学报,2005,21(4):351-358.
    204.王亚非,张雁,陈菊英.一个能反映梅雨现象的东亚夏季风指数.气候与环境研究,2001,6:146一152.
    205.王艳君,吕宏军,施雅风等.城市化流域的土地利用变化对水文过程的影响--以秦淮河流域为例.自然资源学报,2009,24(1):30-36.
    206.王一秋,许有鹏,李群智,等.太湖流域江苏片区洪灾风险区划.自然灾害学报,2010,19(4):195-200.
    207.王勇.平原河网区暴雨致洪的水文气象预报模型研究.南京信息工程大学博士论文,2009.
    208.王钟睿,钱永甫.海温异常对江淮流域入梅的影响.应用气象学报,2005,16(2):193-205.
    209.王钟睿,钱永甫.江淮梅雨的多尺度特征及其与厄尔尼诺和大气环流的联系.南京气象学院学报,2004,27(3):317-325.
    210.王遵娅,丁一汇.夏季亚洲极涡的长期变化对东亚环流和水汽收支的影响.地球物理学报,2009,52(1):20-29.
    211.魏凤英,黄嘉佑.大气环流降尺度因子在中国东部夏季降水预测中的作用.大气科学,2010,34(1):202-212.
    212.魏凤英,谢宇.近百年长江中下游梅雨的年际及年代际振荡.应用气象学报,2005,16(4):492-499.
    213.魏凤英,张婷.淮河流域夏季降水的振荡特征及其与气候背景的联系.中国科学D辑:地球科学,2009,39(10):1360-1374.
    214.魏一鸣,杨存键,金菊良.洪水灾害分析与评估的综合集成方法.水科学进展,1999,10(1):25-30.
    215.吴永祥,戴星.长江防洪决策支持系统——决策方案管理系统.水科学进展,1996,7(4):313-318.
    216.吴志伟,江志红,何金海.近50年华南前汛期降水、江淮梅雨和华北雨季旱涝特征对比分析.大气科学,2006,30(3):391-401.
    217.夏军,刘孟雨,贾绍凤,等.华北地区水资源及水安全问题的思考与研究.自然资源学报,2004,19(5):550-556.
    218.夏军,朱一中.水资源安全的度量:水资源承载力的研究与挑战.自然资源学报,2002,17(5):262-269.
    219.谢文君,倪绍祥.江苏省里下河地区湖泊资源动态研究.农村生态环境,2000,16(2):17-19.48.
    220.徐敏,田红.淮河流域2003年梅雨时期降水与水汽输送的关系.气象科学,2005,25(3):265-272.
    221.徐群.121年梅雨演变中的近期强年代际变化.水科学进展,2007,18(3):327-335.
    222.徐群.近46年江淮下游梅雨期的划分和演变特征.气象科学,1998,18(4):316-329.
    223.许有鹏,城市水资源与水环境.贵阳:贵州人民出版社,2003.
    224.杨劲松,姚荣江.黄河三角洲地区土壤水盐空间变异特征研究.地理科学,2007,27(3):348-353.
    225.杨凯,袁雯,赵军等.感潮河网地区水系结构特征及城市化响应.地理学报,2004,59(4):557-564.
    226.杨秋明.江淮地区夏季雨量与北半球500hPa环流遥相关的不稳定性.应用气象学报,2004,15(5):612-622.
    227.杨秋明.梅雨期间长江中下游降水与北半球环流的耦合相关.气象科学,2002,22(1):81-87.
    228.姚素香,张耀存.江淮流域梅雨期雨量的变化特征及其与太平洋海温的相关关系及年代际差异.南京大学学报(自然科学),2006,42(3):298-308.
    229.叶笃正,黄荣辉,长江黄河流域早涝规律和成因研究.济南:山东科学技术出版社,1996.
    230.叶正伟,许有鹏,潘光波.江淮平原水网区汛期雨量与洪涝水位关系——以江苏里下河腹部地区为例.地理研究.2011,30(6):1137-1146.
    231.叶正伟,许有鹏.徐金涛.江苏里下河地区洪涝灾害演变趋势与成灾机理分析.地理科学,2009,29(6):880-885.
    232.殷永红,倪允琪,史历.江准流域夏季降水异常及与全球中低纬海温异常关系的诊断研究.南京大学学报(自然科学),2001,37(3):358-368.
    233.尹义星,许有鹏,陈莹.1950-2003年太湖流域洪旱灾害变化与东亚夏季风的关系.冰川冻土,2010,32(2):381-388.
    234.尹义星,许有鹏.太湖流域腹部地区水位对降水变化及城镇化的响应.自然资源学报,2011,26(5):669-779.
    235.余丹丹,张韧,洪梅,等.赤道中太平洋对流活动与西太平洋副高西仲的时延相关分析.海洋科学进展,2008,24(3):57-75.
    236.袁文平,周广胜.标准化降水指标与Z指数在我国应用的对比分析.植物生态学报.2004,28(4):523-529.
    237.袁雯,杨凯,唐敏,等.平原河网地区河流结构特征及其对调蓄能力的影响.地理研究,2005,24(5):717-724.
    238.张德二,薛朝辉.公元1500年以来E1Ninno事件与中国降水分布型的关系.应用气象学报,1994,5(2):168-175.
    239.张德二.重建近五百年气候序列的方法及其可靠性.气象科学技术集刊(四).北京:气象出版社,1983.
    240.张建敏,高歌,陈峪.长江流域洪涝气候背景和致灾因子分析.资源科学,2001,23(3):73-77.
    241.张玲,智协飞.南亚高压和西太副高位置与中国盛夏降水异常.气象科学,2010,30(4):438-444.
    242.张录军,钱永甫.长江流域汛期降水集中程度和洪涝关系研究.地球物理学报,2004,47(4):622-630.
    243.张奇.湖泊集水域地表一地下径流联合模拟地理科学进展,2007,26(5):1-10.
    244.张庆云,陶诗言,陈烈庭.东亚夏季风指数的年际变化与东亚大气环流.气象学报,2003,61(4):559-568.
    245.张庆云,陶诗言.夏季东亚热带和副热带季风与中国东部汛期降水.应用气象学报,1998,9:16-23.
    246.张庆云,陶诗言.夏季西太平洋副热带高压异常时的东亚大气环流特征.大气科学,2003,27(3):369-380.
    247.张庆云,王媛.冬夏东亚季风环流对太平洋热状况的响应.气候与环境研究,2006,11(4):487-498.
    248.张顺利,陶诗言,张庆云,等.长江中下游致洪暴雨的多尺度条件.科学通报,2002,47(6):467-473.
    249.张小林.里下河地区湖荡湿地生态环境需水量研究.扬州大学硕士论文,2006.
    250.赵亮.邹力,王成林,等.2006.ENSO年东亚夏季风异常对中国江、淮流域夏季降水的影响.热带气象学报,22(4):360-366.
    251.赵文韫,赵永继.里下河腹部地区涝灾成因分析.江苏水利,2004,9:38-39.
    252.赵勇,钱永甫.北非地区海_陆热力差异与夏季江淮流域旱涝的关系.气象学报.,2008,66(2):203-212.
    253.赵勇,钱永甫.夏季江淮流域暴雨的特征及与旱涝的关系.南京大学学报(自然科学),2008,44(3):237-249.
    254.中央气象局气象科学研究院.中国近五百年旱涝分布图集.北京:地图出版社,1981.
    255.周兵,何金海.吴国雄,等.东亚副热带季风特征及其指数的建立.大气科学,2003,27(11):123-135.
    256.周成虎,万庆.2000.基于GIS技术的洪水灾害风险区划研究.地理学报,55(1):15-24.
    257.周广胜,王玉辉.土地利用/覆盖变化对气候的反馈作用.自然资源学报,1999,14(4):318-322.
    258.周寅康.淮河流域洪涝特征初步研究.地理研究,1996,15(1):22-29.
    259.周寅康.自然灾害风险评价初步研究.自然灾害学报,1995,4(1):6-11.
    260.朱锁凤,赵燕生.长江三角洲暴雨的天气气候学特征.南京大学学报(自然科学),1991,27(2):415-422.
    261.竺可桢.东南季风与中国之雨量.地理学报,1934,1(1):1-27.
    262.祝从文,何金海,谭言科.春夏季节转换中亚洲季风区副热带高压断裂特征及其可能机制分析.热带气象学报,2004,20(3):237-248.
    263.祝从文,何金海,吴国雄.东亚季风指数及其与大尺度热力环流年际变化关系.气象学报,2000,58:391-402.
    264.卓东奇.郑益群,李炜,等.江淮流域夏季典型旱涝年大气中的水汽输送和收支.气象科学,2006,26(3):245-252.
    265.宗海锋.陈烈庭.张庆云.ENSO与中国夏季降水年际变化关系的不稳定性特征.大气科学,2010,34(1):184-192.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700