半干旱区陆气相互作用的观测与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国北方半干旱区是中国半湿润区与干旱区的过度带和敏感带,受到气候变化和人类活动的影响,使得该区域干旱化趋势加剧、生态环境恶化、沙尘暴频发、土地沙化荒漠化日益严峻,严重的影响了该区域人们的生产生活。同时干旱、半干旱区生态环境的恶化,也已成为我国可持续发展战略中迫切需要解决的重点问题之一。因而,深入研究该区域下垫面与大气之间的物理、化学、生物过程,探讨干旱半干旱区陆气相互作用的机制与机理,对于改善该区域的气候模拟预测效果、防止水土流失、保护其脆弱的生态环境以及减少气候演变对该区域人类的生产生活所带来的负面影响,有着重要的意义。
     本文利用中国北方干旱半干旱区的SACOL站、吉林通榆退化草地、农田站以及加强期观测资料,分析了中国北方干旱半干旱区长期连续的能量平衡状况、水分循环和物质交换的特征以及主要的陆面参数,同时对比研究了不同下垫面条件下的陆气相互作用特征,以及不同年份不同气候背景条件下降水过程对该区域陆气间能量和物质交换所产生的影响。主要研究结果如下:
     (1)通过与榆中气象台站53年的气候数据资料进行对比分析,SACOL站可以很好的代表黄土高原半干旱区的气候特征。榆中气象台站53年的年平均降水量为370.2mm,SACOL站6年的平均降水量为428.2mm,降水年际变化差异显著,且80%的降水发生在每年的5-10月;潜在蒸发和实际蒸散年总量分别在780~1020mm、280~490mm之间,降水年总量、单次降水强度和降水的时空分布都将会改变土壤湿度的变化特征,同时影响该区域内的能量分配和生态环境,但年降水总量的增加却不足以减轻干旱半干旱区的干旱状况。
     (2)虽然受同一天气系统的影响,但由于地形和局地水汽条件的差异,使孤立绿洲兴隆山站和SACOL站的降水在时空分布上有着明显的区别。兴隆山站出现降水和强降水的概率明显高于SACOL站,且平均降水强度也高于SACOL站,降水总量约为SACOL站的125.9%。充足的水汽条件使兴隆山站的水汽压差明显低于SACOL站,空气较湿润。同时由于受到云的影响,兴隆山站在生长季节可用于加热大气、蒸发水汽和由地表向深层土壤传递能量的净辐射量也明显少于SACOL站。
     (3)土壤湿度的改变直接受降水分布、降水强度和降水持续时间的影响。由于受到春季融雪和生长季节降水的影响,SACOL站土壤湿度的年变化基本呈现双峰特征。在有大量降水的情况下,浅层土壤湿度迅速增加,深层土壤湿度相对滞后;如长期无降水或仅有微弱降水,浅层土壤湿度将会迅速减小;0.80m以下深层土壤湿度受到降水的直接影响较小,只有在长期持续的强降水后一段时期内才有所增加。此外,SACOL站与孤立绿洲兴隆山站的土壤湿度垂直结构明显不同,SACOL站土壤湿度随着土壤深度而减小,兴隆山站则相反(0~0.50m)。在干旱半干旱区,土壤湿度不但可以直接改变地表反照率和土壤的热力特性,而且还能够间接影响植被的生长状况,进而改变地表粗糙度,影响大气的动量、热量总体输送系数以及感、潜热在净辐射中的分配方式等。
     (4)半干早区能量不闭合现象普遍存在,不闭合率在30%左右,孤立绿洲兴隆山站的不闭合率最高达55%,土壤热储量对于能量闭合率的贡献约占8%,不容被忽略。由于受到植被冠层的影响,闭合率在秋季比春季和夏季偏小约3%,冬季则由于受到大气稳定性和表层土壤热通量不确定性闭合率全年最低。SACOL站能量闭合率的平均值约为0.68,虽然其夜间能量闭合率较差,但整体上只影响闭合率的2%。能量的高度不闭合在模式中是不能被接受的,虽然目前给出的原因很多,但地区性差异所造成的影响仍有待进一步的研究。
     (5)无论是降水相对稀少的黄土高原半干旱区,还是中国东北半干旱区,在能量分配中,感热通量均在能量分配中占主导地位,约占净辐射量的35~40%,而潜热通量约占净辐射量的21~23%,地表热通量最小约占6~11%;但能量分配存在着季节变化,降水相对较多或土壤湿度相对偏高的的夏秋季节,感热通量在能量分配中比例迅速减小,潜热通量则相对增加,并超过感热通量站而占主导地位,此时Bowen比值接近于1.0或者小于1.0。半干旱区孤立绿洲能够长期维持,主要是因其特定地形形成的局地环流,造成相对较多的降水;其次良好的地表植被覆盖以及地下水补给,使该区域在生长季节有足够水分用于潜热蒸发,同时还能保障其下垫面植物生长所需要的水分。
     (6)7-10月随着气温的升高、土壤湿度的增加,植物的生长达到峰值,碳吸收速率也相对高于上半年,但CO2通量快速增加开始的时间却依赖于降水的时空分布和强度、土壤湿度的大小;降水偏少且潜在蒸发比较大的年份,若土壤湿度不能提供大量水分用于蒸发,或降水上半年偏多,下半年降水偏少,都将不利于下垫面植物的生长。SACOL站CO2通量通常在生长季节且土壤湿度最大月份达到最大值,并与年际降水和月降水总量有很大的关系;而在兴隆山站则主要依赖于下垫面农作物的物候,C02通量的最大值并不是出现在土壤湿度的最大值时期。因而降水较多土壤层含水量较高的兴隆山站,作物的生长受到土壤湿度的制约并没有SACOL站那么敏感。
     (7)通过土壤湿度在不同的半干旱区、不同的下垫面植被类型和半干旱区孤立绿洲中与各主要物理变量和参数间关系的分析,都足以说明土壤湿度是干旱、半干旱区中能量、水分循环和物质交换中最主要且最为敏感的因子,也是在该区域气候变化中陆气相互作用最为重要的表征因子之一。这不仅表现在土壤湿度的改变将直接影响土壤热力学参数的改变,同时也能够直接反应出该区域干湿、干旱状况的变化,而且在短时间尺度上浅层土壤湿度的改变将直接影响能量分配的情况;深层的土壤湿度则会在更长时间尺度内和更大区域尺度上影响能量和水分循环。在人为影响较小的干旱、半干早区,土壤湿度的改变则只依赖于该区域的降水强度及其时空分布。
Semi-arid areas of Northern China are the transitional and sensitive zone between the semi-humid and arid areas, which are suffering the severe aridity trend, ecological environments deterioration, and the increasing dust storm and haze, as a result of the climate change and human activities. It seriously affected people's life and productions in this area, and has also become one of the key issues of sustainable development strategy that need to be addressed urgently in China. Therefore, investigating the physical and biochemical processes between the land surface and the atmosphere interactions, and exploring the mechanism and strategy of the land-atmosphere interactions over the arid and semi-arid areas, will significantly improve the prediction of the regional climate models, protect its fragile ecological environment, and reduce the negative impact on human activities.
     The long-term characteristic of energy budget, hydrological cycle, the CO2flux exchange and the main land surface parameters, as well as the effect of precipitation on the land-atmosphere interactions in different climate background and years, were investigated by using the continuous observation data from the Semi-arid Climate and Environment Observatory of Lanzhou University (SACOL), the degraded grassland and the cropland surface in Tongyu, and the intensify experiment in Jingtai hill and farmland and in Xinglong mountain cropland (XM) in this study. The main results are as follows:
     (1) SACOL can well representative for the climate characteristic of the study area, by comparison with53-year climate data in Yuzhong meteorological stations. The53-yr-average annual precipitation at the Yuzhong meteorological station was37.2mm, while the6-yr-average annual precipitation was428.2mm. It was significantly larger than the climatic average, but had large inter-annual variability, and more than80%of the precipitation occurred in the Julian day121~306. The annual total potential evaporation and actual evapotranspiration were780-1020mm,280~490mm, respectively. Total precipitation, precipitation intensity, and its spatial and temporal distribution will change the characteristics of soil moisture. Meanwhile, the energy partitioning and ecological environment of this region will be affected. However the increasing total annual precipitation cannot always decrease the impact of drought on the semi-arid areas.
     (2) As result of the differences in terrain conditions and the local water vapor, although the isolated oasis Xinglong Mountain and SACOL were affected by the same weather system, the characters of precipitation distribution were significantly different. Not only the probability of the precipitation occurs and heavy rainfall occurs at XM were larger than at SACOL, but also the average precipitation intensity was higher too, and total precipitation at XM is25.9%more than SACOL. The water vapor pressure deficit of Xinglongshan was obviously lower than SACOL, and the air at XM was more humid, as the sufficient water vapor conditions at XM. In addition, the net radiation, which is used to heat the atmosphere, evaporate water vapor and transfer the heat from surface layer to the deep, was much less than it at SACOL during the growing season, it was mainly affected by cloud.
     (3) The variation of soil moisture was mainly depend on the distribution, intensity and duration of precipitation, and the soil moisture had bimodal characteristics at SACOL, as result of the snow melt in spring and the precipitation during the growing season. In the case of abundant rainfall, surface soil moisture was rapidly increased, while the deep layer followed behind. Surface soil moisture will also decrease rapidly, when there was only little precipitation or long-term without precipitation. But the soil moisture below0.80m deep almost not affected, and only increased after a period of long-term sustainability heavy precipitation. The most difference between SACOL and XM is the vertical structure of soil moisture, that soil moisture decreased with soil depth, conversely XM increased (0~0.50m). In the arid and semi-arid regions, soil moisture can not only changed the surface albedo and soil thermal properties, but also change the aerodynamic roughness indirectly, and then affected bulk momentum transfer coefficient, bulk sensible heat transfer coefficient and energy partitioning by influencing vegetation growth conditions.
     (4) The surface energy balance unclosure is common in the observation analysis over the semi-arid area. The energy imbalance ratio was usually about30~50%. It can be reach55%during our analysis at XM. While given the surface heat storage calculated by TDEC, the energy closure rate can improve approximately8%. Whereas the energy closure in autumn was3%less than it in spring and summer, it may be due to the influence of the vegetation canopy. As a result of the stability of atmospheric and the uncertainty of surface soil heat flux, the energy balance rate was lowest in the whole year. Under natural land surface in the semi-arid area, the mean energy closure ratio was about0.68. Although, the energy closure was very poor at night, compared with the whole day analysis, it only affected the closure about2%. High closure errors are unacceptable in the atmospheric models, so it was need to be further study, especially the closure difference due to the regional diversity.
     (5) Whether semi-arid region over the Loess Plateau, or semi-arid region in northeast China, sensible heat flux was dominant in the energy partitioning, accounted for35~40%of the net radiation, latent heat flux accounted for21~23%, while the surface heat flux was lowest only6-11%, but had obviously seasonal variation. Associating with the precipitation in summer and autumn, soil moisture increased, and the proportion of sensible heat flux was significantly decreased, while the proportion of latent heat flux was increased among the available energy, and gradually exceeded the sensible heat flux, then the Bowen ratio was close to1.0or less1.0. The total amount, distribution and intensity of precipitation, followed by better soil water retention, as well as relatively moist local circulation, which can provide sufficient water for the latent heat of evaporation and the underlying surface plants growing, it was the main mechanism that the isolated oasis can be maintained in the semi-arid area over Loess Plateau.
     (6) With the temperatures raised and soil moisture increased during Julian day180-306, plant growth reached its peak, the rate of carbon absorption was also higher than that in the first half year, but when it started is mainly dependent on the spatial and temporal distribution, intensity of precipitation, and soil moisture. In the case of year, which was much less precipitation and higher potential evaporation, as well as soil moisture cannot provide sufficient water for evaporation, or precipitation was much in the first half year, but low in the second half year, were both not conducive to the growing of underlying surface plant. The maximum monthly averaged CO2flux appeared at SACOL, only when the soil moisture at SACOL reached it maximum during the growing season, with high relationships with inter-annual variability and monthly total amount precipitation. But the maximum monthly averaged CO2flux strongly depended on the crop phenology of the underlying surface at XM. Therefore, the maximum was not appeared at the month when the soil moisture was highest at XM, it seems that the affect of soil moisture was not much sensitive to the growth of crops at XM man that at SACOL.
     (7) Through the analysis of relationship between the soil moisture and other variables or parameters in different semi-arid region, differ underlying surface vegetation type, and the isolated oasis in the Loess Plateau, it can be sufficient described that the soil moisture is not only the most important and sensitive variable on energy budget, hydrological cycle and CO2flux exchange, but also the most important characterization factor on land-atmosphere interactions in the climate change over the arid and semi-arid regions. Not only reflected on that the soil moisture can directly represent the dry and wet, drought conditions, but also on that the soil thermodynamic parameters was directly changed by the variation of soil moisture. Surface soil moisture can directly affected the surface albedo and energy partitioning in short temporal scale, while the soil moisture in deep layer can be affected the energy and hydrological cycle in large temporal and regional scale. However, the soil moisture is mainly dependent on the spatial and temporal distribution and intensity of the regional precipitation over the arid and semi-arid areas.
引文
[1]Grimm N.B., Faeth S.H., Golubiewski N. E. et al. Global change and the ecology of cities[J]. Science.2008,319:7562760.
    [2]Watson, R.T., Zinyowera, M.C., Moss, R.H. The Reginal Impacts of Climate Change:An Assessment of Vulnerability [R]. Cambridge:Cambridge University Press.1998.
    [3]朱建华,侯振宏,张治军,罗云建,张小全.气候变化与森林生态系统:影响、脆弱性与适应性[J].林业科学.2007,43(11):138-145.
    [4]张强,韩永翔,宋连春.全球气候变化及其影响因素研究进展综述[J].地球科学进展.2005,20(9):990-998.
    [5]Dansgaard, W., Johnsen, S.J., et al. One Thousand Centuries of Climatic Record from Camp Century on the Greenland Ice Sheet[J]. Science.1969,116 (3903):377-380.
    [6]Singer, S.F. Climate Change Reconsidered:Report of the Nongovernmental International Panel on Climate Change (NIPCC)[C]. Chicago, Illinois, USA:The Heartland Institute.2009, 5-38.
    [7]Haigh, J.D. The effects of solar variability on the Earth's climate[J]. London, UK:Royal Society of London.2003,361(1802):95-111.
    [8]蒋样明,彭光雄,邵小东.自然驱动是全球气候变化的重要因素[J].气象与环境科学.2011,34(2):7-14.
    [9]Yi, C., Davis, K.J., Bakwin, P.S., Berger, B.W. and Marr, L.C. Influence of advection on measurements of the net ecosystem-atmosphere exchange of CO2 from a very tall tower [J]. J. Geophys. Res.2000,105(D8),9991-9999.
    [10]Toda, M., Nishida, K., Ohte, N., Tani, M. and Musiake, K. Observations of energy fluxes and evapotranspiration over terrestrial complex land covers in the tropical monsoon environment[J]. J. Meteorol. Soc.Jpn.2002,80(3),465-484.
    [11]Baldocchi, D.D., Xu, L., and Kiang N. How plant functional-type, weather, seasonal drought, and soil physical properties alter water and energy fluxes of an oak-grass savanna and an annual grassland[J]. Agr. Forest Meteorol.2004,123,13-39.
    [12]Goulden, M.L., Winston, G.C., McMillan, A.M., Litvak, S.M.E., Read, E.L. Rocha, A.V. and Elliot, J.R. An eddy covariance mesonet to measure the effect of forest age on land-atmosphere exchange[J]. Global Change Biol.2006,12,2146-2162.
    [13]Bi, X., Gao, Z., Deng, X., Wu, D., Liang, J., Zhang, H., Sparrow, M., Du, J., Li, F., and Tan, H. Seasonal and diurnal variations in moisture, heat and CO2 fluxes over grassland in the tropical monsoon region of southern China[J]. J. Geophys. Res.,2007,112, D10106, doi: 10.1029/2006JD007889.
    [14]Cannadell, J.G., Pataki, D.E., Gifford, R., Houghton, R.A., Luo, Y., Raupach, M.R., Smith, P. and Steffen, W. Saturation of the terrestrialcarbon sink in Terrestrial Ecosystems in a Changing World, edited by J. G. Canadell, D. E. Pataki, and L. F. Pitelka,2007, pp.59-78, Springer-Verlag, Berlin Heidelberg.
    [15]Fischer, M.L., Billesbach, D.P., Berry, J.A., Riley, W.J. and Torn, S. Spatiotemporal variations in growing season exchanges of CO2, H2O and sensible heat in agricultural fields of the southern great plains[J]. Journal of climate.2007,11, E1231, doi:10.1175/E1231.1.
    [16]Jacobs, A.F.G., Heusinkveld, B.G. and Holtslag, A.A.M. Seasonal and interannual variability of carbon dioxide and water balances of a grassland[J]. Clim. Change.2007,82,163-177.
    [17]Mahecha, M.D., Reichstein, M., Lange, H., Carvalhais, N., Bernhofer, C., Gru"nwald, T., Papale, D. and Seufert, G. Characterizing ecosystem-atmosphere interactions from short to interannual time scales[J]. Biogeoscience.2007,4,743-758.
    [18]Hammerle, A., Haslwanter, A., Tappeiner, U., Cernusca, A. and Wohlfahrt, G. Leaf area controls on energy partitioning of a temperate mountain grassland. Biogeosciences.2008,5, 421-431, http://www.biogeosciences.net/5/421/2008/.
    [19]Wohlfahrt, G., Hammerle, A., Haslwanter, A., Bahn, M., Tappeiner, U. and Cernusca, A. Seasonal and inter-annual variability of the net ecosystem CO2 exchange of a temperate mountain grassland:Effects of weather and management[J]. J. Geophys. Res.2008,113, D08110, doi:10.1029/2007JD009286.
    [20]Monica Gorska, Jordi Vila-Guerau de Arellano, Margaret A. LeMone, and Chiel C. van Heerwaarden. Mean and Flux Horizontal Variability of Virtual Potential Temperature, Moisture, and Carbon Dioxide:Aircraft Observations and LES Study[J]. Monthly Weather Review.2008, Vol.136, Iss.11, pp.4435-4451.
    [21]Ryu, Y., Baldocchi, D.D., Ma, S., and Hehn T. Interannual variability of evapotranspiration and energy exchange over an annual grassland in Califomia[J]. J. Geophys. Res.2008,113, D09104, doi:09110.01029/02007JD009263.
    [22]Liu, H., Dong, W., Fu, C. and Shi, L. The longterm field experiment on aridification and the ordered human activity in semi-arid area at Tongyu, Northeast China[J]. Climatic and Environmental Research.2004,9,352-378. (in Chinese)
    [23]Gao, Z., Lenschow, D.H., He, Z., Zhou, M., Wang, L., Wang, Y., He, J. and Shi, J. Seasonal and diurnal variations in moisture, heat and CO2 fluxes over a typical steppe prairie in Inner Mongolia, China[J]. Hydrol., Earth., Syst., Sci., Discuss.2009.
    [24]Li, Y.J., Zhou, L., Xu, Z.Z. and Zhou, G.S. Comparison of water vapour, heat and energy exchanges over agricultural and wetland ecosystems[J]. Hydrol., Process.2009,23, 2069-2080 DOI:10.1002/hyp.7339
    [25]孙菽芬.陆面过程的物理、生化机理和参数化模型[M].气象出版社.P10-11.
    [26]Hu, Y. Research advance about the energy budget and transportation of water vapor in the HEIFE area[J]. Advance in Earth Sciences.1994,9,30-34. (in Chinese)
    [27]Hu, Y., and Gao, Y. Some new understandings of processes at the land surface in arid area from the HEIFE[J]. Acta Meteorologica Sinica.1994,52,285-296. (in Chinese)
    [28]Wang, J.M. and Mitsuta, Y. Turbulence structure and transfer characteristics in the surface layer of the HEIFE Gobi area[J]. J. Meteor. Soc. Japan.1991,69,587-593.
    [29]Wang, J.M. and Mitsuta, Y. Evaporation from the desert-A preliminary result of HEIFE[J]. Boundary-Layer Meteorology.1992,Vol.59, No.4, pp.413-41
    [30]Lu, D., Chen, Z., Chen, J., Wang, G., Ji, J., Chen, H., Liu, Z., Zhang, R., Qiao, J. and Chen, Y. Composite study on Inner Mongolia semiarid grassland soil-vegetation atmosphere interaction (IMGRASS) [J]. Earth Science Frontiers.2002,9,52-63. (in Chinese)
    [31]Lu, D., Chen, Z., Chen, J., Wang, G., Ji, J., Chen, H. and Liu, Z. Study on soil-vegetation-atmosphere interaction in Inner Mongolia semiarid grassland[J]. Acta Meteorologica Sinica.2005,63,33-55. (in Chinese)
    [32]Zhang, Q., X.Y. Cao., and G. Wei. Observations and study of land surface parameters over Gobi in typical arid region[J]. Advances in Atmosphere Scienc.2002,19(1):121-135.
    [33]黄荣辉,周德刚,陈文等.关于中国西北干旱区陆—气相互作用及其对气候影响研究的最近进展[J].大气科学,2013,37(2):189-210.
    [34]Bao, Y., and S. Lu. Review of land-atmosphere interaction research in Arid and Semi-arid regions[J]. Journal of Desert Research.2006,3,134-140. (in Chinese)
    [35]Zhang, Q., R. H. Huang, S. Wang, et al. NWC-ALIEX and its advances[J]. Advance in Earth Sciences.2005,20,60-74 (in Chinese).
    [36]Liu, H., W. Dong, C. Fu, and L. Shi. The longterm field experiment on aridification and the ordered human activity in semi-arid area at Tongyu, Northeast China[J]. Climatic and Environmental Research.2004,9,352-378. (in Chinese)
    [37]Zhang, H. S., J. Y. Chen, and S. U. Park. Turbulence structure in the unstable condition over various surfaces[J]. Bound,-Layer Meteor.2001,100,243-261.
    [38]Huang, J. P., W. Zhang, J. Q. Zuo, J. R. Bi, J. S. Shi, X. Wang, Z. L. Chang, Z. W. Huang, S. Yang, B. D. Zhang, G. Y. Wang, G. H. Feng, J. Y. Yuan, L. Zhang, H. C. Zuo, S. G. Wang, C. B. Fu, and J. F. Chou. An overview of the semi-arid climate and environment research observatory over the Loess Plateau[J]. Adv. Atmos. Sci.2008,25(6),906-921, doi:10.1007 /s00376-008-0906-7.
    [39]马柱国,符淙斌.20世纪下半叶全球干旱化的事实及其与大尺度背景的联系[J].中国科学D辑:地球科学,2007,第37卷,第2期:222-233.
    [40]Huang J., X. Guan, and F. Ji. Enhanced cold-season warming in semi-arid regions[J], Atmos. Chem. Phys.2012,12,5391-5398.
    [41]Liu, T. S. Regional record of aeolian processes:The distribution of loess in Loess and the Environment[M].14 pp. China Ocean Press, Beijing.1985.
    [42]An, Z. S. The history and variability of the East Asian monsoon[J]. Quat. Sci. Rev.2000,19, 171-187, doi:10.1016/S0277-3791(99)00060-8.
    [43]An, Z. S., J. E. Kutzbach, W. L. Prell, and S. C. Porter Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since late Miocene times[J]. Nature.2001,411, 62-66, doi:10.1038/35075035.
    [44]Guo, Z. T., W. F. Ruddiman, Q. Z. Hao, H. B. Wu, Y. S. Qiao, R. X. Zhu, S. Z. Peng, J. J. Wei, B. Y. Yuan, and T. S. Liu. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China[J]. Nature.2002,416,159-163, doi:10.1038/416159a.
    [45]Fu, C. B., and F. Penning De Vries. Initial Science Plan of the Monsoon Asia Integrated Regional Study[M].86 pp. China Meteorol. Beijing,2006.
    [46]Fu, C. B., and G. Wen. Some key issues of aridity trend in northern China[J]. Clim. Environ. Res.,2002,7,20-29.
    [47]Zhang, L. M.,Z. P. Shang Guan. Relationship between the soil moisture and the vegetation productivity in the Loess Plateau[J]. Arid Zone Research.2002,19(4),59-63. (in Chinese)
    [1]Huang, J., W. Zhang, J. Zuo, J. Bi, J. Shi, X. Wang, Z. Chang, Z. Huang, S. Yang, B. Zhang, G. Wang, G. Feng, J. Yuan, L. Zhang, H. Zuo, S. Wang, C. Fu and J. Chou. An overview of the Semi-Arid Climate and Environment Research Observatory over the Loess Plateau[J]. Advances in Atmospheric Sciences.2008,25(6),1-16.
    [2]Zuo J., J. Wang, J. Huang, W. Li, G. Wang, and H. Ren. Estimation of ground heat flux and its impact on the surface energy budget for a semi-arid grassland[J]. Sciences in Cold and Arid Regions.2011,3(1):41-50. DOI:10.3724/SP.J.1226.2011.00041.
    [3]Wang, G., J. Huang, W. Guo, J. Zuo, J. Wang, J. Bi, Z. Huang, and J. Shi. Observation analysis of land-atmosphere interactions over the Loess Plateau of northwest China[J]. J. Geophys. Res.2010,115,D00K17, doi:10.1029/2009JD013372.
    [4]Liu Huizhi, Tu Gang, Fu Congbin and Shi Liqing. Three-year variations of water, energy and CO2 fluxes of cropland and degraded grassland surfaces in a semi-arid area of Northeastern China[J]. Adv. Atmos. Sci.2008,25(6):1009-1020.
    [5]刘辉志,董文杰,符淙斌等.吉林通榆半干旱区”干旱化和有序人类活动”长期观测实验[J].气候与环境研究.2004,9(4),352-378.
    [6]Guan X., J. Huang, N. Guo, J. Bi, and G. Wang. Variability of soil moisture and its relationship with surface albedo and soil thermal parameters over the Loess Plateau[J]. Advances in Atmospheric Sciences.2009,26(9),692-700.
    [7]Liu Huizhi, Tu Gang, and Dong WenJie, Three-year changes of surface albedo of degraded grassland and cropland surfaces in a semiarid area[J]. Chinese Sci. Bull.2008,53(8): 1246-1254, DOI:10.3724/SP.J.1005.2008.00225.
    [8]Liu Huizhi, Wang Baomin and Fu Congbin. Relationship between surface albedo, soil thermal parameters and soil moisture in the semi-arid area of Tongyu, Northeastern China[J]. Adv. Atmos. Sci.2008,25(5):757-764.
    [9]Xie J., J. Huang, G. Wang, K. Higuchi, J. Bi, Y. Sun, H. Yu, and T. Wang. The effects of clouds and aerosols on net ecosystem CO2 exchange over semi-arid Loess Plateau of Northwest China[J]. Atmos. Chem. Phys.2010,10,8205-8218.
    [10]Du Q., H. Z. Liu, J. W. Feng, L. Wang, J. P. Huang, W. Zhang. Christian BERNHOFER. Carbon dioxide exchange processes over the grassland ecosystems in semiarid areas of China[J]. Sci China Earth Sci.2012,55:644-655, doi:10.1007/s11430-011-4283-1.
    [11]解静,黄建平,王国印,闭建荣,赵钱飞,张明明.中国北方半干旱区二氧化碳通量的对比分析[J].地球科学进展.2010,25,50-63.
    [12]刘辉志,董文杰,符淙斌等.半干旱地区地气界面水汽和二氧化碳通量的日及季节变化[J].大气科学.2006,23(1):75-86.
    [13]Zuo J., J. Huang, J. Wang, W. Zhang, J. Bi, G. Wang, W. Li, and P. Fu, Surface turbulent flux measurements over the Loess Plateau for a semi-arid climate change study [J].Advances in Atmospheric Sciences.2009,26(4),679-691.
    [14]Ge J., J. Huang, J. Su, J. Bi, and Q. Fu. Shortwave radiative closure experiment and direct forcing of dust aerosol over northwestern China[J]. Geophys. Res. Lett.2011,38, L24803, doi:10.1029/2011GL049571.
    [15]Huang, Z., J. Huang, J. Bi, G. Wang, W. Wang, Q. Fu, Z. Li, S.-C. Tsay, and J. Shi. Dust aerosol vertical structure measurements using three MPL lidars during 2008 China-U.S. joint dust field experiment[J]. J. Geophys. Res.2010,115, D00K15, doi:10.1029/2009JD013273
    [16]Wang X., J. Huang, R. Zhang, B. Chen, J. Bi. Surface measurements of aerosol properties over northwest China during ARM China 2008 deployment[J], J. Geophys. Res.2010,115, D00K27, doi:10.1029/2009JD013467.
    [17]Bi J., J. Huang, F. Qiang, X. Wang, J. Shi, W. Zhang, Z. Huang, B. Zhang. Toward characterization of the aerosol optical properties over Loess Plateau of Northwestern China[J].Journal of Quantitative Spectroscopy & Radiative Transfer.2010,112, D00K17, doi:10.1029/2009JD013372.
    [18]Yan H.R., J. Huang, P. Minnis, T. Wang, J. Bi. Comparison of CERES surface radiation fluxes with surface observations over Loess Plateau[J]. Remote Sensing of Environment. 2011,115,1489-1500.
    [1]Fiebrich, Christopher A., Cynthia R. Morgan, and Alexandria G. McCombs et al. Quality Assurance Procedures for Mesoscale Meteorological Data[J]. J. Atmos. Oceanic Technol. 2010, DOI:10.1175/2010JTECHA1433.1.
    [2]Flemming Vejen (ed), Caje Jacobsson, Ulf Fredriksson, Margareth Moe, Lars Andresen, Eino Hellsten, Pauli Rissanen, Toranna Palsdottir, Tordur Arason. Quality Control of Meteorological Observations. Automatic Methods used in the Nordic Countries. CLIMATE REPORT.2002, ISSN 0805-9918.
    [3]Vickie L. Nadolski. Automated Surface Observing System (ASOS) User's Guide.1998.
    [4]Gandin L.S. Complex quality control of meteorological observations[J]. Monthly Weather Review.1987, Volume 116,1137-1156.
    [5]Shafer, M. A., C. A. Fiebrich, D. S. Arndt, S. E.Frederickson, and T. W. Hughes.Quality assurance procedures in the Oklahoma Mesonetwork[J]. J. Atmos. Oceanic Technol.2000, 17,474-494.
    [6]Vickers, D., and L. Mahrt, Quality control and flux samplingproblems for tower and aircraft data[J]. J. Atmos. Oceanic Technol.1997,14,512-526.
    [7]Vickers, D., and L. Mahrt, The Cospectral Gap and Turbulent Flux Calculations[J]. J. Atmos. Oceanic Technol.2002,14,512-526.
    [1]Sorbjan, Z. Structure of the Atmospheric Boundary Layer[M]. Prentice-Hall, P128-134.1989.
    [2]王介民,王维真,刘绍民,马明国,李新.近地层能量平衡闭合问题—综述及个例分析[J].地球科学进展,2009,24(7):752713.
    [3]Swinbank, W. C. The measurement of vertical transport of heat and water vapor by eddies in the lower atmosphere[J]. Journal of Meteorology.1951,8,135-145.
    [4]Vickers, D., and L. Mahrt, Quality control and flux sampling problems for tower and aircraft data[J]. J. Atmos. Oceanic Technol.1997,14,512-526.
    [5]Foken, T., M. Gockede, M. Mauder, L. Mahrt, B. Amiro, and W. Munger, Post-field data quality control, in Handbook of Micrometeorology:A Guide for Surface Flux Measurement and Analysis[M]. edited by X. Lee et al. pp.181-208. Kluwer Acad., Dordrecht, Netherlands. 2004.
    [6]Wilczak, J. M., S. P. Oncley, and S. A. Stage. Sonic anemometer tilt correction algorithms[J]. Boundary Layer Meteorol.2001,99,127-150, doi:10.1023/A:1018966204465.
    [7]Finnigan, J. J., A Streamline Coordinate System for Distorted Turbulent Shear Flows[J]. J. Fluid Mech.1983,130,241-258.
    [8]Kaimal, J. C. and J. J. Finnigan, Atmospheric Boundary Layer Flows[M]. Oxford University Press. pp 289.1994.
    [9]Tanner, C. B. and G. W. Thurtell. Anemoclinometer Measurements of Reynolds Stress and Heat Transport in the Atmospheric Surface Layer[M]. University of Wisconsin Tech. Rep. ECOM-66-G22-F, pp 82.1969.
    [10]Sun, J. Tilt corrections over complex terrain and its implication for CO2 transport[J]. Boundary-Layer Meteorol.2007,124,143-159.
    [11]Moore, C.J. Frequency Response Corrections for Eddy Correlation Systems[J]. Bound.-Layer Meteor.1986,37,17-36.
    [12]Riβman, J. and Tetzlaff, G. Application of a Spectral Correction Method for Measurements of Covariances with Fast-Response Sensors in the Atmospheric Boundary Layer up to a Height of 130 m and Testing of the Corrections[J]. Boundary-Layer Meteorol.1994,70,293-305.
    [13]Horst, T. W. A Simple Formula for Attenuation of Eddy Fluxes Measured with First-Order Response Scalar Sensors[J]. Boundary-Layer Meteorol.1997,82,219-233.
    [14]Horst, T. W. On frequency response corrections for eddy covariance flux measurements[J]. Boundary-Layer Meteorol.2000,94:517-520.
    [15]Moncrieff JB, JM Massheder, H De Bruin et al. A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide[J]. J. Hydrol.1997,188:589-611.
    [16]Massman WJ, A simple method for estimating frequency response corrections for eddy covariance systems[J]. Agric For Meteorol.2000,104:185-198.
    [17]Massman WJ, X. Lee. Eddy covariance flux corrections and uncertainties in long-term studies of carbon and energy exchanges[J]. Agric For Meteorol.2002,113:121-144.
    [18]Shimizu T., Practical applicability of high frequency correction theories to CO2 flux measured by a closed-path system[J].. Boundary-Layer Meteorol.2007,122:417-438.
    [19]Kaimal, J. C., J. C. Wyngaard, Y. Izumi,et al. Spectral Characteristics of Surface Layer Turbulence[J]. Quart. J. R. Meteorol. Sot.1972,98,563-589.
    [20]Blanford, J. H. and L. W. Gay. Tests of a Robust Eddy-Correlation System for Sensible Heat-Flux[J]. Theor. Appl. Climatol. 1992,46,53-60.
    [21]Massman WJ, R. Clement, Uncertainty in eddy covariance flux estimates resulting from spectral attenuation. In:Lee X, Massman WJ, Law B (eds). Handbook of micrometeorology: a guide for surface flux measurement and analysis[J]. Atmospheric and Oceanographic Sciences Library, Kluwer Academic Publishers, Dordrecht, pp 67-100.2004.
    [22]Panofsky, HA. The effect of averaging time on velocity variances[J]. Meteorol. Atmos. Phys. 1988,38,64-69.
    [23]Kaimal, J.C., S.F. Clifford, R.J. Lataitis. Effect of finite sampling on atmospheric spectra[J]. Boundary-Layer Meteorol.1989,47,337-347.
    [24]Rannik, U., A comment on the paper by W.J. Massman "A simple method for estimating frequency response corrections for eddy covariance systems" [J]. Agric. For. Meteorol.2001, 107,241-245.
    [25]Kaimal, J. C., J. C. Wyngaard, D. A. Haugen,et al. Turbulence Structure in the Convective Boundary Layer[J]. J. Atmos. Sci.1976,33,2152-2169.
    [26]Hojstrup, J. A Simple Model for the Adjustment of Velocity Spectra in Unstable Conditions Downstream of an Abrupt Change in Roughness and Heat Flux[J]. Boundary-Layer Meteorol. 1981,21,341-356.
    [27]Kaimal, J.C. and J. A. Businger. A Continuous-Wave Sonic Anemometer Thermometer[J]. J. Meteorol.1963,2,156-164.
    [28]Schotanus, p., F. T. M. Nieuwstadt and H. A. R. De Bruin. Temperature Measurement with a Sonic Anemometer and its Application to Heat and Moisture Fluctuations[J]. Boundary-Layer Meteorol.1983,26,81-93.
    [29]Foken, T. Eddy covariance-A practical Guide to measurement and data analysis[M]. Springer atmospheric sciences.2011, pp.86-87.
    [30]Liu H., Gerhard Peters and Thomas Foken. New equations for sonic temperature variance and buoyancy heat flux with an omnidirectional sonic anemometer[J]. Boundary-Layer Meteorol. 2001,100:459-468.
    [31]Parkinson, K. J. Carbon dioxide infra-red gas analysis[J].J. Exp. Bot.1971,22,169-176.
    [32]Ripley and saugier. Micrometeorology:I. Description of sensors and measurement No.4, Univ. of Saskatchewan, Saskatoon,1972.
    [33]Pearman, G. I. A correction for the effect of drying of air samples and its significance to the interpretation of atmospheric CO, measurements[J]. Tellus.1975,27,311-317.
    [34]Spittlehouse and Ripley. Carbon dioxide concentrations over a native grassland in Saskatchewan[J]. Tellus.1977,29,54-65.
    [35]Saugier and Ripley, Evaluation of the aerodynamic method of determining fluxes over natural grassland[J]. Quart. J. R. Met. Soc.1978,104,257-270.
    [36]Webb EK, Pearman GI, Leuning R. Correction of flux measurements for density effects due to heat and water vapour transfer[J]. Quart. J. R. Met. Soc.1980,106:85-100
    [37]Leuning R. The correct form of the Webb, Pearman and Leuning equation for eddy fluxes of trace gasesin steady and non-steady state, horizontally homogeneous flows[J]. Boundary-Layer Meteorol.2007,123:263-267.
    [38]Liu H., An alternative approach for CO2 flux correction caused by heat and water vapour transfer[J]. Boundary-Layer Meteorol.2005,115:151-168.
    [39]Massman W.J., J.P. Tuovinen. An analysis and implications of alternative methods of deriving density (WPL) terms for eddy covariance flux measurements[J]. Boundary-Layer Meteorol.2006,121:221-227.
    [40]Sun, J., S. K. Esbensen, and L. Mahrt, Estimation of surface heat flux[J]. J. Atmos. Soc.1995, 52,3162-3171.
    [41]Foken T. and B. Wichura. Tools for quality assessment of surface-based flux measurements[J]. Agric. For. Meteorol.1996,78:83-105.
    [42]Gurjanov AE, SL Zubkovskij and MM Fedorov. Automatic multi-channel system for signal analysis with electronic data processing[J]. Geod Geophys Veroff, R Ⅱ.1984,26:17-20.
    [43]Foken T. Der Bayreuther Turbulenzknecht. Arbeitsergebn, Univ Bayreuth, Abt Mikrometeorol.1999, ISSN 1614-8916.1:16.
    [44]Foken T. The energy balance closure problem-An overview[J]. Ecolog. Appl.2008, 18:1351-1367.
    [45]Sorbjan, Z. An examination of local similarity theory in the stably stratified boundary-layer[J]. Boundary-Layer Meteorol.1987,38:63-71.
    [46]Thomas, C., and T. Foken. Re-evaluation of integral turbulence characteristics and their parameterizations,15th Conference on Turbulence and Boundary Layers[M]. Amer. Meteor. Soc. Wageningen, NL,2002,129-132.
    [47]Foken, T., G. Skeib and S. H. Richter, Dependence of the integral turbulence characteristics on the stability of stratification and their use for Doppler-Sonar measurementsfJ]. Z. Meteor. 1991,41,311-315.
    [48]Pnofeky, H.A., H. Teanekes,et al. The characteristics of turbulent velocity components in the surface layer under convective conditions[J]. Boundary-layer Meteor.1997,11,355-361.
    [49]Foken T.,et al. Results of the LINEX-96/2 Experiment[J]. Dt Wetterdienst, Forsch. Entwicklung, Arbeitsergebnisse.,1997,48-75.
    [50]Rebmann C., et al. Quality analysis applied on eddy covariance measurements at complex forest sites using footprint modeling[J]. Theor Appl Climat.2005,80:121-141.
    [1]赵鸣,苗曼倩,王彦昌.边界层气象学教程[M].北京:气象出版社.1991.
    [2]Businger, J.A., J.C. Wyngaard, Y. Izumi, E.F. Bradley, Flux-Profile Relationships in the Atmospheric Surface Layer [J]. J. Atmos. Sci.1971,28:181-189.
    [3]Dyer A.J., A review of flux-profile relationships[J]. Boundary-Layer Meteorology.1974, 7:363-372.
    [4]Webb E.K. Profile relationships:The log-linear range and extension to strong stability [J]. Quart. J. Roy. Meteorol. Soc.1970,96:67-90.
    [5]Paulson C.A., The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer [J]. J. Appl. Meteor.,1970,9:857-861.
    [6]McBean, G. A., The planetary boundary layer, WMO Technical Note No.165, WMO, Geneva, 148,1979.
    [7]陈家宜,王介民,光田宁.一种确定地表粗糙度的独立方法[J].大气科学.1993,17(1):21-26.
    [8]Thom A.S. Monentum absorption by vegetation[J]. Quart. J. Roy. Metero. Soc.1971,7: 414-428.
    [9]Rotach M.W. Determination of the zero plane displacement in an urban environment[J]. Boundary layer Meteorology.1994,67:187-193.
    [10]张文煜,张宇,陆晓静等.黄土高原半干旱区非均一下垫面粗糙度分析[J].高原气象.2009,28(4):763-768.
    [11]王慧,李栋梁,胡泽勇,王介民.陆面上总体输送系数研究进展[J].地球科学进展.2008,23(12):1249-1259.
    [12]李国平,段廷扬,巩远发,青藏高原近地层通量特征的合成分析[J].气象学报.2002,60(4):4532460.
    [13]李国平,段廷扬,吴贵芬.青藏高原西部的地面热源强度及地面热量平衡[J].地理科学.2003.23(1):13218.
    [14]Trier, S., F. Chen, K. Manning, M. A. LeMone, and C. Davis. Sensitivity of the simulated PBL and precipitation to land surface conditions for a 12-day warm-season convection period in the central United States[J]. Mon. Weather Rev.2008,136,2321-2343.
    [15]Chen Fei and Ying Zhang. On the coupling strength between the land surface and the atmosphere:From viewpoint of surface exchange coefficients[J]. Geophysical Reserarch Letters.2009, doi:10.1029/2009GL037980. vol.36, L10404
    [1]盛裴轩,毛节泰,李建国,张霭琛,桑建国,潘乃先.大气物理学[M].北京:北京大学出版社.P61-120.2003.
    [2]Kanemasu E. T., Verma S. B., Smith E.A.,et al. Surface flux measurements in FIFE:An over view[J]. Journal Geophysical Research.1992,97:18 547218 555.
    [3]Wang J., Kim J., Liou Y., et al. Energy balance analysis and one dimensional simulation of land surface processes in a short grass site of central Tibetan Plateau Proceeding of the 1st international Workshop on GAME Tibet, Xian, China,1999,73276.
    [4]Lee X. On Micrometeorological observations of surface air exchange over tall vegetation[J]. Agricultural and Forest Meteorology,1998,91:39249.
    [5]Twine T.E., KustasmW.P., Norman J.M.,et al. Correcting eddy covariance flux underest imates over a grassland[J]. Agricultural and Forest Meteorology.2000,103:2792300.
    [6]Sakai R., Fitzjarrald D., Moore K. E. Importance of low frequency contributions to eddy fluxes observed over rough surfaces[J]. Journal Applied Meteorology.2001,40:217822192.
    [7]Wilson K.B, Goldstein A., Falge E.,et al. Energy balance closure at FLUXNET sites[J]. Agricultural and Forest Meteorology.2002,113:2232234.
    [8]Oncley, S. P., and Coauthors. The Energy Balance Experiment EBEX-2000. Part Ⅰ:Overview and energy balanc [J]. Bound.-Layer Meteor.2007,123,1-28.
    [9]Matthias Mauder, Steven P. Oncley, Roland Vogt et al. The energy balance experiment EBEX-2000. Part Ⅱ:Intercomparison of eddy-covariance sensors and post-field data processing methods[J]. Boundary-Layer Meteorol.2007,123:29-54, DOI 10.1007/s10546-006-9139-4
    [10]Foken, T. The energy balance closure problem:an overview[J]. Ecol. Appl.2008,18, 1351-1367.
    [11]Foken, T., and Coauthors. Energy balance closure for the LITFASS-2003 experiment[J]. Theor. Appl. Climatol.2010,10:149-160.
    [12]Hiroki Tanaka and Coauthors. Energy balance and its closure over a young larch forest in eastern Siberiaagri [J]. Agricultural and Forest Meteorology.2008,148:1954-1967.
    [13]Ray Leuninga, Eva van Gorsela, William J. Massmanb, Peter R. Isaacc. Reflections on the surface energy imbalance problem [J]. Agricultural and Forest Meteorology.2012,156: 65-74.
    [14]Yang, K., and J. Wang. A temperature prediction-correction method for estimating surface soil heat flux from soil temperature and moisture data[J], Sci. China, Ser. D.2008,51(5), 721-729.
    [1]Charney Me. A comparative study of the effects of albedo change on drought in semi-arid regions [J]. Journal of the Atmospheric Sciences.1977,34(9):1366-1385.
    [2]Yeh T.-C, R.T. Wetherald, S. Manabe. The Effect of Soil Moisture on the Short-Term Climate and Hydrology Change-A Numerical Experiment[J]. Monthly Weather Review.1984, 112(3):474-490.
    [3]Dirmeyer, P. A., J.Shukla. Observational and modeling studies of the influence of soil moisture anomalies on the atmospheric circulation (review) [J]. Predictions of Interannual Climate Variations (J. Shukla, ed), NATO Series 1.1993,6:1-23, Springer-Verlag.
    [4]王欣,文军,韦志刚等.中国黄土高原塬区表层土壤水分盈缺状况的研究[J].高原气象.2009:28(3):530-539.
    [5]Zhang, Q. and R. H. Huang. Parameters of land-surface processes for gobi in north-west china [J]. Bound-Layer Meteor.2004,110,471-478.
    [6]李新周,刘晓东,马柱国.近百年来全球主要干旱区的干旱化特征分析干早区研究[J].干旱研究.2004,1001-4675(2004)02-0097-07.
    [7]卫捷,马柱国.Palmer干旱指数-地表湿润指数与降水距平的比较[J].地理学报.2003,58(S):91-99.
    [8]卫捷,陶诗言,张庆云.Palmer干旱指数在华北干旱分析中的应用[J].地理学报.2003,58(S):91-99.
    [9]刘巍巍.帕尔默早度模式的进一步修正[J].应用气象学报.2004,15(2):208-216.
    [10]杨小利,刘庚山,杨兴国,王若升.甘肃黄土高原帕尔默旱度模式的修订[J].干旱气象.2005,23(2)8-13
    [11]马柱国,符淙斌.中国北方干旱区地表湿润状况的趋势分析[J].气象学报.2001,59(6):737-746
    [12]Hu Yinqiao, Yang Xuanli, and Zhang Qiang. "The Characters of Energy Budget on the Gobi and Desert Surface in Hexi Region'[J]. ACTA Meteorol. Sin.1992,26,82-91.
    [13]Oke, T. R. Boundary Layer Climate[M]. Methuen, London and COLTD, New York. pp435. 1978.
    [14]Liu, H. Z., B. M. Wang, and C. B. Fu. Relationships between surface albedo, soil thermal parameters and soil moisture in the semi-arid area of Tongyu, northeastern China[J]. Adv. Atmos. Sci.2008,25(5),757-764.
    [15]Wang, K. C., P. C. Wang, J. M. Liu, M. Sparrow, S. Haginoya, and X. J. Zhou. Variation of surface albedo and soil thermal parameters with soil moisture content at a semi-desert site on the western Tibetan plateau[J]. Bound.-Layer Meteor.2005,116,117-129.
    [16]Xie J., J. Huang, G. Wang, K. Higuchi, J. Bi, Y. Sun, H. Yu, and T. Wang. The effects of clouds and aerosols on net ecosystem CO2 exchange over semi-arid Loess Plateau of Northwest China[J]. Atmos. Chem. Phys.,2010,10,8205-8218.
    [1]Yi, C., K. J. Davis, P. S. Bakwin, B. W. Berger, and L. C. Marr. Influence of advection on measurements of the net ecosystem-atmosphere exchange of CO2 from a very tall tower[J]. J. Geophys. Res.2000,105(D8),9991-9999.
    [2]Toda, M., K. Nishida, N. Ohte, M. Tani, and K. Musiake. Observations of energy fluxes and evapotranspiration over terrestrial complex land covers in the tropical monsoon environment[J]. J. Meteorol. Soc.Jpn.2002,80(3),465-484.
    [3]Baldocchi, D. D., Xu, L., and Kiang N. How plant functional-type, weather, seasonal drought, and soil physical properties alter water and energy fluxes of an oak-grass savanna and an annual grassland[J]. Agr. Forest Meteorol.2004,123,13-39.
    [4]Goulden, M. L., G. C. Winston, A. M. S. McMillan, M. E. Litvak, E. L. Read, A. V. Rocha, and J. R. Elliot. An eddy covariance mesonet to measure the effect of forest age on land-atmosphere exchange[J]. Global Change Biol.2006,12,2146-2162.
    [5]Bi, X., Gao, Z., Deng, X., Wu, D., Liang, J., Zhang, H., Sparrow, M., Du, J., Li, F., and Tan, H. Seasonal and diurnal variations in moisture, heat and CO2 fluxes over grassland in the tropical monsoon region of southern China[J]. J. Geophys. Res.2007,112, D10106, doi: 10.1029/2006JD007889.
    [6]Cannadell, J. G., D. E. Pataki, R. Gifford, R. A. Houghton, Y. Luo, M. R. Raupach, P. Smith, and W. Steffen, Saturation of the terrestrialcarbon sink, in Terrestrial Ecosystems in a Changing World[M]. edited by J. G. Canadell, D. E. Pataki, and L. F. Pitelka, pp.59-78, Springer-Verlag, Berlin Heidelberg.2007.
    [7]Fischer, M. L., Billesbach, D. P., Berry, J. A., Riley, W. J., and S. Torn. Spatiotemporal variations in growing season exchanges of CO2, H2O, and sensible heat in agricultural fields of the southern great plains[J]. Journal of climate.2007,11, E1231, doi:10.1175/E1231.1.
    [8]Jacobs, A. F. G., B. G. Heusinkveld, and A. A. M. Holtslag, Seasonal and interannual variability of carbon dioxide and water balances of a grassland[J]. Clim. Change.2007,82, 163-177.
    [9]Mahecha, M. D., M. Reichstein, H. Lange, N. Carvalhais, C. Bernhofer, T. Gru'nwald, D. Papale, and G. Seufert. Characterizing ecosystem-atmosphere interactions from short to interannual time scales[J]. Biogeoscience.2007,4,743-758.
    [10]Hammerle, A., Haslwanter, A., Tappeiner, U., Cernusca, A., and Wohlfahrt, G. Leaf area controls on energy partitioning of a temperate mountain grassland, Biogeosciences.5, 421-431,2008, http://www.biogeosciences.net/5/421/2008/.
    [11]Wohlfahrt, G., A. Hammerle, A. Haslwanter, M. Bahn, U. Tappeiner, and A. Cernusca. Seasonal and inter-annual variability of the net ecosystem CO2 exchange of a temperate mountain grassland:Effects of weather and management[J]. J. Geophys. Res.2008,113, D08110, doi:10.1029/2007JD009286.
    [12]Monica Gdrska, Jordi Vila-Guerau de Arellano, Margaret A. LeMone, and Chiel C. van Heerwaarden. Mean and Flux Horizontal Variability of Virtual Potential Temperature, Moisture, and Carbon Dioxide:Aircraft Observations and LES Study[J]. Monthly Weather Review.2008, Vol.136, Iss.11, pp.4435-4451.
    [13]Ryu, Y., Baldocchi, D. D., Ma, S., and Hehn T. Interannual variability of evapotranspiration and energy exchange over an annual grassland in California[J]. J. Geophys. Res.2008,113, D09104, doi:09110.01029/02007JD009263.
    [14]Liu, H., W. Dong, C. Fu, and L. Shi. The longterm field experiment on aridification and the ordered human activity in semi-arid area at Tongyu, Northeast China[J]. Climatic and Environmental Research.2004,9,352-378. (in Chinese)
    [15]Gao, Z., D. H. Lenschow, Z. He, M. Zhou, L. Wang, Y. Wang, J. He, and J. Shi. Seasonal and diurnal variations in moisture, heat and CO2 fluxes over a typical steppe prairie in Inner Mongolia, China[J]. Hydrol. Earth Syst. Sci. Discuss.2009.
    [16]Li, Y. J., L. Zhou., Z. Z. Xu., and G. S. Zhou 2009. Comparison of water vapour, heat and energy exchanges over agricultural and wetland ecosystems[J]. Hydrol. Process.2009,23, 2069-2080 DOI:10.1002/hyp.7339
    [1]Xie J., J. Huang, G. Wang, K. Higuchi, J. Bi, Y. Sun, H. Yu, and T. Wang. The effects of clouds and aerosols on net ecosystem CO2 exchange over semi-arid Loess Plateau of Northwest China[J]. Atmos. Chem. Phys.2010,10,8205-8218.
    [2]马柱国,符淙斌.20世纪下半叶全球干旱化的事实及其与大尺度背景的联系[J].中国科学D辑:地球科学.2007,第37卷,第2期:222~233.
    [3]Huang J., X. Guan, and F. Ji. Enhanced cold-season warming in semi-arid regions[J]. Atmos. Chem. Phys.2012,12,5391-5398,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700