小麦族披碱草属、鹅观草属六倍体物种分子系统学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦族(Triticeae Dumort.)是禾本科(Poaceae)植物中十分重要的一个类群,它不仅包括有重要的粮食作物,还包括许多具有重要经济和生态价值的牧草资源。这其中披碱草属(Elymus L.)和鹅观草属(Roegneria C. Koch)是小麦族中两个重要的多年生属。披碱草属和鹅观草属的种属界限和系统关系一直存在争议,其生物系统学也是禾草学家长期研究的热点。目前的相关研究主要集中在披碱草属和鹅观草属四倍体物种中,但对于形态变异较大、分类争议较多的六倍体物种间的系统关系研究却少有报道。
     本论文广泛收集了来自世界范围的26个披碱草属、鹅观草属六倍体物种及相关基因组二倍体和四倍体材料展开了六倍体物种的分子系统学研究。论文分别采用分子标记(SSR、AFLP标记)、核糖体DNA序列(ITS)、叶绿体序列(trnL-F)及核单拷贝基因序列(DMC1)研究该类群六倍体物种的分子系统学关系,目的在于揭示披碱草属、鹅观草属六倍体物种的遗传变异和种间亲缘关系,探讨六倍体物种的系统进化关系及St、H、Y基因组的遗传分化。主要研究结果如下:
     1.选用了来自小麦族5个属的230个SSR和EST-SSR标记对小麦族St、H、Y基因组的23个物种进行了通用性分析。结果表明:(1)在筛选的230个标记中,163个(70.87%)SSR和EST-SSR标记能在所有的供试物种中扩增出清晰的条带,在St、 H、Y基因组物种中表现出了较高的通用性;(2)在扩增出的163个标记中,EST-SSR(87.6%)比基因组SSR(49.5%)标记在种属间表现出了较高的通用性,而基因组SSR标记(86%)则比EST-SSR (79.8%)标记表现出更高的多态性;(3)基于Dice遗传相似系数的UPGMA聚类结果与供试物种的基因组之间表现出了较高的相关性,相同或相似基因组物种间表现出较近的亲缘关系。
     2.采用27个高通用性的SSR标记对80份披碱草属、鹅观草属及其近缘属材料其中包括47个披碱草属、鹅观草属六倍体物种进行种间系统关系研究。结果表明:(1)27个SSR标记在供试材料中共扩增出234条带,基于Dice遗传相似系数,供试材料的遗传相似系数变化为0.286-0.981,平均值为0.599,其中披碱草属、鹅观草属六倍体物种之间的变化为0.479-0.981,平均值为0.670,供试材料间表现出了丰富的遗传变异;(3)基于Dice遗传相似系数的UPGMA聚类分析结果表明相同或者相似基因组物种能聚在一起,其中H基因组二倍体物种与供试材料间的亲缘关系较远;
     (4)具有StHY基因组的物种表现出了明显的分化,聚类分析将其明显的分为3类,即E. dahuricus类、E. nutans类及R. kamoji类,这种分化与其形态学特征间表现了高度的一致。
     3.采用AFLP标记对80份披碱草属、鹅观草属及近缘属材料进行种间系统关系研究。结果表明:(1)4对高多态的引物组合共扩增出214条带,其中多态性条带比率为99.1%,在披碱草属、鹅观草属六倍体物种共扩增出199条带,其中多态性条带比率为94.5%;(2)基于Dice遗传相似系数,供试物种间遗传相似系数变化为0.215-0.964,平均值为0.605,披碱草属、鹅观草属六倍体物种中变化为0.391-0.982,平均值为0.626;(3)基于Dice系数的UPGMA聚类分析同样与其物种的基因组间表现出一定的相关性,同时也揭示了StHY基因组物种间的明显分化;(4) AFLP标记与SSR标记在本研究中均得到了相似的研究结果,表现出了较高的相关性(r=0.734, p=0.024), AFLP标记在本研究中表现出比SSR标记更高的标记效率。
     4.采用ITS序列对43个披碱草属、鹅观草属六倍体及相关St、H基因组二倍体和四倍体物种进行了种间关系及系统进化关系分析。结果表明:(1)26个六倍体物种分离得到不同类型的ITS序列40条,披碱草属、鹅观草属六倍体物种不同类型的ITS序列之间协同进化不完全,并呈现出偏向St类型的进化趋势;(2)系统发育分析表明St基因组与H基因组之间的关系较远:(3)StHY基因组物种间存在分化,可能与其不同的系统演化途径及不同的亲本来源有关。
     5.采用叶绿体trnL-F序列对50个披碱草属、鹅观草属六倍体及相关二倍体和四倍体物种进行系统进化分析。结果表明:(1)供试的披碱草属、鹅观草属六倍体物种的母本供体基因组均来自于拟鹅观草属的St基因组;(2)拟鹅观草属二倍体物种间存在分化,不同的St基因组物种参与了披碱草属、鹅观草属六倍体物种的形成。
     6.采用核单拷贝基因DMC1序列对40个披碱草属、鹅观草属六倍体及相关二倍体物种进行系统发育分析。结果表明:(1)26个六倍体物种分离得到不同拷贝的61条DMC1序列,包括25条St拷贝类型、20条Y拷贝类型以及16条H拷贝类型;(2)六倍体物种的St、H、Y基因组之间存在明显的分化,DMC1基因序列的H拷贝类型的变异最大;(3)六倍体物种中St、H拷贝类型序列的多态性均明显小于相关二倍体物种,这可能表明少数几个St及H基因组二倍体物种参与了六倍体物种的形成;(4)进一步揭示了StHY等基因组物种间的分化。
The Triticeae is a very important goup in Poaceae, which not only includes some important cereal crops, but also cmparises many forage grasses with high values in economy and ecology. The Elymus L. and Roegneria C. Koch are two important perennial genera in Triticeae, which also include many excellent cultivated forage grasses and the special gene pool for genetic breeding and improvement of crops and forages. However, there is a controversy in circumscription of related species and genera and phylogenetic raltionships between these two genera, which is also a hotpot for grass taxomomists. Although, there had been reported many studies about phylogenetic relationships and species circumscription in tetraploid species with StH and StY genome constitution, there is few studies inferred to hexaploid species with the large variation in morphology and taxonomy controversy.
     A total of26hexaploid species from Elymus and Roegneria, as well as the related tetraploid and diploid species were widely collected from worldwide. The molecular marker including SSR and AFLP, sequence of ITS, trnL-F and low copy gene DMC1were applied for their molecular phylogeny, which could reveal the relationships among the hexaploid species, disscuss the relationships among the St, H, Y genome and detect the related differentiation. The main results were as follows:
     1. A total of230SSR and EST-SSR markers from5different genera were used to study the transferability to species with St, H, Y genome. Among the230SSR markers,163(70.87%) marker could generate the clear bands, which showed a high transferability for the selective markers. The EST-SSR marker (87.6%) showed a higher transferability than genomic SSR (49.5%), the genomic SSR (86%) also showed a higher polymorphism than EST-SSR (79.8%). The results of cluster showed a related relationship with the genome consititution of the species, the species with same or similar genome could be groups together.
     2. A total of80materials including47hexaploid species from Elymus and Roegneria were selected to study the phylogenetic relationships using the27high transferability SSR markers. The Dice genetic similarities ranged from0.286-0.981with mean of0.599. Among the hexaploid species, the GS coefficients ranged from0.479-0.981. A high level of genetic diversity had been revealed among the materials. The results of cluster showed that the species with same or similar genome could be grouped together. Then, three different variation types had also been revealed among the species with StHY genome, which also was consistent to the morphology.
     3. A total of80materials including47hexaploid species from Elymus and Roegneria were also selected to study the phylogenetic relationship using AFLP markers. The Dice genetic similarities ranged from0.215-0.964with mean of0.605. Among the hexaploid species, a total of199bands with94.5%polymorphism were also generated, the GS coefficients ranged from0.391-0.982with an average of0.626. A high level of genetic diversityand genetic divergence had also been revealed among the hexaploid species. The results of AFLP waere agree with the SSR. The AFLP showed a higher analysis efficiency than SSR, which also showed a high related with SSR markers (r=0.734, p=0.024).
     4. The ITS sequence from43species including26hexploid species from Elymus and Roegneria were used to study the phylogenetic relationships among these materials. A total of40ITS sequences were selected for26hexaploid species. It showed an incomplete converted evolution and St bias pattern of ITS sequence among the hexaploid species. The related far relationship was revealed between St and H genome. The genome differentiation of StHY species was detected and maybe related with the different complex evolution and speciation pattern.
     5. The chloroplast trnL-F sequence from50species with St. H. Y genome were used to study the phylogenetic relationships among the materials. The results showed that the St genome from Pseudoroegneria was the female parent for all the hexaploid species of Elymus and Roegneria. Then, a significant genome differentiation had alao been revealed, which also indicated that different species with St genome involved inthe speciation of hexaploid species.
     6. The sequences of low-copy gene DMC1from40speices with St, H, Y genome were applied for elaborating the phylogenetic relationships among the materials. The results showed that a total of61sequences were gained for26hexaploid species, which included25St-copy,20Y-copy,16H-copy. A significant differentiation of St, H, Y genome were also detected, of which H-copy sequences showed the largest variation. Then, the sequences of St and H-copy from hexaploid speices showed a lower variation than relative sequences in diploid speices, which showed that a few donor species from Pseudoroegneria and Hordeum might be involved the formation of hexaploid species. The low-copy nuclear gene also demonstrated the divergence among the species with different genome constitution, such as the different types of hexaploid species with StHY.
引文
1. Agafonov AV, Baum BR, Bakley LG, et al.2001. Differentiation in the Elymus dahuricus complex (Poaceae):evidence from grain proteins, DNA, and crossability. Hereditas,135: 277-289.
    2. Alvarez I, Wendel JF.2003. Ribosomal ITS sequences and plant phylogenetic inference. Molecular Phylogenetics and Evolution,29:417-434.
    3. Archak S, Gaikwad A B, Gautam D, et al.2003. Comparative assessment of DNA fingerprinting techniques (RAPD, ISSR and AFLP) for genetic analysis of cashew (Anacardium occidentale L.) accessions of India. Genome,46:362-369.
    4. Bandelt HJ, Forster P, Rohl A.1999. Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution,16:37-48.
    5. Baldwin BG, Sanderson MJ, Porter JM, et al.1995. The ITS region of nuclear ribosomal DNA: A valuable source of evidence on angiosperm phylogeny. Annals of the Missouri Botanical Garden,82:247-277.
    6. Baum BR, Bailey LG, Johnson DA, et al.2003. Molecular diversity of the 5S rDNA units in the Elymus dahuricus complex (Poaceae:Triticeae) supports the genomic constitution of St, Y, and H haplomes. Canadian Journal of Botany 81,1091-103.
    7. Baum BR, Yang JL, Yen C, et al.2011. A taxonomic synopsis of the genus Campeiostachys Drobov. Journal of Systematics and Evolution,42(9):146-159.
    8. Baum BR, Yen C, Yang JL.1991. Roegneria:its generic limits and justification for its recognition. Canadian Journal of Botany,69:282-294.
    9. Bentham G.1881. Notes on Gramineae. Botanical Journal of the Linnean Society,18:14-134.
    10. Blattner FR.2004. Phylogenetic analysis of Hordeum (Poaceae) as inferred by nuclear rDNA ITS sequences. Molecular Phylogenetics and Evolution,33(2):289-299.
    11. Bothmer von R, Jacobsen N, Baden C, et al.1991. An ecogeographical study of the genus Hordeum. Systematic and Ecogeographical studies on crop genepools 7:IBPGR, Rome,127.
    12. Bushman BS, Larson SR, Mott IW, et al.2008. Development and annotation of perennial Triticeae ESTs and SSR markers. Genome,51:779-788.
    13. Cassens I, Mardulyn P, Milinkovitch MC.2005. Evaluating intraspecific'network' construction methods using simulated sequence data:Do existing algorithms outperform the global maximum parsimony approach? Systematic Biology,54:363-372.
    14. Castillo A, Budak H, Varshney R, et al.2008. Transferability and polymorphism of barley EST-SSR markers used for phylogenetic analysis in Hordeum chilense. BMC Plant Biology,8: 97.
    15. Che YH, Li HJ, Yang YP, et al.2008. On the use of SSR markers for the genetic characterization of the Agropyron cristatum (L.) Gaertn. in Northern China. Genetic Resources and Crop Evolution,55(3):389-396.
    16. Chen SL, Zhu GG.2006. Elymus. In:Wu ZY, Raven PH eds. Flora of China. Beijing:Science Press; St. Louis:Missouri Botanical Garden Press.22:400-429.
    17. Clegg MT, Gaut BS, Learn GH, et al.1994. Rates and patterns of chloroplast DNA evolution. Proceedings of the National Academy of Sciences USA,91:6795-6801.
    18. Corriveau JL, Coleman AW.1988. Rapid screening method to detect potential biparental inheritance of plastid DNA and results for over 200 angiosperm species. American Journal of Botany,75:1443-1458.
    19. Dewey DR.1984. The genomic system of classification. A guide to intergeneric hybridization with the perennial Triticeae. In:Gustafson JP (Ed.), Gene manipulation in Plant Improvement. 16th Stadler Genetics Symposium. New York:Plenum Publishing Corp,209-280.
    20. Dewey DR.1971. Synthetic hybrids of Hordeum bogdanii with Elymus canadensis and Sitanionhystrix. American Journal Botany,58:902-908.
    21. Dewey DR.1972. The origin of Agropyron leptourum [= Elymus transhyrcanus (Nevski) Tzvelev]. American Journal of Botany,59:836-842.
    22. Dou QW, Zhang TL, Tsujimoto H.2011. Physical mapping of repetitive sequences and genomg analysis in six Elymus species by in situ hybridization. Journal of Systematics and Evolution.49(4):347-352
    23. Drobov VP.1941. Campeiostachys. In:Schroeder RR ed. Flora Uzbekistana 1:300,301,540.
    24. Dubcovsky J, Schlatter AR, Echaide M.1997. Genome analysis of South American Elymus (Triticeae) and Leymus (Triticeae) species based on variation in repeated nucleotide sequences. Genome,40(4):505-520.
    25. Ellis JR, Burke JM.2007. EST-SSRs as a resource for population genetic analyses. Heredity, 99:125-132.
    26. Eujayl I, Sledge MK, Wang L, et al.2004. Medicago truncatula EST-SSRs reveal cross-species genetic markers for Medicago spp. Theoretical and Applied Genetics,108:414-422.
    27. Eufayl I, Sorrells ME, Baum M, et al.2002. Isolation of EST-derived microsatellite markers for genotyping the A and B genome of wheat. Theoretical and Applied Genetics,104: 399-407.
    28. Fahleson J, Okori P, Akerblom-Espeby L, et al.2008. Genetic variability and genomic divergence of Elymus repens and related species. Plant Systematics and Evolution,271: 143-156.
    29. Fu YB, Williams DJ.2008. AFLP variation in 25 Avena species. Theoretical and Applied Genetics,117(3):333-342.
    30. Gao LF, Gao L, Tang J, et al.2003. Analysis of microsatellites in major crops assessed by computational and experimental approaches. Molecular Breeding,12:245-261
    31. Ge S, Sang T, Lu BR, et al.1999. Phylogeny and subfamilial classification of the grasses (Poaceae). Annals of the Missouri Botanical Garden,88:373-457.
    32. Gil-Vega K, Diaz C, Nava-Cedillo A, et al.2006. AFLP analysis of Agave tequilana varieties. Plant Science,170:904-909.
    33. Godt MJW, Johnson BR, Hamrick JL.1996. Genetic diversity and population size in four rare southern Appalachian plant species. Conservation Biology,10:796-805.
    34. Guo WZ, Wang W, Zhou BL, et al. Cross-species transferability of G. arboretum-derived EST-SSRs in the diploid species of Gossypium. Theoretical and Applied Genetics,112: 1573-1581.
    35. Gupta PK, Varshney RK.2000. The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica,113:163-185.
    36. Gupta PK, Rustgi S, Sharma S, et al.2003. Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Molecular Genetics and Genomics, 270:315-323.
    37. Gwo JC, Hsu TH, Lin KH, et al.2008. Genetic relationship among four subspecies of cherry salmon (Oncorhynchus mason) inferred using AFLP. Molecular phylogenetics and evolution, 48:776-781.
    38. Hackel E.1896. The true grasses (Gramineae). (Translated by Lamson-Scribner F and Southworth E A). London,176-177.
    39. Hamby RK, Zimmer EA.1992. Ribosomal R"NA as a phylogenetic tool in plant systematics. In: Soltis PS, Soltis DE, Doyle JJ (eds), Molecular Systematics of Plants. New York:Chapman and Hall,50-91.
    40. Han ZG Guo WZ, Song XL, et al.2004. Genetic mapping of EST-derived microsatellites from the diploid Gossypium arboreum in allotetraploid cotton. Molecular Genetics and Genomics, 272:308-327.
    41. Haston MS, Lewis GP, Hawkins JA.2005. A phylogenetic reappraisal of the Peltophorum group (Caesalpinieae:Leguminosae) based on the chloroplast trnL-F, rbcL and rpsl6 sequence data. American Journal of Botany,92(8):1359-1371.
    42. Hernandez P, Laurie DA, Martin A, et al. Utility of barley and wheat simple sequence repeat (SSR) markers for genetic analysis of Hordeum chilense and tritordeum. Theoretical and Applied Genetics,104:735-739.
    43. Hitchcock AS.1951. Tribe 3. Hordeae. Manual of grasses of the United States.2nd revised by Chase A, Government Printing Office, United States, Washington DC,230-280.
    44. Holton T, Christopher J, McClure L, et al.2002. Identification and mapping of polymorphic SSR markers from expressed gene sequences of barley and wheat. Molecular breeding,9(2): 63-71.
    45. Hsiao C, Chatterton NJ, Asay KH, et al.1995. Phylogenetic relationships of the monogenomic species of the wheat tribe, Triticeae (Poaceae), inferred from nuclear rDNA (internal transcribed spacer) sequences. Genome,38:221-223.
    46. Jensen KB.1990. Cytology and taxonomy of E. grandiglumis, E. alatavicus and E. batalinii (Poaceae:Triticeae). Genome,33:668-673.
    47. Jensen KB, Asay KH.1996. Cytology and morphology of Elymus hoffmanni (Poaceae: Triticeae):a new species from the Erzurum Province of Turkey. International Journal of Plant Sciences,157:750-758
    48. Jiang JM, Friebe B, Gill BS.1994. Recent advances in alien gene transfer in wheat. Euphytica, 73:199-212.
    49. Johnson LA, Soltis DE.1995. Phylogenetic inference in Saxifragaceae sensu stricto and Gila (Polemoniaceae) using matK sequences. Annals of the Missouri Botanical Garden,82: 149-175.
    50. Khlestkina E, Than MHM, Pestsova EG, et al.2004. Mapping of 99 new microsatellite-derived loci in rye (Secale cereale L.) including 39 expressed sequence tags. Theoretical and Applied Genetics,109:725-732.
    51. Kihara H, Nishiyama I.1930. Genomanalyse bei Triticum und Aegilops. I. Genomaffini-taten tri-, tetra-und pentaploiden Weizenbastarden. Cytologia,1:270-284.
    52. Kihara H.1975. Interspecific relationship in Triticum and Aegilops. Seiken Zih,15:1-12.
    53. Kilian B, Ozkan H, Deusch O, et al.2007. Independent wheat B and G genome origins in outcrossing Aegilops progenitor haplotypes. Molecular Biology and Evolution,24:217-227.
    54. Leigh F, Lea V, Law J, et al.2003. Assessment of EST-and genomic microsatellite markers for variety discrimination and genetic diversity studies in wheat. Euphytica,133:359-366.
    55. Lewis M, Martinez A, Dubcovsky J.1996. Karyotype Variation in South American Elymus (Triticeae). International Journal of Plant Sciences,157,1:142-150.
    56. Linnaeus C.1753. Species Plantarum. Facsimile edition.
    57. Liu QL, Ge S, Tang H, et al.2006. Phylogenetic relationships in Elymus (Poaceae:Triticeae) based on the nuclear ribosomal transcribed spacer and chloroplast trnL-F sequences. New Phytologist,170:411-420.
    58. Liu ZP, Chen ZY, Pan J, et al.2008. Phylogenetic relationships in Leymus (Poaceae:Triticeae) revealed by the nuclear ribosomal internal transcribed spacer and chloroplast trnL-F sequences. Molecular Phylogenetics and Evolution,46:278-289.
    59. Liu ZW, Biyashev RM, Saghai-Maroof MA.1996. Development of simple sequence repeat DNA markers and their integration into a barley linkage map. Theoretical and Applied Genetics,93:869-876.
    60. Love A.1984. Conspectus of the Triticeae. Feddes Report,95:425-521.
    61. Love A.1982. Generic evolution of the wheatgrass. Biologische Zentralblatt,101(1):199-212.
    62. Lu BR, Salomon B.1992. Differentiation of the StY genomes in Asiatic Elymus. Hereditas, 116(1):121-126.
    63. Lu BR, Bothmer von R.1992. Interspecific hybridization between Elymus himalayanus and E. schrenkianus, and other Elymus species (Triticeae:Poaceae). Genome,35:230-237.
    64. Lu BR, Jensen KB, Salomon B.1993a. Biosystematic study of hexaploids Elymus tschimganicus and E. glaucissimus. II. Interspecific hybridization and genomic relationship. Genome,36:1157-1168.
    65. Lu BR.1993. Biosytematic investigations of Asiatic wheatgrasses Elymus L. (Triticeae: Poaceae). The Swedish University Agricultural Science, Svalov, Sweden.
    66. Lu BR.1994. The genus Elymus L. in Asia, Taxonomy and biosystematics with special reference to genomic relationships. In:Wang RRC, Jensen KB, Jaussi C (eds.). Proceedings of the 2nd International Triticeae Symposium. Logan Utah, USA,219-233.
    67. Lu BR, Liu QL.2005. The possible origin of the "StY" genome Elymus:a new mechanism of allopolyploidy in plants. Czech Journal of Genetics and Plant Breeding,41:58.
    68. Lu BR, Bothemer von R.1993. Meiotic analysis of Elymus caucasicus, E. longearistatus and their interspecific hybrids with twenty-three Elymus species:Triticeae (Poaceae). Plant Systematics and Evolution,185(1):35-53.
    69. MacRitchie D, Sun G.2004. Evaluating the potential of barley and wheat microsatellite markers or genetic analysis of Elymus trachycaulus complex species. Theoretical and Applied Genetics,108:720-724.
    70. Mahelka V, Kopecky D.2010. Gene capture from across the grass family in the allohexaploid Elymus repens (L.) Gould (Poaceae, Triticeae) as evidenced by ITS, GBSSI, and molecular cytogenetics. Molecular Biology and Evolution,27(6):1370-1390.
    71. Mason-Gamer RJ, Kellogg EA.1996. Chloroplast DNA analysis of the monogenomic Triticeae:phylogenetic implications and genome-specific markers. In:Jauhar PP (ed), Methods of Genome Analysis in Plants. Boca Raton:CRC Press, FLA,310-325.
    72. Mason-Gamer RJ, Orme NL, Anderson CM.2002. Phylogenetic analysis of North American Elymus and the monogenomic Triticeae (Poaceae) using three chloroplast DNA data sets. Genome,45:991-1002.
    73. Mason-Gamer RJ, Burns MM, Naum M.2010. Phylogenetic relationships and reticulation among Asian Elymus (Poaceae) allotetraploids:Analysis of three nuclear gene trees. Molecular Phylogenetics and Evolution,54:10-22.
    74. Mason-Gamer RJ.2001. Origin of North America Elymus (Poaceae:Triticeae) allotetraploids based of granule bound starch synthase gene sequences. Systemaic Botany,26:757-758.
    75. Mason-Gamer RJ.2008. Allohexaploidy, introgression, and the complex phylogenetic history of Elymus repens (Poaceae). Molecular Phylogenetics and Evolution,47:598-611.
    76. McMillan E, Sun GL.2004. Genetic relationships of tetraploid Elymus species and their genomic donor species inferred from polymerase chain reaction restriction length polymorphism analysis of chloroplast gene regions. Theoretical Applied Genetics,108: 535-542.
    77. Meguire PE. Dvorak J.1981. High salt tolerance potential in wheat grasses. Crop Science,21: 102-105.
    78. Morgante M, Olivieri AM.1993. PCR-amplified microsatellites as markers in plant genetics. Plant Journal,3:175-182.
    79. Mott IW, Larson SR, Jones TA, et al.2011. A molecular genetic linkage map identifying the St and H subgenomes of Elymus (Poaceae:Triticeae) wheatgrass. Genome,54:819-828.
    80. Nei M, Li W.1979. A mathematical model for studying genetic variation in the terms of restriction endonucleases. Proceedings of the National Academy of Sciences. USA,17: 5269-5273.
    81. Nevo E, Apelbaum-Elkaher 1, Garty J, et al.1997. Natural selection causes microscale allozyme diversity in wild barley and a lichen at'Evolution Caryon'Mt. Carmel, Israel. Heredity,78:373-382.
    82. Nevski SA.1933. Uber das system der tribe Hordeae Benth. Flora et Systematica Plantae vasculares. Ser.1, Fasc.1, Leningrad,9-32.
    83. Nevski SA.1934. Tribe XIV Hordeae Benth. In:Komarov VL, Roshevits RY, Shishkin BK. (Eds.) Flora USSR II. Leningrad,590-728.
    84. "Newton KJ.1988. Plant mitochondrial genomes:Organization, expression and variation. Annual Review of Plant Physiology and plant Molecular Biology,39:503-532.
    85. Okito P, Mott IW, Wu Y, et al.2009. A Y genome specific STS marker in Pseudoroegneria and Elymus species (Triticeae:Poaceae). Genome,52:391-400.
    86. Peng JH, Lapitan NLV. Characterization of EST-derived microsatellites in the wheat genome and development of eSSR markers. Functional and Integrative Genomics,5(2):80-96.
    87. Petersen G, Seberg O.2002. Molecular evolution and phylogenetic application of DMC1. Molecular Phylogenetics and Evolution,22:43-50.
    88. Petersen G, Seberg O, Salomon B.2011. The origin of the H, St, W, and Y genomes in allotetraploid species of Elymus L. and Stenostachys Turcz. (Poaceae:Triticeae). Plant Systematics and Evolution,291:197-210.
    89. Posada D, Crandall KA.2001. Intraspecific gene genealogies:trees grafting into network. Trends in Ecology and Evolution,16:37-45.
    90. Powell W, Morgante M, Andre C, et al.1996. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) marker for germplasm analysis. Molecular Breeding,2:22-230.
    91. Ramsay L, Macaulay M, Ivanissevich S, et al.2000. A simple sequence repeat-based linkage map of barley. Genetics,156:1997-2005.
    92. Redinbaugh MG, Jones TA, Zhang Y.2000. Ubiquity of the St chloroplast genome in St-containing Triticeae polyploids. Genome,43:846-852.
    93. Roder MS, Korzun V, Wendehake K, et al.1998. A microsatellite map of wheat. Genetics,149: 2007-2023.
    94. Rohlf FJ.2000. NTSYSpc:Numerical Taxonomy and Multivariate Analysis System, Version 2.1 Exeter Software. Applied Biostatics Inc, New York.
    95. Rudd S.2003. Expressed sequence tags:alternative or complement to whole genome sequences? Trends in Plant Science,8:321-329.
    96. Runcmark H, Henneen WK.1968. Elymus and Agropyron, a problem of genetic delimitation. Botaniska Notiser,21:51-79.
    97. Saha S, Karaca M, Jenkins JN, et al.2003. Simple sequence repeats as useful resources to study transcribed genes of cotton. Euphytica,130:355-364.
    98. Saha MC, Rouf Mian MA, Eujayl I, et al.2004. Tall fescue EST-SSR markers with transferability across several grass species. Theoretical Applied Genetics,109:783-791.
    99. Sang T.2002. Utility of low-copy nuclear gene sequences in plant phylogenetics. Critical Reviews in Biochemistry and Molecular Biology,37(3):121-147.
    100. Sang T, Crawford D J, Stuessy T.1997. Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). American Journal of Botany,84:1120-1136.
    101. Sasanuma T, Endo TR, Ban T.2002. Genetic diversity of three Elymus species indigenous to Japan and East Asia (E. tsukushiensis, E. humidus and E. dahuricus) detected by AFLP. Genes and Genetic Systems,77:429-438.
    102. Segovia-Lerma A, Cantrell RG, Conway JM, et al.2003. AFLP-based assessment of genetic diversity among nine alfalfa germplasms using bulk DNA templates. Genome,46:51-58.
    103.Sensi E, Vignani R, Scali M, et al.2003. DNA fingerprinting and genetic relatedness among cultivated varieties of Olea europaea L. estimated by AFLP analysis Scientia Horticulturae,97: 379-388.
    104.Sha LN, Fan X, Yang RW, et al.2010. Phylogenetic relationships between Hystrix and its closely related genera (Triticeae; Poaceae) based on nuclear Accl, DMC1 and chloroplast trnL-F sequences. Molecular Phylogenetics and Evolution,54:327-335.
    105.Sharma HC, Gill BS, Uyemoto JK.1984. High level of resistance in Agropyron species to barley yellow dwarf and wheat streak mosaic viruses. Theoretical Applied Genetics,77: 369-374.
    106. Small RL, Wendel JF.2000. Phylogeny, duplication, and intraspecific variation of Adh sequences in New World diploid cottons (Gossypium L., Malvaceae). Molecular Phylogenetics and Evolution,16:73-84.
    107. Small RL, Ryburn JA, Cronn RC, et al.1998. The tortoise and the hare. Choosing between noncoding plastome and nuclear Adh sequences for phylogeny reconstruction in a recently diverged plant group. American Journal of Botany,85(9):1301-1315.
    108. Soltis PS, Soltis DE.1993. Molecular data and the dynamic nature of polyploidy. Critical Reviews in Plant Sciences,12:243-273.
    109. Soltis DE, Soltis PS, Tate JA.2003. Advances in the study of polyploidy since Plant speciation. New Phytologist,161:173-191.
    110. Sun GL, Salomon B, Bothmer von R.1998a. Characterization and analysis of microsatellite loci in Elymus caninus (Triticeae:Poaceae). Theoretical Applied Genetics,96:676-682.
    111.Sun GL, Salomon B, Bothmer von R.1998b. Characterization of microsatellite loci from Elymus alaskanus and length polymorphism in several Elymus species (Triticeae:Poaceae). Genome,41:455-463.
    112. Sun GL, Shee J, Salomon B.2006. Molecular diversity and relationships among Elymus trachycaulus, E. subsecundus, E. virescens, E. violaceus, and E. hyperarcticus (Poaceae: Triticeae) as determined by amplified fragment length polymorphism. Genome,49:1160-1169.
    113. Sun GL, Komatsuda T.2010. Origin of the Y genome in Elymus and its relationship to other genomes in Triticeae based on evidence from elongation factor G (EF-G) gene sequences. Molecular Phylogenetics and Evolution,56:727-733.
    114. Sun GL, Ni Y, Tracy D.2008. Molecular phylogeny of RPB2 gene reveals multiple origin, geographic differentiation of H genome, and the relationship of the Y genome to other genomes in Elymus species. Molecular Phylogenetics and Evolution,46:897-907.
    115. Sun GL, Salomon B, Bothmer von R.1997. Analysis of tetraploid Elymus species using wheat microsatellite markers and RAPD markers. Genome,40:806-814.
    116. Sun DF, Sun GL.2012. Untangling nucleotide diversity and evolution of the H genome in polyploidy Hordeum and Elymus species based on the single copy of nuclear gene DMC1. PLoS ONE,7(12):e50369.
    117. Sun GL, Zhang XD.2011. Origin of the H genome in StH-genomic Elymus species based on the single-copy nuclear gene DMC1. Genome,54:655-662.
    118.Swofford DL.2003. PAUP*:Phylogenetic analysis using parsimony (*and other method) Version 4.0b10.Sinauer Associates, Sunderland, Massachusetts, USA.
    119. Svitashev S, Salomon B, Bryngelsson T, et al.1996. A study of 28 Elymus species using repetitive DNA sequences. Genome,39:1093-1101.
    120.Taberlet P, Gelly L, Pautou G.1991. Universal primers for amplication of three non-coding regions of chloroplast DNA. Plant Molecular Biology,17:1105-1109.
    121.Tamura K, Peterson D, Peterson N, et al.2011. MEGA5:Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution,28(10):2731-2739.
    122.Thompson JD, Higgins DG, Gibson TJ.1994. CLUSTAL W:improving the sensitivity of progressive multiple sequence alignment through sequence weighting positions-specific gap penalties and weight matrix choice. Nucleic Acids Research,22:4673-4680.
    123.Varshney RK, Graner A, Sorrells ME.2005. Genie microsatellite markers in plants:features and applications. Trends in Biotechnology,23:48-55.
    124. Vilatersana R, Brysting AK, Brochmann C.2007. Molecular evidence for hybrid origins of the invasive polyploids Carthamus creticus and C. tukestanicus (Cardueae, A steraceae). Molecular Phylogenetics and Evolution,44:610-621.
    125.Vos P, Hogers R, Bleeker M, et al.1995. AFLP:A new technique for DNA fingerprinting. Nucleic Acids Research,23(21):4407-4414.
    126. Wan YF, Yen C, Yang JL, et al.1997. The diversity of resources resistant to scab in Triticeae (Poaceae). Wheat information Service,84:7-12.
    127. Wang RRC, Bothmer von R, Dvorak J, et al.1994. Genome symbols in the Triticeae. In:Wang RRC, Jensen KB, Jaussi C (Eds.), Proceeding of the 2nd International Triticeae Symposium. Logan Utah, USA,29-34.
    128. Wendel JF.2000. Genome evolution in polyploids. Plant Molecular Biology,42:225-249.
    129.Wendel JF, Schnable A, Seelanan T.1995. Bi-direction interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proceedings of the National Academy of Sciences, USA,92:280-284.
    130. Wendel JF, Doyle JJ.1998. Phylogenetic incongruence:window into genome history and molecular evolution. In:Soltis DE, Soltis PS, Doyle JJ (eds). Molecular Systematics of Plants Ⅱ:DNA Sequencing. Dordrecht, the Netherlands:Kluwer,265-296.
    131. Wolfe K H, Li WH, Sharp P M.1987. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proceedings of the National Academy of Sciences, USA,84:9054-9058.
    132.Xu DH, Ban T.2004. Phylogenetic and evolutionary relationships between Elymus humidus and other Elymus species based on sequencing of non-coding regions of cpDNA and AFLP of nuclear DNA. Theoretical Applied Genetics,108:1443-1448.
    133. Xu YB.2010. Molecular plant breeding. CABI Publishing, Oxfordshire, UK.
    134.Yan XB, Guo YX., Liu FY, et al.2010. Population structure affected by excess gene flow in self-pollinating Elymus nutans and E. burchan-buddae (Triticeae:Poaceae). Population Ecology,52:233-241.
    135. Yap IV, Nelson RJ.1996. Winboot:a program for performing bootstrap analysis of binary data to determine the confidence limits of UPGMA-based dendrograms. In International Rice Research Institute, Philippines.
    136. Yen C, Yang JL.1990. Kengyilia gobicola, a new taxon from west China. Canadian Journal of Botany,68:1894-1897.
    137. Yen C, Yang JL, Yen Y.2005. Hitoshi Kihara, Askell Love and the modern genetic concept of the genera in the tribe Triticeae (Poaceae). Acta phytotaxonomica Sinica,43(1):82-93.
    138. Yu HQ, Fan X, Zhang C, et al.2008. Phylogenetic relationships of species in Pseudoroegneria (Poaceae:Triticeae) and related genera inferred from nuclear rDNA ITS (internal transcribed spacer) sequences. Biologia,63 (4):498-505.
    139. Zhang C, Fan X, Yu HQ, et al.2009. Phylogenetic relationships among the species of Elymus sensu lato in Triticeae (Poaceae) based on nuclear rDNA ITS sequence. Russian Journal of Genetics,45(6):696-706.
    140. Zhang XQ, Yang JL, Yen C, et al.1999. Cytogenetic analysis of Kengyilia mutica (Keng) J. L. Yang, Yen and Baum (Poaceae:Triticeae). Genetic Resources and Crop Evolution,46: 331-336.
    141.董玉琛.2000.小麦的基因源.麦类作物学报,2000,20(3):78-81.
    142.耿以礼,陈守良.1963.国产鹅观草属Roegneria C. Koch之订正.南京大学学报(生物学),1:1-92.
    143.郭本兆.1987.中国植物志(第9卷3分册).北京:科学出版社,6-15,51-104.
    144.黄燕,张海琴,刘静,等.2009.利用RAPD特异标记分析东北猬草染色体组成.西北植物学报,8:1538-1543.
    145.贾继增.1996.分子标记种质资源鉴定和分子标记育种.中国农业科学,29(4):1-10.
    146.李永干,彭启乾,马鹤林,等.1985.五种国产披碱草属牧草的核型分析.中国草原,3:56-60.
    147.李永祥,李斯深,李立会,等.2005.披碱草属12个物种遗传多样性的ISSR和SSR比较分析.中国农业科学,38(8):1522-1527.
    148.李造哲,云锦凤,于卓.2005.披碱草和野大麦杂种Fl与BC1代细胞遗传学研究.草地学报,13(4):269-273.
    149.刘成,杨足君,刘畅,等.2007.小麦族中含St染色体组物种的特异分了标记的建立.遗传,29(10):1271-1279.
    150.刘玉红.1985.我国11种披碱草的核型研究.武汉植物学研究,3(4):325-330.
    151.刘志鹏,工能飞,赵爱云,等.低拷贝核基因在异源多倍体植物中的进化与表达.遗传,2007,29(2):163-171.
    152.卢宝荣.1997.披碱草属与大麦属系统关系的研究.植物分类学报,35(3):193-207.
    153.卢宝荣.1995.小麦族遗传资源的多样性及其保护.生物多样性,1995,3(2):63-68.
    154.卢宝荣,颜济,杨俊良.1990.分布于日本和中国的鹅观草及其杂种的形态学和细胞学研究.云南植物研究,12(3):1-3.
    155.马艳红,于卓,李小雷.2007.加拿大披碱草×圆柱披碱草杂种F1的生育及细胞遗传学分析.麦类作物学报,27(1):45-48.
    156.马啸,周永红,于海清,等.2006.野生垂穗披碱草种质的醇溶蛋白遗传多样性分析.遗传,28(6):699-706.
    157.魏会廷,李俊,彭正松,等.2008.节节麦DNA指纹关系所揭示的古代中国与西方农业技术交流.自然科学进展,18(9):987-993.
    158.吴嫚等,张晓科,刘伟华,等.2007.冰草属P基因组特异RAPD标记的筛选.西北农业学报,2007,8:1550-1557.
    159.吴晓雷,贺超英,陈受宜,等.2001.用SSR分子标记研究大豆属种间亲缘进化关系.遗传学报,28(4):359-366.
    160.严学兵,工堃,周禾,等.2008.不同来源SSR标记在我国披碱草属植物的通用性和效率评价.草业学报,17(6):112-120.
    161.严学兵,周禾,工堃,等.2009.我国9种披碱草属植物的系统学关系.草业学报,2009,18(3):74-85.
    162.颜济,杨俊良.2011.小麦族生物系统学(第四卷).北京:中国农业出版社.
    163.尤明山,李保云.2003.偃麦草E染色体组特异RAPD和SCAR标记的建立.中国农业大学学报,5:1-6.
    164.于卓,宋永富,李造哲.2002.加拿大披碱草×披碱草杂种F1的生育及细胞遗传学研究.草地学报,10(4):258-264.
    165.张春,凡星,沙莉娜,等.2011.基于叶绿体trnL-F序列对广义披碱草属物种的系统进化研究.草业学报,20(3):162-173.
    166.张海琴.2006.小麦族猬草属植物基因组组成及其分类地位研究.博士论文,四川农业大学.
    167.张新全,杜逸,郑德成,等.1996.湖南稷字和长叶雀稗染色体核型分析.四川草原,2:16-19.
    168.张学勇,李大勇.2000.小麦及其近亲基因组中的DNA重复序列研究进展.中国农业科学,33(5):1-7.
    169.邹喻苹,葛颂,王晓东.2001.系统与进化植物学中的分子标记.北京:科学出版社.
    170.周瑞莲,张普金,徐长林.1995.长期低温作用下垂穗披碱草保护酶活性变化及其牧草生态适应性.草业学报,4(3):30-35.
    171.周永红,郑有良,杨俊良,等.1999a.10种披碱草属植物的RAPD分析及其系统学意义.植物分类学报,37(5):425-432.
    172.周永红,杨俊良,郑有良,等.1999b.用RAPD分子标记探讨鹅观草属的种间关系.植物学报,41(10):1076-1081.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700