方便稀饭的研制及其糊化回生机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题在探讨大米品质特性的基础上,对方便稀饭的加工工艺和方便稀饭复水性、糊化回生机理研究两方面进行了较系统的研究。试验结果表明:
     1.适宜的工艺参数为:将较低直链淀粉含量(<16%)的粳米,用常法水洗后,以0.2%三聚磷酸钠与0.4%葡萄糖酸-δ-内酯混和溶液于室温浸泡1hr,沥水后投入6倍量沸水中煮制5min,再于90℃恒温水浴加热25min。其间向蒸煮米水中添加0.40%CMC、0.40%蔗糖酯和单甘酯混合物(1:1)、0.10%β-环糊精(均以大米量计)。糊化后再次沥水并添加65U果胶酶(55±1℃,PH5±0.1)、5倍量水浸泡处理90min,沥水后迅速用15℃凉水冲洗至米粒表面无粘性,然后以70%乙醇浸渍5s,微波干燥(480W,25min)制成方便稀饭。本产品具有良好的复水性能,成品复水后清淡、爽口、无硬芯,与普通稀饭相似。用物性测试仪对其品质进行鉴定,结果表明以上工艺是可靠可行的。加入成品总量0.02%的大米香精、0.05%的CMC与琼脂(2:1混合)、5%~10%的马铃薯淀粉进行修饰,成品品质进一步得到显著改善。
     2.浸泡处理、酶处理、干燥疗法的不同,直接影响到方便稀饭内部结构,而结构对方便稀饭复水后的吸水均一,复水率,有无回生现象均有很大的影响,它直接影响到方便稀饭的品质、口感等各质量指标,通过SEM观察可为实践研究提供理论依据。
     3.糊化回生是由于糊化淀粉在存放过程中,淀粉分子产生自组现象,形成结晶,粘性下降、分子的柔性减弱、透明度下降、溶液中产生凝聚、相分离现象或沉淀凝胶的硬度上升等。通过用动态流变仪,DSC和物性测试仪对不同原料进行测定分析表明,东北粳稻适合做方便稀饭。淀粉的回生与放置时间成正比,而经过常法糊化后的淀粉产品仍有微弱回生现象发生。β—淀粉酶的适度酶解降低了支链淀粉外侧短链的聚合度,显著抑制直链淀粉的重结晶。
Based on the exploring of quality properties of rice material, the processing of instant rice soup has been studied. The test indicates that:
    1. The suitable processing condition is as follows: Rice of low amylose content ( <16%=, after washing , is soaked in the mixed solution of 0. 2% sodium triphosphate and 0. 4% glucopyrone at room temperature for Ihr. Then it is leached, cooked for 5 min in 6 times boiled water immediately, followed by cooking at 90癈 for 25 min, during which mixture of sucrose fatty acid ester and monoglycerid must be added to the cooking water. When the gelatinization is over , the rice is leached and soaked with 5 times 0.05% pectinase(w%) solution for 90 min, then washed with cool water(15癈) immediately until the surface of grain is not sticky. After soaking the grain in 70% ethanol solution for 5 sec. and drying it by microwave oven (450W, 25min), we get the instant rice soup .which possesses good remoistening property and has no rigid core, with insipid and refreshing taste similar to the common rice soup. The test of quality of the product by TA proves that the above process is reasonable and feasible.
    The quality of the product can be markedly improved by being modified with addition of 0. 2% (on the basis of total weight) rice essence, 0. 05% mix of CMC and agar(2:l), and 5~10% potato starch.
    2. The difference of the methods for soaking, enzyme treating and drying affects directly the internal structure of the instant rice soup product, which has great effect on even water-adsorbing, remoistening rate and the occurance of retrogradation that influence such quality index as mouthfeel and quality of instant rice soup.The results from SEM observation can provide theoretical supports for pratical study.
    3. The occurance of retrogradation is due to the self - organizing phenomenon of starch molecules and resulting in crystal formation during storage of gelatinized starch, which causes the reduction of viscosity and transparency, droping of the molecular flexibitity, coagulating of
    
    
    solution and phase-seperating or increasing of the hardness of the precipated gel. Analysis of different rice material hy dynamic rheometer, DSC and TA indicates that: the northeast japonica rice is suitable for instant rice soup making; starch retrogradation is proportional to the time and slight retrogradation can still take place in the starch product prepared by common gelatinizing processing.The re-crystallization of amylopectin could be Inhibited effectively by enzyme trealment such as beta-amylase.
引文
1.中国食品工业协会.中国食协确定今年重点发展的六类食品.中国食品工业,1995(5):16
    2.刘恰.第二届中日食品新技术研讨会侧记.CF(4)APR 2000:10~12
    3.宋东晓.大米的特殊营养价值与即食方便米饭的加工.西部粮油科技,1998(23)4:46~51
    4.方便食品工艺学,郑州粮院内部资料.1991
    5.孙彦芳等.米面制品工艺与设备.中国财政经济出版社,1992
    6.熊善柏等.浸泡处理对方便米饭品质的影响.粮食与油脂,1998(2):24~26
    7.熊善柏等.方便米饭生产工艺研究.粮食与饲料工业,1995(10):12~15
    8.熊善柏等.干燥方法对方便米饭品质的影响.粮食与饲料工业,1997(4):38~40
    9.伍冬生.干燥方法对方便米饭生产工艺的影响.武汉粮食工业学院院报,1990,1
    10.熊善柏等.人造米高温高湿干燥研究.食品科学,2000(21)8:31~33
    11.陈正宏.干燥工艺对α-米饭品质的影响,食品科学,2000(21)8:22~25
    12.张晖等.酶法改善方便米饭复水性的研究.西部粮油科技,2000(25)1:30~32
    13.李国选.方便米饭的加工方法.食品科学,1985(5):11~13
    14.林家莲等.添加剂对大米吸水性及米饭品质影响的研究.中国粮油学报,2000(4):16~19
    15.曾庆孝等.大米的特性对方便米饭生产工艺的影响.食品与机械,1995(6):19~21
    16.姚远.米饭回生研究(Ⅰ)中国粮油学报,1999(14)5:10~14
    17.姚远.米饭回生研究(11)中国粮油学报,1999(14)6:19~22
    18.姚远.米饭回生研究(Ⅲ)中国粮油学报,2000(15)1:4~9
    19.陈亿凤等.风味即食米饭工艺研究.食品科学,1995(16)4:25~27
    20.李文英等.方便米饭防回生研究.食品科学,1995(14)4:28~30
    21.朱世华.国外加工米饭概况.食品科学,1994(8)4:12~13
    22.刘秀河.方便米饭加工工艺的研究.西部粮油科技,1998(23)1:34~35
    
    
    23.张燕萍等.提高即食米饭抗老化的研究.中国粮油学报,1997(12)6:15~18
    24.彭鉴君等.提高方便米饭α度的方法.粮食与饲料工业,1995(11):37~38
    25.李英.方便软米饭的研制.粮食与饲料工业,1995(10):10~13
    26.阮文海等.某些食品辅料对大米淀粉糊化的影响.淀粉与淀粉糖,1997(4):14~16
    27.高建明.航空米饭的制作与保藏工艺.食品工业,1995(1):46~48
    28.佘纲哲,稻米化学加工储藏,中国商业出版社,1994,p12-13
    29.张钦宏,食品动态流变分析之应用,科学与技术(台),2001,33(3):35-43
    30.王肇慈.粮油食品品质分析,中国轻工业出版社,2000,4
    31.赵谋明等。常用食品胶粘度和悬浮关系的研究.食品科学,1997(18)7:6~10
    32.黄鸿志.食品乳化剂复合配方的设计.食品工业,1998,(3):32
    33.黄来发等.食品增稠剂.中国轻工业出版社,2000年7月第一版
    34.王璋.食品酶学,中国轻工业出版社,1992,4
    35.刘钟栋.微波技术在食品工业中的应用.中国轻工业出版社,1998年2月第一版
    36.姚远。米制品回生研究.无锡轻工大学博士论文。1999
    37.蓝盛银.生物超微结构及超微细胞化学,华中农业大学尘命科学技术学院分子细胞生物学研究室.1999
    38.周世英,钟丽玉.粮食学与粮食化学.中国商业出版社,1987.
    39.佘纲哲,王兰,周瑞方等.粮食生物化学.北京,中国商业出版社,1987.
    40. 姚远,丁霄霖,吴加根.淀粉回生研究进展(Ⅰ).回生机理、回生测定方法及淀粉种类对回生的影响.中国粮油学报,1999,14(2),24-30
    41.蔡玫琳,颜名聪,吕政义,温度对直链淀粉-脂肪酸复合物形成之影响,食品科学(台),1999,26(6):539-551
    42.木俣六司等.米饭的老化防止方法.日本公开特许公报,昭60-199355
    43. D.A. SM ITH, R.M. RAO, J.A. Chemical treatment and process modification for producing improved quick-cooking rice. Journal of Food Science, 1985, 50. 926~931
    44. YOSHIKO HIBI, SHINICHIKITAMURA, and TAKASHIKUCE, Effect of Lipids on the Retrogradation of Cooked Rice. Cereal Chem.1990 (67) 1: 7~10
    45. J.I. WADSWORTH and S. P. KOLTUN, Physicochemical Properties and Cooking Quality of Microwave-Dried Rice. Cereal Chem. 1986 (63)
    
    4:346-348
    46. Biliaderis, C. G., Structures and Phase Transitions of Starch Polymers, In R. H. Walter, Polysaccharide Association Structures in Food New York 1998, pp57-168
    47. Bienvenido, O. J. , Rice:Chemistry and Technology. The American Association of Cereal Chemists,Inc. Published, 1985,pp76-77
    48. Bilisderis, C. G., Stuctures and Phase Transitions of Starch in Food Systems. Food Technology, 1992, 6:98-109
    49. Eliasson, A. C. Carbohydrates in Food. New York:Marcel Dekker, 1996 PP477-495
    50. Hizukuri, S. , and Maruta, N. Structures of rice amylose subfract ions with different molecular sizes. Carbohydr. Res. 1992, 226:279-286
    51. Hoover, R. , and Hadziyev, D. Starch, 1981, 33:346
    52. Ring, S. G. Some studies on starch gelation. Starch, 1985, 37:80-83
    53. Keetels, A. M., Vliet, T. V. , and Walstra P. Gelation and retrogradation of concentrated starch systems:1. Gelation. Food Hydrocolloids 1996, 10:343-353
    54. Keetels, A. M. , Vliet, T. V. , and Walstra P. Gelation and retrogradation of concentrated starch systems:2. Retrogradation. Food Hydrocolloids 1996, 10:355-362
    55. Keetels, A. M. , Vliet, T. V. , and Walstra P. Gelation and retrogradation of concentrated starch systems:3. Hffect of concentration and heating temperature. Food Hydrocolloids 1996, 10:363-368
    56. Doublier, J. L. . Rheological properties of cereal carbohydrates. In: Faridi, H., and Faubion, J. M. , eds., Dough Rheology and Raked Product Texture. Van Nostrand Reinhold, New York, 2990, pp111-115
    57. Biliaderis, C. G. Characterization of starch networks by small starin dynamic rheometry. In: Alexander R. J., and Zobel, H. F. , eds., Developments in Carbohydrate Chemistry. AACC, St Paul, Minn. , 1992, pp87-135
    58. Donovan, J. W. Phase transitions of the starch-water system. Biopolymers 1979, 18:263-275
    59. Biliaderis, C. G., Maurice, T. J. , and Vose, J. R. Starch gelatinization phenomena studied by differential scanning calorimetry.J. Food Sci. 1980, 45:1669-1674
    
    
    60. Burt, D. J., and Russell, P. L. Gelatinization of low water content wheat starch-water mixtures. Starch 35:354-360
    61. Hoover, R. Starch-lipid interactions. In Walter R. H., eds. , Polysaccharide association structures in food. New York: Marcel Dekker, Inc. 1998, pp57-168.
    62. Evans, I. D. , and Haisman, D. R. The effects of solutes on the gelatinization temperature range of potato starch. Starch, 1982,34:224-231
    63. Kim, C. S. and Walker, C. E. Effect of sugars an d emulsifiers on starch gelatinization evaluated by DSC. Cereal Chem. , 1992, 69:212-217
    64. Bello-Perez, L. A., and Paredes-Lopez, O. Starch and amylopectin:Effect of solutes on their calorimetric behavior. Food Chem., 1995, 53:243-247
    65. Jane, J. Mechanism of starch gelatinization in neutral salt solutions. Starch, 1993, 45:161-166
    66. Atwwll, W. A. , and Hood, L. F. The terminology and methodology associated with basic starch phenomena. Cereal Food World 1988, 33:306-311
    67. Slade, L. , and Levine, H. , Recent advances in starch retrogradation. In:Stilva, S. S. , eds., Industrial Polysaccharides. 1987, pp.387-430. New York: Gordon and Breach.
    68. Fredrisson, H., Sliverio, J., Andersson, R. , Eliasson A. C. , and A man, P. The influence of amylose and amylopectin characteristics on gelatinization and retrogradation properties of different starches. Carbohydr. Poly., 1998, 35:119-134
    69. Miles, M. J., Morris, V. J., Orford, P. D., and Ring, S. G. The roles of amylose and amylopectin in the gelation and retrogradation of starch. Carbohydr. Res., 1985, 135:271-278
    70. Ring, S. R., Clonna, P., I' Anson, K. J., Kalichevsky, M. T. , Miles, M. J. , Morris, V. J. , and Orford, P. D. The gelation and crystallization of amylopectin. Carbohydr. Res., 1987, 162:277-293
    71. Biliaderis, C. G., and Zawistowski, J. Viscoelastic behavior of aging starch gels:effects of concentration, temperature, and starch hydrolysates on network properties. Cereal Chem. 1990, 67(3) :240-246
    
    
    72. Lu, T. , Jane, J. , and Keeling, P. L. Temperature effect on retrogradation rate and crystalline structure of amylose. Carbohydr Polym., 1997, 33:19-26
    73. Doublier, J. L. and Choplin, L. A rheological description of amylose gelation. Carbohydr. Res. 1989, 193:215-226
    74. Gildly, M. Molecular mechanisms underlying amylose aggregation and gelation. Macromolecules 1989, 22:351-358
    75. Clark, A. H., Gidley M. J., Richardson R. K., and Ross S. B. Rheological studies of aquesous amylose gels: The effect of chain length and concentration on gel modulus. Macromolecules 1989, 22:346-351
    76. Morrison, W. R. , Law, R. V. and Snape, C. E. Evidence for inclusion complexes of lipids with V-amylose in maize, rice and oat starches. J.Cereal Sci. 1993, 18:107-109
    77. His-Mei Lai, Effects of rice properties and emulsifiers on the quality of rice pasta, J. Sci. Food Agri. 2001, 82:203-216
    78. Gidley, M. J. , and Bulpin, P. V. Crystallization of maltool igosaccharides as modwls of the crystalline forms of starch. Minimum chain length requirement for the formation of double helices. Carbohydr. Res., 1987, 161:291-300
    79. Shi, Y. C., and Seib, P. A. The structure of four waxy starches related to gelatinization and retrogradation. Carbohydr. Res. , 1992, 227:131-145
    80. Fan, J. and Marks, B. P. Retrogradation kinetics of rice flours as influenced by cultivar. Cereal Chem., 1998, 75(1) :153-155
    81. Deffenbaugh, L. , and Walker, C. E. Comparison of starch pasting properties in the Brabender Viscograph and the Rapid Visco-Analyzer. Cereal Chem., 1989, 66:493-499
    82. Zhou, M. , Robards, K. , Glennie-Holmes, M. , and llelliwell, S. Structure and pasting properties of oat starch. Cereal Chem. , 1998, 75(3) :273-281
    83. Pons, M., and Fiszman, S. M. Instrumental Texture Profile Analysis with particular reference to gelled system. Journal of Texture Studies. 1996, 27:597-624
    84. Rao, M. A. , and Steffe, J. F. Viscoelastic proper ties of foods. London:Elsevier Applied Science. 1992
    
    
    85. Biliaderis, C. G., and Juliano, B. 0. Thermal and mechanical properties of concentrated rice starch gels of varying composition. Food Chemistry. 1993, 48:243-250
    86. Lii, C. Y., Shao, Y. Y. , and Tseng, K. H. Gelation mechanism and rheological properties of rice starch. Cereal Chem. 1995, 72:393-400
    87. Lii, C. Y., Tsai, M. L. and Tseng, K. H. Effect of amylose content on the rheological properties of rice starch. Cereal Chem. 1996, 73:415-420
    88. Sievert, D., and Wursch, P. Amylose chain association based on differential scanning calorimetry.J. Food Sci. , 1993, 58(6) :1332-1334
    89. Haines, P. J. Thermal methods of analysis principles, application and problems. London:Blackie Academic & Professional. 1995
    90. Grant, L. A. Effects of starch isolation, drying, and grinding techniques on its gelatinization and retrogradation properties. Cereal Chem., 1998, 75(5) :590-594
    91. Kim, J. , Kim, W. , and Shin, M. Comparative study on retrogradation of rice srarch gels by DSC, X-ray and a-amylase methods. Starch, 1997, 49(2) :71-75
    92. Chang, S., and Liu, L. Retrogradation of rice starches by DSC and influenceof sugars, NaCl and lipids. J. Food Sci., 1991, 56(2) :564-570
    93. Nakazawa, F. , and Noguchi, S., Gelatinization and retrogradation of rice starch studied by differential scanning calorimetry. Agri. Biol. Chem., 1984, 48(1) :201-203
    94. Allan G W Bradbury and Anthony B et al. Determination of Molecular Distribution of Starch and Debranched Starch by a Single Proceduce Using High-Performance Size-Exclusion Chromatography. Cereal Chem. 1993, 70(5) :543-547
    95. Whistler R L, Beniller J N and Paschll E L . Starch Chemistry and Ttechnology, New York, Academic press, 1984
    96. Gunja-Smith, Z. , Marshall, J. J. and Whelan, W. J. A revision lf the Meyer-Bernfeld model of glycogen and amylopectin. FEBS Lett, 1970, 12:101
    97. French, D. Fine structure of starch and its relationship to the
    
    organization of starch granules. 1972, Denpun Kagaku, 19:8
    98. Nikuni, Z. Denpun and chori (starch and cookery). Chorikagaku, 1969, 2:6
    99. Hizukuri, S. Polymodel distribution of the chain length of amylopectins and its significance. Carhohydr. Res., 1986, 147:342-347
    100. Zobel H F, Young S N and Rocca L Aa. Sstarch gelatinization: An x-ray Dii'ferenlial study. Cereal Chem. 1988, 65(6) :443-446
    101. Zhang W and Jackson D S. Retrogradation Behavior of Wheat Starch Gels With Differing Molecular Profiles. Journal of Food Science, 1992, 57(6) : 1428-1432
    102. Biliaderis, C. G., and Tonogai J. R. , Influence of lipids on the thermal and mechanical properties of concentrated starch gels.J. Agric. Food Chem., 1991, 39:833-840
    103. Fen, J., and Marks, B. P. Retrogradation kinetics of rice flours as influenced by cultivar. Cereal Chem., 1998, 75(1) :153-155
    104. Boltz, K. W. , and Thompson, D.B. Initial heating temperature and native lipid affects ordering of amylose during cooling of high-amylose starches. Cereal Chem., 1999, 76:204-212
    105. Nakazawa, F. and Noguchi, S. Gelatinization and retrogradation of rice starches studied by differential scanning calorimetry. Agri. Biol. Chem., 1984, 48(1) :201-203
    106. Moo-Yeol Baik, Kwang-Joong Kim, and Ki-Cheol Cheon, Yeon-Chul Ha, and Wang-Soo Kim, Recrystal1ization kinetics and glass transition of rice starch gel system,J. Agric. Food Chem. , 1997, 45:4242-4248
    107. Kim, J. , Kim, W. and Shin, M. Comparative study on retrogradat ion of rice starch gels by DSC, X-ray and a-amylase methods. Starch, 1997, 49(2) :71-75
    108. Sievert, D., and Wursch, R. Amylose chain association based on differential scanning calorimetry, Journal of Food Science, 1993, 58(6) :1332-1334
    109. Gidley, M. J. , Cooke, D. , Darke, A. H. , Hoffmann, R. A., Russell A. L. , Molecular order and structure in enzyme-resistant retrograded starch. Carbohydrate Polymers. 1995, 28:23-31
    110. Karim, A. A., Norziah, M. H. , Seow, C. C. Methods for the study of starch retrogradation. Food Chemistry. 2000, 71:9-36
    
    
    111. Slade, L. , and Levine H. , Recent advances in starch retrogradation. In: Stilva, S. S. , eds. , Industrial Polysaccharides. 1987, PP387-430
    112. Moo-Yeol Baik, Kwang-Joong Kim, Ki-Cheol Cheon. Recrystallization kinetics and glass transition of rice starch gel system.J. Agric. Food Chem. 1997, 45:
    113. Harmeet, S. G., Charles, J. , and Elaine, T. C. Effect of cooling and freezing on the digestibility of debranched rice starch and physical properties of resulting material. Starch, 2001, 53:64-74
    114. Harmeet, S. G. , Charles, J. , and Elaine, T. C. Effect of enzyme concentration and storage temperature on the formation of slowly digestible starch from cooked debranched rice starch. Starch. 2001,53:131-139

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700