剪切力对东北红豆杉细胞悬浮培养的影响机理的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为明确剪切力对植物细胞作用的机理以及植物细胞剪切敏感性的潜在机制,
    作者通过自制改进型 Couette 式剪切反应器来悬浮培养东北红豆杉细胞,为细胞
    提供精确的层流剪切场,进而围绕特定剪切力作用下细胞防御应答反应以及剪切
    信号转导展开一系列的研究,以期能初步阐述剪切力对东北红豆杉细胞的作用机
    理。并在此研究结果基础上,对东北红豆杉细胞的剪切敏感性以及东北红豆杉
    胞的剪切敏感性的潜在机制进行了分析。
    1. 0.1Pa剪切力诱导了东北红豆杉细胞的防御应答反应。活性氧分子(O2 及 -
     H2O2)分别在 0.5-1(h)、2.5-3(h)以及 5-5.5(h)出现了三次积累,具有三时相的
     特征。其产生方式主要是质膜氧化还原系统中的NADPH氧化酶,细胞壁过
     氧化物酶在其中所起的作用较小。伴随着氧迸发的现象,细胞SOD、POD和
     CAT酶活也均发生改变,从而保持细胞自身氧化还原态势的平衡。剪切作用
     下产生的各种活性氧分子中,超氧阴离子自由基(O2 )与细胞膜作用导致了
     -
     细胞膜透性的增大,而剪切力作用下氧迸发所产生的H2O2则可能作为第二信
     使诱导了PAL酶活的改变和酚的积累等次级代谢反应。
    2. 剪切信号转导过程中,剪切力的响应可能是通过植物细胞的骨架连续体及其
     表面存在的机械感应器与受体而完成的,作用时间为 5-15 min。G-蛋白、Ca2+
     通道和PLC参与了剪切信号的跨膜或胞内的转导过程,作用时间分别为G蛋
     白:10-15 min、Ca2+通道:15-25 min、PLC:20-25 min。G蛋白的激活为Ca2+
     通道激活和PLC的活化的上游时间, Ca2+通道激活的和PLC的活化则为剪切
     信号转导的不同通路。
    3. 建立了一个剪切力作用下东北红豆杉细胞信号转导以及防御应答的生物学
     模型,对剪切力对东北红豆杉细胞作用的机理有进行初步阐述,为研究植物
     细胞剪切敏感性提供新的思路。
    4. 处于指数期的东北红豆杉细胞对剪切力比较敏感,而处于延滞期的东北红豆
     杉细胞则相对不太敏感。这种剪切敏感性的差异在细胞的防御应答反应上表
     现明显。在信号转导角度上,这种差异的原因在于不同生长期东北红豆杉
     胞剪切信号的感受以及转导速度方面的差异。
To well-understand the mechanism of the effect of shear stress to plant cell and
    the mechanism of shear sensitivity of plant cell, some defined laminar shear fields
    were created for suspensions of Taxus cuspidata in a Couette-type shear reactor,
    which we made ourselves. The defense responses and signal transduction pathway of
    shear signal were studied and a potential model for those results was proposed. Based
    on those results, the mechanism of shear sensitivities of taxus cell suspensions in
    different growth phases was also investigated. From the work above we gained some
    valuable results.
    1. Taxus cuspidate can answer 0.1Pa shear stress with defense responses. There have
     triphasic characteristics in 6 h for both intracellular H2O2 production and
     extra-cellular O2 production and the key enzyme responsible for oxidative bursts
     -·
     under the shear stress is primarily NADPH oxidase and the contribution of
     peroxidase for oxidative bursts was less. The O2 burst may account for the change
     -·
     of membrane permeability, and H2O2 burst plays an important role in inducing
     secondary metabolites such as the activation of phenylalanine ammonia lyase
     enzyme and phenolic accumulation.
    2. Studies focused on shear signal transduction showed that cytoskeleton are
     involved in the sense of shear stress with it action time of 5-15min and that
     G-protein, Ca2+ channel and PLC were proved to be necessary in shear signal
     transduction with their action time of 10-15 min、15-25 min and 20-25 min,
     respectively. It was also suggested that the action of G-proteins is the upstream
     event to Ca2+ influx and the action of PLC. The action of Ca2+ channel and PLC
     may be the two different pathways in transduction of the shear signal for they
     have a period of action time in common.
    3. Based on results above, a model is proposed to explain the defense responses and
     shear signal transduction in cultured T. cuspidata cells challenged with the shear
     stress.
    4. In testing suspension cultures of various ages, it was found that those cultures in
     the stages of exponential growth were more susceptible to shear stress than
     cultures in the lag phase. The reasons for their difference lied in the different
     recognition time and the speed for action.
引文
[1]. 沈征武, 吴莲芬, 紫杉醇的研究进展, 化学进展, 1996, 9(1): 1-13.
    [2]. Schiff P B, Fant J, Horwitz S B. Promotion of microtubule assembly in vitro by
    taxol. Nature, 1979, 277:665-667.
    [3]. Schiff P B, Horwitz S B. Taxol stabilizes microtubules in mouse fibroblast cells.
    Proc.Natl. Acad. Sci. U.S.A., 1980, 77:1561-1565.
    [4]. Schiff P B., Horwitz S B. Taxol assembles tubulin in the adsense of exogenous
    guanosine 5’-triphosphate or microtubule-associated protein. Biochemistry,
    1981,20:3247-3252.
    [5]. Wickremesinhe E R M, Acteca R N. Taxus callus cultures: Initiation, growth
    optimization, characterization and taxol production. Plant Cell Tiss. Org. Cult. 1993,
    35:181-193.
    [6]. Kieran P M , MacLoughlin P F, Malone D M. Plant cell suspension cultures:
    some engineering considerations. J. Biotechnol. 1997, 59: 39-52.
    [7]. 刘 涤, 胡之璧, 传统药材生物技术研究是中药现代化的重要内容, 全球华
    人中药现代化学术研讨会, 1998, pp. 362-367
    [8]. Panda A K, Mishra S, Bisaria V S, Bhojwani S S. Plant cell reactors: a
    perspective. Enzyme Microbiol. Technol., 1989, 11: 386-397.
    [9]. Payne G. F, Bringj V, Prince C, Shuler M L. Plant cell and tissue culture in liquid
    systems. Chaps. 1 and 6. Hander Publishers, Munich. 1991.
    [10]. Leckie F, Scragg A H, Cliffe K C. Effect of bioreator design and agitator speed
    on the growth and alkaloid accumulation by cultures of Catharanthus roseus. Enzyme
    Microb. Technol. 1991, 13:296-305
    [11]. Mandels J C, In: Adv. Biochem. Eng. Biotechnol. Vol.44. Fiechter A. Ed. Berlin:
    Springer-Verlag, 1991, pp 65-95.
    [12]. Scragg A H, Allan E J, Leckie F. Effect of shear on the viability of plant cell
    suspensions. Enzyme Microb. Technol. 1988, 10:361-367.
    [13]. Hooker B S, Lee J M, An G.. Response of plant tissue culture to a high shear
    environment. Enzyme Microbiol. Technol. 1989, 11: 484-490.
    [14]. Vogelmann H, Bischof A, Pape D, Wagner F. Some aspects on mass cultivation.
    In: Alfermann, A.W., Reinhard, E. (Eds.). Production of Natural Compounds by Cell
    Culture Methods. GSF, Munich, 1978, pp.130-146.
    [15]. Wagner F, Vogelmann H. Cultivation of plant tissue cultures in bioreactors and
    formation of secondary metabolites. In: Barz W., Reinhard E, Zenk M.H. (Eds.), Plant
    Tissue Cultures and Its Biotechnological Application. Springer-Verlag, Berlin, 1977,
    pp. 245-252.
     -61-
    
    
    参考文献
    [16]. Meijer J J, Thesis Delft. The Netherlands, 1989
    [17]. Machey B M. Revial of Injured Microbes. Russel A.D., Andrews M.H.E. Eds.
    Landon: Academic Press, 1980. 45-75.
    [18]. Widholm J M. Stain Technol. 1972, 47:189-194.
    [19]. Dixon R A. Plant Cell Culture: A Practical Approach. Oxford, Washington DC:
    IRL Press, 1985. 1-20.
    [20]. John H D, Lorin W R. Experimentals in Plant Tissue Culture, 2nd ed. Cambridge
    University Press, 1985. 110-111.
    [21]. Meijer J J, ten Hoopen H J G, Luyben K Ch A M, Libbenga K R. Effects of
    hydrodynamic stress on cultured plant cells: a literature survey. Enzym. Microb.
    Technol. 1993, 15:234-238.
    [22]. Nagata S. Mixing: Principles and Applications, Chaps. 1 and 3. New York: Wiley,
    1975.
    [23]. Croughan M S, Hamel J F, Wang D I C. Hydrodynamic effects on animal cells
    grown in microcarrier cultures. Biotechnol. Bioeng. 1987, 24:130-141.
    [24]. Wogelmann H, Bischof A, Pape D, Wagner F. Some aspects on mass cultivation.
    In: Alfermann, A.W., Reinhard, E. (Eds.). Production of Natural Compounds by Cell
    Culture Methods. GSF, Munich, 1978, pp.130-146.
    [25]. Rosenberg M Z. The Hydrodynamic Shear Sensitivity of Suspension Cultured
    Plant Cells. Ph.D. dessertation, Washington University, St. Louis, MO. 1987.
    [26]. Namdev P K, Dunlop E H. Shear sensitivity of plant cell suspension, present and
    future. Appl. Biochem. Biotechnol. 1995, 54:109-131.
    [27]. Hooker B S, Lee J M, An G.. Cultivation of plant cells in a stirred tank: effect of
    impeller design. Biotechnol. Bioeng. 1990, 35:296-304.
    [28]. Ho C H, Henderson K A, Rorrer G. L. Cell damage and oxygen mass transfer
    during cultivation of Nicotiana tabacum in a stirred-tank bioreactor. Biotechnol. Prog.
    1995, 11:140-145.
    [29]. 朱玉贤, 李 毅, 现代分子生物学, 高等教育出版社, 北京, 1999, pp
    270-285.
    [30]. Allan A C, Fluhr R. Two distinct sources of elicited reactive oxygen species in
    tobacco epidermal cells. Plant Cell. 1997. 9, 1559-1572.
    [31]. lvarez M E, Penell R I, Meijer P J, Ishikawa A. Reactive oxygen intermediates
    mediate a systemic signal network in the establishment of plant immunity. Cell. 1998.
    92, 773-784.
    [32]. 张骁,董发才,宋纯鹏等,植物细胞的氧化猝发和H2O2的信号转导,植物
    生理学通讯,2000,36(4):376~381
    [33]. Doke N. Involvement of superoxide anion generation in hypersensitive response
     -62-
    
    
    参考文献
    of potato tuber tissues to infection with an incompatible race of Phytophtora infestans
    and to the hyphal wall components. Physiol.Plant Pathol,1983, 23: 345~357
    [34]. Lamb C, Dixon R A. The oxidative burst in plant disease resistance. Annu Rev
    Plant Physiol Plant Mol Biol, 1997, 48:251~275
    [35]. Orozco~Cardenas M, Ryan C A. Hydrogen peroxide is generated systemically in
    plant leaves by wounding and systemin via the ocadecanoid pathway.Proc Natl Acad
    Sci USA,1999,96:6553~6557
    [36]. Baker C J, O Neill N R, Keppler L D et al. Early response during plant –bacteria
    interactions in tobacco cell suspension. Phytopathology,1991,81:1504~1507
    [37]. Levine A, Tenhaken R, Dixon R A et al..H2O2 from the oxidative burst
    orchestrates the plant hypersensitive disease resistance response as a local trigger of
    programmed cell death and a diffusible inducer of cellular protectant genes. Cell ,
    1994, 79: 583~593
    [38]. Wojtaszek P. Oxidative burst: an early plant response to pathogen infection.
    Biochem J, 1997,322:681~692
    [39]. hance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs.
    Physiol. Rev. 1979, 59(3): 527-605.
    [40]. Chico J M, Raices M, Teresa M A. calcium dependent protein kinase is
    systemically induced upon wounding in tomato plants. Plant Physiol. 2002. 128,
    256-270.
    [41]. Levine A, Tenhaken R, Dixon R A, Lamb C J. H2O2 from the oxidative burst
    orchestrates the pant hypersensitive disease resistance response as a local trigger of
    programmed cell death and a diffusible inducer of cellular protectant genes. Cell.
    1994. 79, 583-593.
    [42]. Segal A W, Abo A. The biochemical bases of the NADPH oxidase of phagocytes.
    Trends Biochem. Sci. 1993. 18, 43-47.
    [43]. Rajasekhar V K, Lamb C, Dixon R A. Early events in the signal pathway for the
    oxidative burst in soybean cells exposed to avirulent Pseudomonas syringae pv
    glycinea. Plant Physiol. 1999. 120, 1137-1146.
    [44]. Wu G, Shoctt B J. Disease resistance conferred by expression of a gene encoding
    H2O2-generating glucose oxidase in potato plants. Plant cell. 1995, 7: 1357-1368.
    [45]. Bradley D J, Brisson P, Lamb C J. Elictor- and Wound-induced oxidative
    cross-linking of a cell wall protein: a novel, rapid defense response. Cell. 1992,
    70:21-30.
    [46]. Levine A, Tenhaken R, Dixon R A, Lamb C J. H2O2 from the oxidative burst
    orchestrates the pant hypersensitive disease resistance response as a local trigger of
    programmed cell death and a diffusible inducer of cellular protectant genes. Cell.
    1994. 79, 583-593.
     -63-
    
    
    参考文献
    [47]. Apostol I, Heinstein P F, Low P S. Rapid stimulation of an oxidative burst during
    elicitation of cultured plant cells. Plant Physiol. 1989, 90:109-116.
    [48]. Meyer M, Schreck R, Bauede P A. H2O2 and antioxidants have opposite
    affection on activity of NF–kB and AP-1 in intact cells. EMBO J. 1993, 12:
    2005-2015.
    [49]. Freissmuth M, Casey P J, Gilman A G. G proteins control diverse pathways of
    transmembrane signaling. FASEB J,1989,3:2125~2137
    [50]. Gilman A G. G proteins: transducers of receptor~generated signals. Annu Rev
    Biochem,1987, 56:615~621
    [51]. Pronin A N, Gautam N. Interaction between G protein β and γ subunit types is
    selective. Proc Natl Acad Sci USA,1992, 89:6220~6235
    [52]. Birnbaumer L. G proteins in signal transduction. Annu Rev Pharmacol
    Toxicol,1990, 30:675~691
    [53]. Dixon R A, Harrison M J, Lamb C J. Early events in the activation of plant
    defense responses. Annu Rev Phytopathol, 1994, 32: 479~501
    [54]. Jabs T, Dietrich R A, Dangl J L. Initiation of runaway cell death in an
    Arabidopsis mutant by extracellular superoxide. Science, 1996, 273: 1853~1856
    [55]. Chahde A, Daeffler L, Gies J P, Landry Y. Drugs interacting with G protein
    alpha subunits: selectivity and perspectives. Fundam. Clin. Pharmacol. 1998. 12,
    121-132.
    [56]. De Koninck P, Schulman H. Sensitivity of CaM Kinase II to the frequency of
    Ca2+ oscillations. Science, 1998, 279: 227–230
    [57]. Chen S Y, Huang S Y. Shear stress effects on cell growth and L-DOPA
    production by suspension culture of Stizolobium hassjoo cells in an agitated bioreactor.
    Bioprocess Eng. 2000, 22:5-12.
    [58]. Wang N, Ingber D E. Control of cytoskeletal mechanics by extracellular matrix,
    cell shape and mechanical tension, Biophys. J. 1994, 66: 2181-2189.
    [59]. Wayne R, Staves M P, Leopold A C. The contribution of the extracellular matrix
    to gravisensing in characean cells. J. Cell. Sci. 1992, 101:611-623.
    [60]. Towill L E, Mazur P. Studies on the reduction of 2,3,5-triphenyltetrazolium
    chloride as a viability assay for plant tissue cultures. Can. J. Bot. 1975, 53:1097-1102.
    [61]. Suzuki K, Yano A, Shinshi H. Slow and prolonged activation of the p47 protein
    kinase during hypersensitive cell death in a culture of tabacco cells. Plant Physiol.
    1999, 119:1465-1472.
    [62]. Anderson A J, Roger K, Teeper C S. Timing of molecular events following
    elicitor treatment of plant cells. Physiol And Mol Plant Pathol. 1991, 38:1-13.
    [63]. 宁文, 徐红, 曹日强, 米曲霉激发子刺激滇草细胞活性氧的产生及与紫草
    色素形成的关系, 南京大学学报, 1997, 33(2):259-264.
     -64-
    
    
    参考文献
    [64]. 汤章城主编, 现代植物生理学实验指南, 北京, 科学出版社, 1999, pp 322.
    [65]. Zhang C P(张长平), Li C (李春), Yuan Y J(元英进), Sun A C(孙安慈), Hu C
    X(胡昌序), Effects of fungal elicitor on cell status and taxol production in cells
    suspension cultures of Taxus chinesis var. Mairei. Chin J Biotechnol(生物工程学报).
    2001, 17:436-440.
    [66]. Hugo E A. Caralase, In:Bergmeyer HV(ed) Methods of Enzymatic Anlysis. 3rd
    Edition,Veinheim: Verlag Chemi, 1983, 3:273.
    [67]. 朱广廉, 钟海文, 张海琴, 植物生理学实验[M], 北京, 科学出版社, 1990,
    37-40.
    [68]. Charles S, Bestwick. Localized changes in peroxidase acitivity accompany
    hydrogen peroxide generation during the development of a nonhost hypersensitive
    reaction in lettuce, Plant Physiol. 1998, 118:1065-1078.
    [69]. Jabs T, Tsch?pe M, Colling C, Hahlbrock K, Scheel D. Elicitor-stimulated ion
    fluxes and O2 from the oxidative burst are essential components in triggering defense
     -·
    gene activation and phytoalexins synthesis in parsley. Proc. Natl. Acad. Sci. USA
    1997.94, 4800-4805.
    [70]. Borner H, Grisebach H. Enzyme induction in soybean infected by Phytophthora
    megasperma f.sp. glycinea. Acta. Biochem. Biophys. 1982, 217:65-71.
    [71]. Yahraus T, Chandra L, Legendre L, Low P S. Evidence for a mechanically
    induced oxidative burst. Plant Physiol. 1995. 109,1259-1266.
    [72]. Sutherland M W. The generation of oxygen radicals during host plant responses
    to infection, Physiol. Mol. Plant Pathol. 1991, 39: 79-94.
    [73]. Dixon R A, Dey P M, Lawton M A. Phytoalexin induction in French bean:
    Intracellular transmission of elicitation in cell suspension cultures and hypocotyl
    sections of Phaseolus Vulgaris. Plant Physiol. 1983,71: 251-259.
    [74]. Lzydor, A., Peter, F.H., Philip, S.l. Rapid stimulation of an oxidative burst during
    elicitation of cultured plant cells. Plant Physiol. 1989. 90, 109-116.
    [75]. Koch J L, Lindgren P B, Seitz H U. Elicitor~induced cell death and phytoalexin
    synthesis in Daucus carota L. Planta 1998, 206:523~532.
    [76]. Rajasekhar, V K, Lamb C, Dixon R A. Early events in the signal pathway for the
    oxidative burst in soybean cells exposed to avirulent Pseudomonas syringae pv
    glycinea. Plant Physiol. 1999. 120, 1137-1146.
    [77]. Nurnberger T. Signal perception in plant pathogen defense. Cellu. Mol. Life
    Sci.,1999, 55: 167~182.
    [78]. Cote G G, Crain R C. Why do plant have phosphoinostides? Bio~Essays, 1994,
    16: 39~46.
     -65-
    
    
    攻读硕士期间发表与待发表论文
    1:韩荣斌,施中东,元英进。剪切力对植物细胞悬浮培养的影响。化学工
    业与工程。2002,19(Sup): 277-281。
    2: 韩荣斌,施中东,元英进。剪切力对南方红豆杉细胞悬浮培养的影响。过
    程工程学报。2003,3(2): 135-140。(EI)
    3: 韩荣斌,元英进,季艳艳。剪切力作用下的东北红豆杉细胞活性氧迸发及
    其清除系统。第二界全国制药工程会议论文。2003: 167-169。
    4:Rong-bin Han., Ying-Jin Yuan. Oxidative burst in suspension culture of
    Taxus cuspidata induced by a laminar shear stress in short-term.
    Biotechnol.Prog (in press bp034242p).
    5: Rong-bin Han., Ying-Jin Yuan., Zhi-qiang Ge. Differences in biological
    and signal responses of Taxus Cuspidata suspension cultures in lag and
    exponential phases to a given shear stress. Biotechnol. & Appl. Biochem.
    (to be submitted).
    6: Rong-bin Han., Ying-Jin Yuan., Zhi-qiang Ge. The involvement of
    Cytoskeleton in defense responses of Taxus cuspidate induced by a laminar
    shear stress in suspension cultures. (Preparing).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700