微胶囊固定化东北红豆杉细胞生长代谢的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了了解微囊固定化植物细胞的生长与代谢规律,为大规模固定化植物细胞
    生产奠定实验基础,本文以海藻酸-壳聚糖包埋东北红豆杉细胞(Taxus
    cuspidata),通过对照在不同胶囊包埋条件下与普通悬浮培养细胞的异同点,改
    变包埋量、包埋载体密度、换液时间等参数,观察了微囊化细胞生长与代谢情况,
    分析了微囊固定化细胞产生这些生长与代谢变化的主要影响因素,对胶囊包埋红
    豆杉细胞生长与代谢的影响形成一个整体的认识。得到如下结果:
     用海藻酸-壳聚糖胶球包埋东北红豆杉细胞时,细胞受到最大影响在传质方
    面,细胞活力下降。海藻酸钠-壳聚糖液芯胶球和无壳聚糖层的海藻酸钠胶球作
    为改进包埋方法,有利于保持较高的细胞存活率和代谢能力,对糖类等营养物质
    的吸收较好。两者均使细胞产生一些应激反应,包括细胞膜通透性增大,胞外蛋
    白含量增加,培养液出现碱化等。而无论有无壳聚糖层包裹的固芯胶球均比液芯
    胶球更利于酚类等次生代谢产物的合成与积累。
     细胞生长的停滞期换液不能明显改进细胞存活率以促进次生代谢产物的积
    累。换液后的细胞所出现的生理现象,包括细胞膜透性变化、蛋白质的吸收与代
    谢、酚积累等方面表现出与未换液相近似的规律。
     选用不同海藻酸钠载体密度包埋细胞时,随着载体密度增大,培养液中的酚
    积累和电导率增长。20g/L-30g/L 是适中的载体密度,有利于保持包埋细胞较高
    的活力。细胞包埋的不同阶段,包埋量影响细胞存活率、营养消耗等的程度不同。
    高包埋量使细胞间相互刺激作用较大,有更多胞内离子向胞外释放。包埋量越高,
    其酚积累的峰值出现越晚。在细胞的停滞期,酚积累的量与包埋量正相关。
     海藻酸钠胶球固定化细胞可以使其膜透性改变,胞内离子向外释放。这种刺
    激一方面是包埋在胶球表面的细胞受到其它胶球冲击、剪切等作用,另一方面是
    包埋在胶球内部的细胞受到包埋载体和其它细胞的相互作用。
In order to make a deep understanding of growth and metabolism of
    encapsulated cells, Taxus cuspidate cells were immobilized in various
    alginate-chitosan beads. By alternating matrix density, inoculums, subculture, we
    analysis reasons for particular cell physiology, and made a comprehensive study. We
    got results as following:
     Immobilization effected cells most on mass diffusion, and cells viability was
    reduced. Liquefied beads and solid beads without chitosan, as improved immobilized
    measure, maintained the viable cell ratio better, enhanced cells metabolism, and
    increased absorption of sugar and other nutrition. They also stimulated immobilized
    cells,so cells membrane penetration increased, extracellar protein improved and pH of
    medium fell. And solid beads without chitosan made the augment of cell penetration
    less than liquefied beads. Solid beads with chitosan membrane or not strengthened
    secretion and accumulation of phenol more than liquefied beads.
     Subculture in cell lag stage in this experiment did not improve viable cells ratio
    to get more secondary metabolite production. Encapsulated cells in subculture
    exhibited a few physiology behaviors same like original culture.
     Denser matrix stimulated encapsulated cells more; as a result phenolics
    accumulation was enhanced, and conductivity in medium increased. But denser
    matrix did harm to cells in long stage culture. So moderate matrix density
    (20g/L-30g/L) benefited cells to maintain high viability.Inoculums impacted viable
    cells ratio, nutrition consumption with different level in different period. In early
    culture time, the impaction was tiny. In lag stage, viable cells ration decreased when
    inoculums increased. High inoculums stimulated cells more, and released more
    intracellar ions. More inoculums delayed the peak of phenolics accumulation. And
    phenolics accumulation had liner correlation with inoculums in lag stage.
     Alginate-chitosan immobilization enhanced medium conductivity, because the
    beads impacted cell penetration and made more ions released out. This resulted both
    from shearing and flushing to cells on the beads surface and impaction of cells in
    inner beads.
引文
参考文献
    [1] 夏宇正,陈晓农. 精细高分子化工及应用,化学工业出版社, 2000,9:168-199
    [2] 刘袖洞,何洋,刘群等. 微胶囊及其在生物医学领域的应用,科学通报,2000,
    45(23):2476-2484
    [3] 余若冰,彭少贤,郦华兴. 微胶囊与微胶囊技术,现代塑料加工应用, 2000,
    12(6): 55-59
    [4] Basic D,Vacek LA, Sun AM. Microencapsulation and transplantation of
    genetically engineered cells: a new approach to somatic gene therapy, Art Cell Blood
    Subs Immob Biotechnol, 1996,24:219-255
    [5] Sanchez A, Gupta RK, Alonso, et al. Pulse controlled–released system for
    potential use in vaccine delivery. J Pharm Sci,1996,85(6):547-552
    [6] 刘群,薛伟明,于炜婷. 海藻酸钠-壳聚糖微胶囊膜强度的研究,高等学校
    化学学报,2002,23(7):1417-1420
    [7] 余龙江,李为,刘幸福. 中国红豆杉悬浮细胞固定化培养生产紫杉醇,华中理
    工大学学报,1998: 26(5):1-4
    [8] Brodelius P,Deus B,Mosbach K. Immobilized plant cells for the production and
    transformation of natural products.FEBS Lett, 1979,103(1):93-97
    [9] 张惠勇,梅乐和,姚善泾.微胶囊固定化酵母培养的研究,生物工程学报,1999,
    15(3):297-300
    [10] 王勇,解玉冰,马小军, 壳聚糖/海藻酸钠生物微胶囊的研究进展,生物工
    程进展, 1999,19(2):3-16
    [11] 何东保,石毅,梁红波.壳聚糖-海藻酸钠协同相互作用及其凝胶化的研究,
    武汉大学学报,2002,48(2):193-196
    [12]叶子坚,姚善泾.乳杆菌微胶囊化培养的研究,微生物学报, 2000,40 (5): 507-512
    [13] Mansfeld J, Forster M, Hoffmann T. Coimmobilization of Yarrowia lipolytica
    cells and invertase in polyelectrolyte complex microcapsules, Enzyme and Microbial
    Technology,1995,17:11-17
    [14] Bodalo A, Bastida J, Gomez JL, et al. Stabilization studies of
    L-aminoacylase-producing Pseudomonas sp. BA2 immobilized in calcium alginate
    gel, Enzyme and Microbial Technology,1997,21:64-69
    [15] Lahooti Sh, Sefton VM. Effect of an immobilization matrix and capsule
    membrane permeability on the viability of encapsulated HEK cells, Biomaterials,
     56
    
    
    参考文献
    2000,21:987-995
    [16] 贾熙华,肖成祖. MTT 比色法在微囊培养动物细胞计数中的应用, 军事医
    学科学院院刊,1993,17(3):207-210
    [17] Hulst AC, Tramper J. Immobilized plant cells: a literature survey, Enzyme Micro.
    Technol,1989,11:546-558
    [18] 姚善泾,梅乐和. 一种新型生物微胶囊体系及其在生物质固定化过程中的应
    用,膜科学与技术, 1999,19(1):19-23
    [19] 薛莲,孟琴,吕德伟. 用吸附法固定化培养紫草细胞, 植物生理与分子生物
    学学报, 2002,28(5):369-374
    [20] Gilleta F, Roisin C, Fliniaux AM. Immobilization of Nicotiana tabacum plant
    cell suspensions within calcium alginate gel beads for the production of enhanced
    amounts of scopolin, Enzyme and Microbial Technology, 2000, 26:229-234
    [21] Gombotz WR,Wee SF. Protein release from alginate matrices.Advanced Durg
    Delevery Reviews,1998,31:267-285
    [22] 俞耀庭,张兴栋. 生物医用材料,天津大学出版社,2000.12: 181-182
    [23] 江龙法,张所信,薛婉而. 壳聚糖生物微胶囊的制备及应用研究,淮海工学
    院学报, 2001,10(2):50-52
    [24] 李沙,李馨儒,候新朴. 海藻酸钠-壳聚糖的制备及载药性研究,中华临床
    医药, 2002,3(14): 1-3
    [25] 蒋宇红,黄霞,俞毓馨. 几种固定化细胞载体的比较,环境科学,1992,14(2):
    11-15
    [26] Bugariski B,Li Q,Goosen M. Electronstatic droplet generator-mechanism of
    polymer droplet formation, AICHE J,1994,40(6):1026-1031
    [27] Poncelet D,Lencki R,Beaulieu C. Production of alginate beads by emulsification
    internal gelation. I Methodology,Applied Microbiology Biotechnology,1992,38:39-54
    [28] Mevy JP,Rabier J,Quinsac A,et al. Sucrose metabolism and indoleglucosinolate
    production of immobilized horseradish cells, Plant Cell, Tissue and Organ Culture,
    1999,57:163-171
    [29] AlteriisE,Porro D,RomanoV. Relation between growth dynamics and diffusional
    limitations in Saccharomyces cerevisiae cells growing as entrapped in an insolubilised
    gelatin gel. FEMS Microbiology Letters, 2001,195:245-251
    [30] Chen KC,Huang CT. Effects o the growth of Trichosporon cutaneum in calcium
    alginate gel beads upon bead structure and oxygen transfer characteristics, Enzyme
    Microb. Technol,1988:10,284-293
     57
    
    
    参考文献
    [31] Garde LV, Thomasset B, Barbotin JN. Electron microscopic evidence of an
    immobilized living cell system. Enzyme Microb. Technol.,1981,3:216-218
    [32] Charlet S, Gillet F, Villarreal ML, et al. Immobilisation of Solanum
    chrysotrichum Plant Cells Within Ca-alginate Gel Beads to Produce an Antimycotic
    Spirostanol Saponin, Plant Physiol. Biochem, 2000, 38 :875-880.
    [33] Karel SF,Robertson CR. Cell mass synthesis and degradation by immobilizsed
    Escherichis col,Biotechnol. Bioeng.1989, 34:337-356
    [34] Siess MH,Divies C. Behaviour of Saccharomyces cerevisiae cells entrapped in
    polyacrylamide gel and performing alsoholic fermentation, Appl Microbiol
    Biotechnol,1981,12:10-15
    [35] Lee SL, Cheng HY, Chen WCh,et al. Production of ν-decalactone from
    ricinoleic acid by immobilized cells of Sporidiobolus.salmonicolor,Process
    Biochemistry ,1998, 33(4) : 453-459
    [36] Kewwloh H,Heipieper HJ,Rehm HJ. Phenol tolerance of immobilized bacteria.
    In Physiology of Immobilized cells, In Physiology of Immobilized cells,ed. Bont JAM,
    Visser J,Mattiasson B and Tramper J. Amsterdam, Elsevier Science Publisher, 1990,
    212-223
    [37] Lindsey K, Yeoman MM, Black GM. A novel methods for the immobilization
    and culture of plant cells, FEBS Letter, 1983,155:143-149.
    [38] 黄艳,赵德修,李佐虎. 植物细胞生物反应器培养的研究进展(I),植物学通
    报, 2001, 18 (5):567-570
    [39] 李春,张长平,元英进. 南方红豆杉悬浮培养细胞团区域化及营养功能分化
    的研究,中草药, 2000,31(8) : 617-619
    [40] Curtis RW,Wang P, HumphreyA. Role of calcium and differentiation in enhanced
    sesquiterpene elicitation from calcium alginate-immobilized plant tissue,Enzyme
    Microbe.Technol.,1995,17:554-557
    [41] Komaraiah P,Ramakrishna SV, Reddanna P. Enhanced production of plumbagin
    in immobilized cells of Plumbago rosea by elicitation and in situ adsorption, Journal
    of Biotechnology, 2003,101:181-187
    [42] Villegas M, Rosa L, Brodelius E. Effects of alginate and immobilization by
    entrapment in alginate on benzophenanthridine alkaloid production in cell suspension
    cultures of Eschscholtzia californica, Biotechnology Letters,1999,21: 49-55
    [43] Mori A,Matsumoto N, Imai C. Growth behavior of immobilized acetic acid
    bacteria Biotechnol. Lett ,1989,11:183-188
     58
    
    
    参考文献
    [44] Saucedo NJE,Barbotin JN, Thomas D. Ultrastructtural examination of Giberella
    fujihuroi mycelia: effect of immobilization in calcium alginate beads, Can.J.
    Microbiol,1989,36:1118-1131
    [45] 解玉冰,马小军,王毓福. 生物微胶囊传递模型的研究, 膜科学与技术,
    1997,17(4): 51-56
    [46] Gaserd O, Sannes A, Skjas G. Microcapsules of alginate–chitosan. II. A study of
    capsule stability and permeability, Biomaterials,1999,20: 773–783
    [47] Karel SF, Robertson CR. Bioeng Autoradiographic determination of mass
    transfer limitation in immobilized cell reactors,Biotechnol,1989,34:320-336
    [48] 郭敏亮,隋德新. 固定化植物细胞,植物学通报,1992,9(3):58-62
    [49] Stormo KE,Crawford RL. Preparation of encapsulated microbiol cells for
    environmental applications. Appl. Environ. Microbiol.,1992,58:727-730
    [50] 王建龙,周定. 固定化细胞凝胶内扩散行为研究进展,生物工程进展,1993,
    14(2):46-48
    [51] Hong J,Park,Yong HK. Production of cephalosporin C by immobilized
    Cephalosporium acremonium in polyethyleneimine-modified barium alginate.
    Enzyme and Microbial Technology, 1995,17:408-412
    [52] 袁丽红,罗雪梅,周名立. 包埋紫草细胞的海藻酸钙凝胶扩散性能,1996
    18(2):29-34
    [53] Cheethan P,Blunt K, Buche C. Physical studies on cell immobilization using
    calcium-alginate gels, Biotechnol and Bloeng,1979,21:2155
    [54] Tanaka H, Matsumara M, Veliky IA. Diffusion characteristics of substrates in
    calcium-alginate gel beads.Biotechnol and Bioeng.,1984,26:53
    [55] Vandenberg G.W, Drolet C, Scott SL. Factors affecting protein release from
    alginate–chitosan coacervate microcapsules during production and gastric intestinal
    simulation, Journal of Controlled Release 2001,77: 297–307
    [56] Skjak-Brak G, Grasdalen H, Simdsrod O. Inhomogeneous polysaccharide ionic
    gels,Carbohyd.Polym.1989,10:31-54
    [57] Choi HJ, Tao BY, Okos MR. Enhancement of secondary metabolite production
    by immobilized Gossypium arboreum cells, Biotechnol. Prog,1995,11:306-311
    [58] Faochinl PJ,Dicosmo F. Adheston of C.roseus cells to surfaces:Effect of substrate
    hydrophobicity,Biotechnol and Bioeng,1988,32:935-938
    [59] Orive G, Hernandez RM, Gascon AR, et al. Survival of Different Cell Lines in
    Alginate-agarose Microcapsules.European Journal of Pharmaceutical
     59
    
    
    参考文献
    Sciences,2003,18:23-30
    [60] Berry F, Sayadi S, Nasri M et al. Effect of growing conditions of recombinant E.
    coli in carrageenan gel beads upon biomass production and plasmid stability,
    Biotechnol Lett, 1988,10:619-624
    [61] 冯立,陈向东. 固定化好氧微生物细胞的供氧问题, 氨基酸杂志,
    1992,1:30-35
    [62] Gosmann B,Rehm HJ.Influence of growth behavior and physology of
    alginate-entrapped microorganisms on the cxygen consumption, Appl Microbiol.
    Biotechnol.,1988,29:554-559
    [63] Simon JP, Facteurs affectant la productivité et la longévité d’un bioréacteur
    continu utilisant Saccharomyces cerevisiae inclus dans une matrice d’alginate de
    calcium:2.Effects des taux d’inoculation,des contre-ions de gélification et de la
    géométrie des matrices. Belg,J Food ChemBiovhechnol, 1989,44:183-191.
    [64] Al-Rubeai MA,Spier R. Quantitative cytochemical analysis of immobilized
    hybridoma cells, Appl. Microbiol. Biotechnol, 1989,31:430-443
    [65] Westrin BA,Axeleson A. Diffusion in gels containing immonilised cells:A critical
    review, Biotechnol and Bioeng, 1991,38:439
    [66] Usha R.Pothakamury. Fundamental aspects of controlled release in roods, Trends
    in food science & Technology,1995,6(12):397-406
    [67] Cheetham PSJ,Blunt KW,Bucke C. Physical studies of cell immobilization using
    calcium alginate gels, Biotechnol. Bioeng. 1979,21:2155-2168
    [68] Johnson TS,Ravishankar GA,Venkataraman,LV. Elicitation of capsaicin
    production in freely suspended cells and immobilized cell cultures of Capsicum
    Frutescens Mill, Food Biotechnol.1991,5 (2),197-205
    [69] Asaki M,Ichinose T,Monjushiroh H. Polyamide microcapsules containing alginic
    acid :extractability of metal ions and surface characterization by XPS. J
    Microencap,1998,15(4):453-463
    [70] Zhao J, Zhu WH, Hu Q. Enhanced catharanthine production in Catharanthus
    roseus cell cultures by combined elicitor treatment in shake flasks and bioreactors,
    Enzyme and Microbial Technology,2001 (28): 673–681
    [71] Knight MR, Campbell AK, Smith SM, et al. Transgenic plant aequorin reports
    the effects of touch and cold-shock and elicitors on cytoplasmic calcium.
    Nture,1991,352:524-526
    [72] Haldimann D, Brodelius P. Redirecting cellular matabolism by immobilization of
     60
    
    
    参考文献
    cultured plant cells:Amodel study with Coffea Arabica, Phytochemistry,1987,26(5):
    1431-1434
    [73] Young DH,Kohle KH. Effect of chitosan on membrane permeability of
    suspension cultured Glysine max and phaseolus Vulgaris, Plant Physiol,1982,
    70:1449-1454
    [74] 杨玉敏,元英进,胡宗定. 化学法研究长春花细胞胞内产物释放行为,天然
    产物研究与开发,1996,8(2):1-7
    [75] 李春,元英进,胡宗定. 南方红豆杉悬浮培养细胞中糖代谢的波动性及其与
    紫杉烷合成关系的研究,石河子大学学报(自然科学版),2001, l5(6): 109-112
    [76] Stossel P,Leuba JL. Effect of chitosan, chitin and some aminosugars on growth of
    various soilborne phytopathogenic gungi, Phytophology, 1984,111:82-90
    [77] 葛志强,元英进,李景川.一种研究和鉴别悬浮培养红豆杉细胞凋亡与坏死
    的新方法, 植物生理学报,2001,27(3):231-234.
    [78] 汤章城主编,现代植物生理学实验指南,北京,科学出版社, 1999:127
    [79] Anderson AJ, Roger K, Teeper CS. Timing of Molecular Events Following
    Elicitor Treatment of Plant Cells, Physiol. Mol. Plant Pathol.,1991,38(1):1-13
    [80] Ormerod MG,Sun XM,Snowden RT et al. Increased membrane permeability of
    apoptotic thymocytes:a flow cytometric study,Cytometry,1993,14:595-602
    [81] Shinmyo A, Kimura H. Okada H. Physiology of α-amlase production by
    immobilized Bacillus amyloliquefaciens, Eur.J. Appl. Microbiol. Bioteachnol.,
    1982,14:7-12
    [82] 张长平. 悬浮培养南方红豆杉细胞真菌诱导生物学效应的研究,硕士学位论
    文,2000:59
    [83] Bolwell GP, Wojitaszek P. Mechanism for the generation of reactive oxygen
    species in plant defense: a broad perspective. Physiol. Mol., Plant Pathol,
    1997,51:347-366
    [84] Lichtenthaler HK. The stress concept in plants: an introduction., Ann Acad. Sci.
    1998,351:187-198
    [85] Hansen MB. Re-examination and further development of precise and rapid dye
    method for measuring cell growth/cell kill J. Immunol Method,1989:119-203
    [86] Eitzman PD, Srienc F. Dynamics of activation of a galactose-inducible promoter
    in Saccharonmyce cerevisiae .J.Biotechnol,1991,21:63-81
    [87] Chang CP, Yamamoto T, Kimura M. Release characteristics of an azo dye from
    poly(ureaurethane), Microcapsules Journal of Controlled Release, 2003, 86: 207–211
     61
    
    
    参考文献
    [88] 施中华,程井展. 绞股蓝细胞培养及其某些生理生化特性, 植物生理学通
    讯,1991,27(2):91-100
    [89] Shin SC, Lee HJ. Controlled release of triprolidine using ethylene-vinyl acetate
    membrane and matrix systems.European Journal of Pharmaceutics and
    Biopharmaceutics, 2002,54: 201–206

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700