相山矿田西部铀钍矿床的成矿机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以“全国钍资源调查与评价”项目为依托,以相山矿田西部火山热液型铀钍混合矿床—居隆庵、李家岭及邹家山矿床为研究对象,在总结、归纳大量国内外研究成果的基础上,对相山矿田西部的铀钍混合矿床进行蚀变岩石学、铀、钍矿物学、岩石化学、地球化学、流体包裹体、同位素及年代学进行系统研究,从而查明与钍矿化相关的蚀变特征,钍矿物的类型及钍的赋存状态,钍矿化样品的主、微量元素的地球化学特征,钍成矿期热液流体的成分、温度、盐度、密度等条件,钍矿化的形成时代,成矿过程中流体及矿化物质的来源,以及成岩与成矿过程的差异性,进而探讨热流体在钍矿化过程中的演化过程及钍成矿机理。
     通过相山矿田西部铀钍混合矿床的蚀变岩石学的研究工作,查明了该地区矿化蚀变的特征:碱交代期发育碳酸盐化、钠长石化,是早期单铀型矿化蚀变;灰绿色水云母、绿泥石化蚀变带的范围最广,但矿化程度不高;晚期紫色萤石化、磷灰石化蚀变,是成矿期与钍成矿关系最密切的蚀变类型。通过大量的薄片观察及电子探针工作总结了该地区钍的赋存状态:①以独立钍矿物形式存在于钍石、铀钍石、方钍石中;②以类质同象形式存在于沥青铀矿、晶质铀矿、铀石、钛铀矿中;③以微量类质同象存在于副矿物磷灰石、锆石、独居石、金红石、磷钇矿中。
     对蚀变及矿化样品分类统计对比表明,铀钍矿化程度高的样品具以下特征:富CaO、P_2O5,贫SiO_2;富集稀土元素,特别是重稀土元素,其LREE/HREE值低,轻、重稀土分异度大;富集Zr、Hf、Sm、Y、Yb等高场强元素,亏损Rb、Ba等大离子元素,同时由于矿化样品发育碳酸盐化与萤石化,导致其相对富Sr。矿化过程中形成大量的金属硫化物及副矿物导致相关微量元素的富集。
     通过对成矿前及成矿期流体包裹体均一温度及冰点温度的测定,并利用激光拉曼分析法测定其成分,结果表明成矿期流体中的气相成分主要为N_2、CH_4、H_2、CO_2等代表地幔物质的气体,成矿流体为中低温、中低盐度、低密度的流体,成矿期流体的温度要低于前期成矿的流体温度,钍成矿期的流体温度为190℃~200℃,但成矿期流体的盐度要高于前期成矿及成矿后期流体的盐度,而热流体的密度随着时间的演化逐渐变小。
     采用LA-ICP-MS对钍矿化期的铀钍矿物及钍矿化期伴生的磷灰石进行微区测年,首次获得了相山矿田西部铀钍混合矿床铀钍成矿的Th-Pb年龄97.5Ma,与相山第二期铀成矿的年龄99±6Ma非常接近,表明在这一成矿阶段,铀钍是共沉淀的。结合前人的Rb-Sr、Sm-Nd、Pb同位素研究资料,证明相山矿田火山岩-次火山岩主要是下地壳及基底早元古代-中元古代变质岩部分熔融的产物,同时也有地幔岩浆活动的参与,而铀、钍成矿期的萤石中的Sm-Nd同位素证据及铀、钍成矿期萤石中流体包裹体的成分表明,成矿热液中有地幔流体的成分。
     矿化样品中的U、Th等不相容元素的含量均远大于正常地壳及地幔中的不相容元素。来自地幔的碱性热液流体含有丰富的矿化剂(CO_2、CO、CH_4、H_2S、H_2等),可以加强热液与围岩中物质运移的微循环,萃取围岩中的不相容元素,同时在深部地幔流体上升过程中,地幔流体本身的演化过程也是富集铀、钍及稀土等不相容元素的过程,最终形成了富含U、Th及REE的成矿热液。热流体运移过程中,温度、盐度、成分他及PH值的变化,是铀钍分离成矿的重要条件。碱性富CO_2的热液,有利于U的络合迁移,但不利于Th的络合迁移;而酸性热液在富F-离子的情况下,钍、铀可以与之形成络合物迁移,形成铀钍共沉淀,使铀钍混合矿化与早期单铀型矿化分离;同时富F-的热液流体增大了硅酸盐在水溶液及流体相中的溶解度,导致萤石化的矿样中磷灰石颗粒边缘生长了大量自形的钍石,而不是方钍石。
Depending on the project--“The investigation and appraisal of thorium resourcesin China”, taking the volcanic hydrothermal type deposits of western Xiangshan orefield—Julongan deposit, Lijialing deposit and Zoujiashan deposit as the researchobjects, and summarizing a large amount of foreign and domestic research andanalyzing materials, this dissertation does the analysis on the following aspects:alteration petrology, uranium-thorium mineralogy, petrochemistry, geochemistry, fluidinclusion, isotope and chronology, finds out a series of conclusions about the thoriumalteration characterization, thorium mineral types and its existing occurrences, majorand trace elements’ geochemical characterizations of thorium mineralized samples,compositions, temperature, salinity, and density of thorium metallogenetic epoch fluidinclusions, the epoch of thorium metallization, origin of fluid and metallogenicmaterial in the mineralized process, and the differences between diagenetic andmetallogenic process, and discusses the evolution process and the thoriummetallogenic mechanism.
     Through the alteration petrology research of western Xiangshan ore field, itclarifies the alteration characters of this area:the alkali alteration phase developingcarbonation and albitizaiton is the the single uranium mineralization phase; the sagegreen hydromicazation and chloritization alteration zone spreads widely but alwayswith low grade mineralization; and the purple fluoritization and apatitization areintensely related with thorium mineralization. Studying detailedly macroscopicoccurrence and microscopic petrology characteristics of ore beraing thin sections, theauthor summarizes the occurrences of thorium in these deposits: existing asindependent thorium minerals-thorite, uranothorite, and thorianite; lying asisomorphous admixture in uranium minerals–pitchblende, uraninite, uranothorite,coffinite, and brannerite; occurring as microisomorphic form in accessory minerals-apatite, zircon, monazite, rutile, and xenotime.
     Comparing the analyzing material of the alteration samples, it indicates thaturanium and thorium rich minerals have the characters as the following: rich in CaO, and P_2O5,poor in SiO_2; high content of REE especially HREE, low ratio ofLREE/HREE-high differentia degree of LREE and HREE; rich in high field intensityelements such as Zr, Hf, Sm, Y, and Yb, poor in large ion elements such as Rb, andBa, but due to the carbonation and fluoritization with relatively high content of Sr.Sulfides and accessory minerals are the main cause of the enrichment of some relativerare elements.
     Testing the homogeneous temperatures and the freezing temperatures of the fluidinclusions in different metallogenetic phases, together with the components of thefluid inclusions testing by Laser-Roman spectrometry, the results show that the gasphase of fluid inclusions are composed of N_2,CH_4, H_2, CO_2and so on, which are thetypical components of mantle; the metallogenetic fluid is low-middle temperature,low-middle salinity, and low density; the temperature of metallogenetic phase is lowerthan the temperature of prior metallogenetic phase, but the salinity of metallogeneticfluid is higher than the prior metallogenetic fluid; and the temperature of thoriummineralization is190℃~200℃。.
     Using LA-ICP-MS to testing the chronology data of uranium and thoriumminerals and the accompanied apatite, this paper obtain97.5Ma Th-Pb age ofmetallization for the first time which is similar to the second phase of Umetallization-99.0Ma. Combining with the previous isotopic research material ofRb-Sr、Sm-Nd、Pb, it proves that the volcanic-subvolvanic rocks of Xiangshan isderived from the part melting of low crust and early-middle Proterozoic metamorphicrocks, besides some mantle magma; at the mean time both the Sm-Nd isotopic dataand the fluid inclusion components of metallogenetic fluorite indicate themetallogenetic thermal fluid is partly composed of mantle substance.
     The ore-forming substances partly are derive from mantle fluid, and partly comefrom wall rock which the fluid goes up through, abundant incompatible elements areextracted. Mineralized samples are richer in U,Th and other incompatible elementsthan normal crust and mantle.
     Alkali thermal fluid come from mantle with plenty mineralizer (CO_2、CO、CH_4、 H_2S、H_2and so on), can promote the microcirculation of matter movement betweenthermal fluid and wall rock, and extract the incompatible elements from wall rock.when the mantle fluid uprising, the evolution of the mantle fluid also is the process ofthe enrichment of U, Th, REE and other incompatible elements, and finally forms theore-bearing thermal fluid rich in U, Th, and REE. In the process of metallogeneticfluid moving, the change of temperature, salinity, compositions and the PH is theimportant conditions, in which U,Th can precipitate separately. Alkali thermal fluidwith CO_2, is benefit for the migrating of U, but the thorium; in the other side acidicthermal fluid with F-is favorable for the migration of both uranium and thorium,therefore uranium and thorium can form ore-veins separately, and the thermal fluidrich in F-can enlarge the solubility of silicate in water solutions and fluids, leading thegrowth of thorite (not the thorianite) around the apatite in the alteration zone offluoritization.
引文
陈繁荣,沈渭洲,王德滋等.1220铀矿田同位素地球化学和矿床成因研究[J].大地构造与成矿学,1990,14(1):69-78.
    陈辉,邵济安.白云鄂博地区碳酸岩的形成方式及构造背景[M].地质矿产部沈阳地质矿产研究所主编:中国北方板块构造论文集,1987,2:73-79.
    陈小明,陆建军,刘昌实等.桐庐、相山火山-侵入杂岩单颗粒锆石U-Pb年龄[J].岩石学报,1999,15(2):272-278.
    陈跃辉,陈肇博,陈祖伊等.华东南中新生代伸展构造与铀成矿作用[M].北京:原子能出版社.1998.
    陈肇博,季树藩,谢佑新.相山破火山口内中低温热液铀矿床的铀钍类质同像研究[J].铀矿地质,1988,4(2):65-72.
    陈肇博,范军,郭智添,等.赛马碱性岩与成矿作用[M].原子能出版社.1996,181-200.
    杜乐天.地壳流体与地幔流体间的关系[J].地学前缘,1996,3:172-180.
    杜乐天,王文广.华南花岗岩型铀矿找矿新目标——绢英岩化铀矿类型[J].铀矿地质,2009,23(2):86-90.
    范洪海.邹家山铀矿床成矿条件及找矿方向[J].华东铀矿地质,1996,3-4:1-8.
    范洪海,凌洪飞,王德滋,沈渭洲,刘昌实,姜耀辉.江西相山铀矿田成矿物质来源的Nd、Sr、Pb同位素证据[J].高校地质学报,2001,7(2):139-145.
    范洪海,凌洪飞,王德滋,刘昌实,沈渭洲,姜耀辉.相山铀矿田成矿机理研究[J].铀矿地质,2003,19(4):208-213.
    方锡珩,侯文尧,万国良.相山破火山口火山杂岩体的岩石学特征[J].岩石矿物及测试,1982,(1):1-10.
    胡恭任,章邦桐.赣中变质岩基底的Nd同位素组成和物质来源[J].岩石矿物学杂志,1998,17(1):35-40.
    胡恭任,章邦桐.赣中变质基地Nd模式年龄初步研究及基底地壳的形成时代[J].铀矿地质,1999,15(3):137-141.
    华东铀矿地质志(上、下卷)[M].中国核工业地质局.2005.
    黄国龙,尹征平,凌洪飞,邓平,朱捌,深渭洲.粤北地区302矿床沥青铀矿的形成时代、地球化学特征及其成因研究[J].矿床地质,2010,29(2):61-63.
    华东铀矿地质志(上、下卷)[M].中国核工业地质局.2005.
    黎彤.化学元素的地球丰度[J].地球化学,1976,3:167-174.
    李坤英.浙闽赣中生代火山岩同位素年代学研究[J].南京地质矿产研究所所刊(增刊),1989,5.
    李献华,桂训唐.花岗岩的定年方法学讨论[J].地球化学,1990,(4):303-311.
    李献华,桂训唐.万洋山─诸广山加里东期花岗岩的物质来源─I.Sr-Nd-Pb-O多元同位素体系示踪[J].中国科学(B辑),1991,5:533-540.
    李振球,胡中林.720铀矿床“双溶液混合”成矿作用的探讨[J].地球化学,1990,(1):1~10.
    廖宇华.相山铀矿田稀土元素地球化学特征及示踪研究[J].华东地质学院学报,2000,23(2):150-153.
    林祥铿.赣杭构造带若干铀矿床的同位素年龄研究及铀源初探[J].铀矿地质,1990,6(2):257-264.
    刘昌实,薛纪越,张根娣等.江西相山碎斑熔岩成因和钾长石显微结构[J].岩石矿物学杂志,1992,11(3):243-250.
    刘家远.相山岩体—一个壳源花岗质浅成侵入火山杂岩体[J].地球化学,1985,2:142-149.
    刘小于.大陆中酸性火山岩的成因演化与铀成矿作用[D].核工业北京地质研究院博士学位论文,1991.
    刘正义,杜乐天,温志坚.相山铀矿田特富矿中铀磷关系的模拟实验研究[J].东华理工学院学报,2007,30(2):101-106.
    刘斌,沈昆.流体包裹体热力学[M].北京:地质出版社,1999.
    卢焕章,李秉伦,沈昆,等.包裹体地球化学[M].北京:地质出版社,1990.
    卢焕章.成矿流体[M].北京:科学技术出版社,1997.
    卢焕章,范宏瑞,倪培,欧光习,沈昆,张文准.流体包裹体[M].北京:科学出版社,2004:1-487.
    孟艳宁,范洪海,孙志富,陈璋如.相山矿田居隆庵矿床钍矿物特征研究[J].矿物岩石地球化学通报,2011,30(2):180-188.
    邱爱金,郭令智,郑大瑜,舒良树.江西相山地区中、新生代构造演化对富大铀矿形成的制约[J].高校地质学报,1999,5(4):418-424.
    沈渭洲,陈繁荣,刘昌实等.江西两类火山-侵入杂岩的同位素地球化学特征和物质来源[J].岩石学报,1992,8(2):177-183.
    沈渭洲.同位素地质学教程[M].北京:原子能出版社,1997.
    邵飞,陈晓明,徐恒力,唐湘生,邹茂卿,胡茂梅,何晓梅.相山矿田成矿物质来源探讨[J].东华理工大学学报(自然科学版),2008,31(1):39-45.
    泰勒,弗莱尔.花岗岩类的稀土元素岩石地球化学[J].国外地质科技,1985,5:65-75.
    汪相, Pipin J P.花岗岩锆石中的微量元素的配分特征[J].地质科学,1992,(2):131—140.
    魏思华.中国铀矿物[M].原子能出版社,1979,65-73.
    温志坚,杜乐天,刘正义.相山铀矿田磷灰石与富矿形成的关系[J].铀矿地质,1999,15(4):217-224.
    温志坚,杜乐天,刘正义.相山矿田热液水云母化及其与铀矿化关系研究[J].矿床地质,2000,19(3)(2):257-263.
    吴柏林,周鲁民.相山矿田居隆庵铀矿床成矿物理化学条件分析.西北大学学报(自然科学版),2006,36(1):119-124.
    王德滋,刘昌实,沈渭洲等.桐庐Ⅰ型和相山S型两类碎斑熔岩对比[J].岩石学报,1993,9(1):44-52.
    王蕾,张树明,蒋振频,郭国林.相山矿田沙洲矿床流体包裹体研究[J].大地构造与成矿学,2008,32(4):500-508.
    王凯怡,范宏瑞,谢奕汉.白云鄂博碳酸岩墙的稀土和微量元素地球化学及其成因的启示[J].岩石学报,2002,18(3):340-348.
    巫建华,刘帅,余达淦,章邦桐.地幔流体与铀成矿模式[J].铀矿地质,2005,21(4):196-203.
    夏林圻,夏祖春,张诚等.相山中生代含铀火山岩岩石地球化学[M].北京:地质出版社,1992.
    徐培苍,李如壁,王永强,等.地学中的拉曼光谱[M].西安:陕西科学技术出版社.1996.
    杨水源,蒋少涌,姜耀辉,赵葵东,范洪海.江西相山流纹英安岩和流纹英安斑岩锆石年代学和Hf同位素组成及其地质意义[J].中国科学:地球科学,2010,40(8):953~969.
    邹东风,李方林,张爽,黄彬,宗克清.粤北下庄335矿床成矿时代的厘定-来自LA-ICP-MS沥青铀矿U-Pb年龄的制约[J].矿床地质.2011,30(5):912-922.
    周文斌,史维浚.相山矿田铀的中和还原成矿作用[J].矿床地质,1996,15(4):351-357.
    周文斌,史维浚,吕跃进.相山铀矿田成矿作用的地球化学模拟[J].地球化学,1997,26(5):62-70.
    周新民,朱云鹤.中国东南部晚元古代碰撞造山带与地缝合带的岩石学证据[M].见:李继亮主编,东南大陆岩石圈结构与地质演化,北京:冶金工业出版社,1993,87-97.
    周新民.岩浆混合作用与底侵作用[M].见:欧阳自远主编,世纪之交矿物学岩石学地球化学的回顾与展望,北京:原子能出版社,1998.
    周新民,李武显.中国东南部晚中生代火成岩成因:岩石圈消减和玄武岩底侵相结合的模型[J].自然科学进展,2000,10(3):240-247.
    郑大中.铀的迁移富集机理新探索[J].四川地质学报,2003,23(2):77-86.
    杨水源,蒋少涌,姜耀辉,赵葵东,范洪海.江西相山流纹英安岩和流纹英安斑岩锆石年代学和Hf同位素组成及其地质意义[J].中国科学:地球科学,2010,40(8):953~969.
    余达淦,艾桂根,黄国夫等.江西周潭群同位素年龄特征及其地质意义[J].地球学报,1999,20(2):195-200.
    余建英,何旭宏.数据统计分析与Spss应用[J].人民邮电出版社,2004,163-172.
    赵长有.白云鄂博的钍与铀(一)[J].稀土信息.2006,7:12-15.
    赵长有.白云鄂博的钍与铀(二)[J].稀土信息.2006,8:13-14.
    赵长有.白云鄂博的钍与铀(三)[J].稀土信息.2006,9:21-23.
    张国玉,王生忠,王正其,梁良.相山、下庄铀矿田稀土元素特征及示踪研究[J].东华理工学院学报,2007,30(1):9-14.
    张理刚等.东亚岩石圈块体地质[M].北京:科学出版社,1995,35-39.
    张树明,王蕾,蒋振频,郭国林,安伟涛,刘金枝,邵上.邹家山铀矿床流体包裹体研究[J].铀矿地质,2009,25(5):263-269.
    张万良,李子颖.江西邹家山铀矿床成矿特征及物质来源[J].现代地质,2005,19(3):369~374.
    张万良,李子颖.相山“流纹英安岩”单颗粒锆石U-Pb年龄及地质意义[J].岩石矿物学杂志,2007,26(1):21-26.
    张万良,余西垂.相山铀矿田成矿综合模式研究[J].大地构造与成矿学,2011,35(2):249~258.
    张学权,季树潘,王思龙,仇本良,朱有根.相山矿田热液成矿作用的地球化学演化[J].放射性地质,1982,412-416.
    章雨旭,杨占峰,张绮玲,等.白云鄂博矿床及北京西山微晶丘地质、地球化学研究[M].地质出版社,2009.
    Ayuso R A. Lead-isotopic evidence for distinct sources of granite and for distinctbasements in the northern Appalachians, Maine[J]. Geology,1986,14:322-325.
    Bodnar R J. A method of calculating fluid inclusion volumes based on vaporbubble diameters and P-V-T-X properties of inclusion fluids[J]. Economic Geology,1983,78(3):535-542.
    Burke E A J. Raman microspectrometry of fluid inclusions[J]. Lithos,2001,55(1-4):139-158.
    Chen JF, Jahn BM. Crustal evolution of southeastern China, Nd and Sr istopicevidence[J]. Tectonophysics,1998,284:101-133.
    Chen Zhaobo.“double mixing” genetic model of uranium deposits in volcanicrocks and relationship between China’s Mesozoic vein-type Uranium deposits andPacific plate tectonics,Metallogensis of Uranium. Proceedings of the26thIGC,Geoinstitute, Beogard,1981,65-97.
    Chipley D, Polito P A and Kyser T K. Measurement of U-Pb ages of uraniniteand davidite by laser ablation-HR-ICP-MS[J]. American Mineralogist,2007,92(11-12):1925-1935.
    Gerald M. Friedman, Abraham J. Amiel. Submarine cementation in reefs:example from the red sea[J]. Journal of Sedimentary petrology,1974,44(3):816-825.
    Gilder S. A., J. Gill, R. S. Coe et al. Isotopic and paleomagnetic constraints onthe Mesozoic tectonic evolution of south China[J]. Journal of Geophysical Research,1996,101(B7):16,137-16,154.
    Hanson G N.1980. Rare earth elements in petrogenetic studies of igneoussystems. NN.Rev. Earth&Planet Sci,8:371-406.
    Hans Keppler, Peter J. Wyllie.1990. Role of fluids in transport and fractionationof uranium and thorium in magmatic processes [J]. Nature,348,6:531-533.
    Haas J R, Shock E and Sassan D C. Rare earth element s in hydrothermalsystems: Estimates of standard part ial molal thermodynamic properties of aqueouscomplexes of the rare earth elem ents at high pressures and t emperatures [J].Geochimica et Cosmochimica Acta,1995,59(21):4329-4350.
    Junji Yamamoto, Hiroyuki Kagi, ichiro Kaneoka, Yong Lai, Vladimir S.Prikhod’ko, Shoji Arai. Fossil pressures of fluid inclusions in mantle xenolithsexhibiting rheology of mantle minerals: implications for the geobarometry of mantleminerals using micro-Roman Spectroscopy[J]. Earth and Planetary Science Letters,2002,198,511-519.
    Keppler H, Wyllie P J. Partitioning of Cu, Sn, Mo, W, U,and Th between meltand aqueous fluid in the systems haplogranite-H2O-HCl andhaplogranite-H2O-HF[J].Contrib Mineral Petrol,1991,109:139-150.
    London D. Magmatic-hydrothermal transition in theTanco rare-elementpegmatite: Evidence fromfluid inclusions and phase-equilibriumexperiments[J].American Mineralogist,1986,71:376-396.
    Ludwig K R. ISOPLOT3.00: A geochronological t oolkit f or m-icrosoft excel[M]. Berkeley: Berkeley Geochronology Cent er, California.Liu Y S, Hu Z C, Gao S,Günther D, Xu J, Gao C G and Chen H H.2008. In situ analysis of major and traceelements of anhydrous minerals by LA-ICP-MS without applying an internalstandard[J]. Chemical Geology,2007,257:34-43.
    M. A. G. Andreoli, C. B. Smith, M. Watkeys, et al. The Geology of theSteenkampskraal monazite deposit, South Afric: Implications for Ree-Th-Cumineralization in Charnockite-Granulite terranes[J]. Economic Geology,1994,89:994-1016.
    Mclennan S M and T aylor S R. Rare earth mobilit y associated with uraniummineralization[J]. Nature,1979.282(15):247-250.
    McMillan PE. Hofmeister AM. Infrared and Raman spectroscopy[J]. Rev.Mineral,1988.18:99~159
    Mortimer H. Staatz, Thorium Veins in the United states[J]. Economic Geology,1974,69:494-507.
    Paul F. Mcmillan. Raman spectroscopu in mineralogy and geochemistry[J]. Earthplanet,1989,17:255-283。
    Ramboz C, Pichavant M, Weisbrod A. Fluid immiscibility in natural processes:Use and m–issue: II Interpretation of fluid inclusion data in terms of immiscibility[J].Chem Geol,1982,37:29-48.
    Robert M. Hazen, Rodney C. Ewing,Dimitri A. Sverjensky. Evolution ofuranium and thorium minerals[J]. American Mineralogist,2009,94:1293~1311.
    Samson S D, Coler D G, Speer J A. Geochemical and Nd-Sr-Pb isotopiccomposition of Alleghanian granites of the southern Appalachians: origin, tectonicsetting, and source characterization[J]. Earth Planet. Sci. Lett.,1995,134:359-376.
    Shen Weizhou, Ling Hongfei, Li Wuxian et al. The Nd-Sr isotope study ofMesozoic granitoids in Jiangxi province[J]. Chinese Science Bulletin,1999,44(15):1427-1431.
    Uranium and thorium deposits of Greenland[J]. world mining,1974,27,3.
    Webster J D, Holloway J R. Partitioning of F and Cl between magmatichydrothermal fluids and highly evolved granitic magmas[A]. STEIN H J, HANNAH JL.Ore-Bearing Granite Systems:Petrogenesis and Mineralizing Processes[C].Geological Society ofAmerica Special Paper246,1990.21-34.
    Wiedenbeck M, Alle P, Corfu F, Griffin W L, Meier M, Oberli F, Quadt A V,Roddick J C and Spiegel W.1995. Three natural zircon standards for U-Th-Pb, Lu-Hf,trace element and REE analyses[J]. Geostandards and Geoanalytical Research,19:1-23.
    Wilson M. Ignesous petrogenesis. London: Unwin Hyman,1989.
    Yao Cui,J.K. Russell. Nd-Sr-Pb isotopic studies of the southern Coast PlutonicComplex, southwestern British Columbia[J]. Geological Society of America Bulletin,1995,107(2):127-138.
    Zheng Yongfei, Fu Bin and Gong Bing. The thermal history of the Huangmeijiangranite intrusion in Anhui and its relation to mineralization: isotopic evidence[J]. ActaGeologica Sinica,1996,9(2):168-180.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700