华夏地块闽西北地区变质岩系演化及其在前寒武纪超大陆重建中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
华夏地块位于华南地块东南部,其北东段的闽西北地区零星的出露基底变质岩系,自古元古代形成以来,至晚古生代遭受强烈的变质变形,经历高角闪岩相—混合岩化作用。本论文主要运用详细的野外地质观察、系统的采样、岩相学研究、全岩地球化学、锆石U-Pb和Lu-Hf同位素、微量元素、角闪石和黑云母40Ar/39Ar定年以及矿物化学成分测定等研究方法,旨在揭示闽西北地区混合岩中新成体、长英质副变质岩以及基性变质岩的年代学特征和存在的相互关系,从而讨论本区变质岩系演化过程及其在前寒武纪Rodinia超大陆重建中的响应。
     获得主要认识如下:
     1.根据变质程度和变形特征,华夏地块闽西北地区变质岩系可分为两种类型,(1)经历中高级变质作用且发生流变的岩石和(2)经历过中级变质作用且发生韧性变形的岩石。本次研究所得的新La-ICPMS锆石U-Pb年龄数据以及前人的年代学研究表明,由于早-中古生代(~473-~423 Ma)的构造-热事件对闽西北地区变质岩产生的强烈再造作用,使其成为复杂的变质变形地质体,应采用“杂岩体”对其命名,代替原先所使用的如“群”、“组”等岩石地层学分类命名方法。
     2.华夏地块副变质岩原岩中锆石U-Pb年龄图谱中,位于~1800 Ma处明显的峰值表明其与北美基底物质存在一定联系,而不同于东印度和东南极年龄图谱。尽管在西澳大利亚的锆石年龄图谱中也存在~1800 Ma的峰值,然而其176Hf/177Hf比值(0.280706-0.281510)显然低于华夏地块南西段的比值(0.281515-0.282098)和此次对华夏北东段研究结果(0.281232-0.282213)。另外,碎屑锆石的Hf同位素研究结果表明华夏地块和扬子地块西北部在古-中古元古代时期存在存在显著的新生地壳物质,这一特征完全不同于西澳大利亚。这些证据表明,华夏地块同北美大陆存在着相似性,从而佐证Li et al.(2008)的Rodinia超大陆重建方案,即在晚中元古代Rodinia超大陆聚合之前以及聚合过程中,华夏地块同西Laurentia大陆相邻。
     3.闽西北地区长英质副片麻岩的原岩为不成熟沉积物,包括硬砂岩、长石砂岩以及岩屑砂岩等。沉积物源主要来自于发生在新元古代(820±6 Ma,780±6 Ma,776±6 Ma,758±3 Ma,740±8 Ma和722±9 Ma)的几次岩浆事件,其沉积时间上限可能不早于中新元古代(~680 Ma)。大量变质岩中含有0.99-0.72 Ga的碎屑岩浆锆石,说明这些构造-热事件的记录可能与新元古代Rodinia超大陆的聚合与裂解相关。
     4.在闽西北地区测得的La-ICPMS锆石U-Pb深熔年龄新数据表明,该区存在强烈而广泛的早古生代构造-热事件,并可能与造山运动相关。此次造山运动起始于中寒武纪,持续至中泥盆纪,其间存在三个主要期次(~473 Ma、~445 Ma、~423 Ma),并且其主要造山事件(包括同造山和后造山熔融)在华夏地块北东段发生于~473-~407 Ma,在其南西段则发生于-468.415 Ma。华夏地块古生代年龄图谱中存在的峰值(约488、471、455、440和415 Ma)处于秦岭-桐柏-大别在早-中古生代(512-406 Ma)发生的造山事件时限内。这说明当时两个造山事件之间存在着某种联系或相互作用。
     5.闽西北地区“加里东”造山事件的延续时间不短于~50 Myr,始于~473 Ma(早奥陶纪)或更早,完成于~423 Ma(中志留纪)或更晚。华夏地块的“加里东”造山事件的起因更可能是陆内碰撞而非洋壳俯冲或弧陆碰撞。闽西北地区天井坪杂岩体、交溪和麻源杂岩体不均一的冷却曲线,以及华夏地块不同区域发生深熔和岩浆事件的时限存在的差异性,暗示了“加里东”构造-热事件在华夏地块造山带的不均一性。
This thesis focuses on the Paleoproterozoic to Late Paleozoic basement evolution of the metamorphic rocks scattered in the NW Fujian Province, the NE Cathaysia Block the southeastern area of South China. Field observation, systematic sampling and petrographic investigation combined with of whole rock geochemistry, zircon U-Pb, Lu-Hf isotopes, trace elements, amphibole and biotite 40Ar/39Ar analyses and mineral chemistry study were applied in this project to determine the nature, ages and relations of the leucosomes, felsic paragneiss and mafic metamorphic rocks in study area and their implications to the reconstruction of the Precambrian Rodina Supercontinent.
     Following conclusions are made:
     1. Based on this study, according to their metamorphism and deformation characteristics, the metamorphic rock series in the study area can be divided into two types, moderately to strongly metamorphosed rock series that experienced ductile deformation and moderately metamorphosed rock series that have experienced ductile deformations. New La-ICPMS U-Pb zircon ages presented here and in previous study suggest that the original litho-stratigraphy should be abandoned and the terminology "Complex" should be used instead of "Group" and "Formation" for the high grade metamorphic rock series in northwestern Fujian, where the protoliths were strongly reworked by Early Paleozoic tectono-thermal events.
     2. Obvious zircon U-Pb age peaks of~1800 Ma suggest that the protoliths of the Cathaysia Block be comparable to the basements of North America rather than those of Eastern India and East Antarctica. Although the peaks of~1800 Ma are also present in Western Australia, their 176Hf/177Hf ratios (0.280706-0.281510) are apparently lower than those of zircons from SW Cathaysia (0.281515-0.282098) and from this study (0.281232-0.282213, NE Cathaysia). Besides, detrital zircons in Cathaysia and NW Yangtze indicate significant juvenile input during Paleo-to Mesoproterozoic according to the zircon Hf isotopes, which are distinctly different from Western Australia. These evidences suggest that the basement of the Cathaysia share similarities with that of North America, lending support for the Rodinia configuration proposed by Li et al. (2008), in which Cathaysia was next to western Laurentia before and during the late Mesoproterozoic assembly of Rodinia.
     3. The protoliths of the felsic paragneiss in the NW Fujian area are immature sediments, consisting of greywacke, arkose and lithic arenite compositions. The significant input of the paragneiss protolith was dominantly formed by several magmatic events during Neoproterozoic (820±6 Ma,780±6 Ma,776±6 Ma,758±3 Ma,740±8 Ma and 722±9 Ma), probably deposited not early than middle Neoproterozoic (-680 Ma). Many metamorphic rocks contain 0.99-0.72 Ga detrital magmatic zircons, which are interpreted as reflecting the tectono-thermal events related to the assembly and break-up of the Rodinia supercontinent during the Neoproterozoic.
     4. In this study, new La-ICPMS U-Pb anatectic zircon data from the NW Fujian area suggest that the strong and widespread tectono-thermal events were related to the orogeny probably having started during the Middle Cambrian and lasted until the Middle Devonian, consisting of at least three main episodes (~473 Ma,~445 Ma,~423 Ma), with major orogeny events (including syn-to post-orogenic melting) constrained between~473 Ma and~407 Ma in the NE Cathaysia, and between~468 Ma and~415 Ma in the SW Cathaysia. The age peaks in the Cathaysia Block (ca. 488,471,455,440 and 415 Ma) are within the age range of the Qinling-Tongbai-Dabie orogen during 512-406 Ma. This suggests a possible linkage or interaction of the two orogens.
     5. The duration of the "Caledonian" orogeny in the NW Fujian area was no shorter than~50 Myr, starting at~473 Ma (~Early Ordovician) or earlier, and terminating at~423 Ma (~Middle Silurian) or later. The "Caledonian" orogenic event in the Cathaysia Block was likely due to an intracontinental collision rather than the subduction of oceanic crust or arc-continental collision. Considering the inhomogeneous cooling paths for the Tianjingping, the Jiaoxi and Mayuan complexes, and different time restraint of the widespread anatectic and magmatic events occurred in different places, the "Caledonian" tectono-thermal events in the Cathaysia Block might vary between different segments of the orogen.
引文
[1]Huang Q Z, Song Y X, Zhuang J M, et al. Geological Map of Fujian Province.1998, Fujian Province Map Press:Sanming.
    [2]Metcalfe I. Gondwanaland dispersion, Asian accretion and evolution of eastern Tethys. Australian Journal of Earth Sciences,1996,43(6):605-623.
    [3]Metcalfe I. Paleozoic and Mesozoic tectonic evolution and palaeogeography of East Asian crustal fragments:The Korean Peninsula in context. Gondwana Research,2006,9(1-2): 24-46.
    [4]Hoffman P F. The break-up of Rodinia, birth of Gondwana, true polar wander and the snowball Earth. Journal of African Earth Sciences,1999,28(1):17-33.
    [5]Veevers J J. Tectonic climatic supercycle in the billion-year plate-tectonic Eon-Permian Pangean icehouse alternates with Cretaceous dispersed-continents greenhouse. Sedimentary Geology,1990,68(1-2):1-16.
    [6]Veevers J J. Gondwanaland from 650-500 Ma assembly through 320 Ma merger in Pangea to 185-100 Ma breakup:supercontinental tectonics via stratigraphy and radiometric dating. Earth-Science Reviews,2004,68(1-2):1-132.
    [7]Hoffman P F. Did the breakout of Laurentia turn Gondwanaland inside-out? Science,1991, 252(5011):1409-1412.
    [8]Dalziel I W D. Neoproterozoic-Paleozoic geography and tectonics:Review, hypothesis, environmental speculation. Geological Society of America Bulletin,1997,109(1):16-42.
    [9]Weil A B, Van der Voo R, Mac Niocaill C, et al. The Proterozoic supercontinent Rodinia: paleomagnetically derived reconstructions for 1100 to 800 Ma. Earth and Planetary Science Letters,1998,154(1-4):13-24.
    [10]Karlstrom K, Harlan S, Williams M, et al. Refining Rodinia:Geologic evidence for the Australia-western US connection in the Proterozoic. GSA Today,1999,9(10):1-7.
    [11]Piper J D A. The Neoproterozoic Supercontinent:Rodinia or Palaeopangaea? Earth and Planetary Science Letters,2000,176(1):131-146.
    [12]Rogers N, Macdonald R, Fitton J G, et al. Two mantle plumes beneath the east African rift system:Sr, Nd and Pb isotope evidence from Kenya Rift basalts. Earth and Planetary Science Letters,2000,176(3-4):387-400.
    [13]Li Z and Powell C. An outline of the palaeogeographic evolution of the Australasian region since the beginning of the Neoproterozoic. Earth-Science Reviews,2001,53(3-4):237-277.
    [14]Meert J. Paleomagnetic evidence for a Paleo-Mesoproterozoic supercontinent Columbia. Gondwana Research,2002,5(1):207-215.
    [15]Ross G M and Eaton D W. Proterozoic tectonic accretion and growth of western Laurentia: results from Lithoprobe studies in northern Alberta. Canadian Journal of Earth Sciences, 2002,39(3):313-329.
    [16]Condie K C. The supercontinent cycle:are there two patterns of cyclicity? Journal of African Earth Sciences,2002,35(2):179-183.
    [17]Sears J and Price R. The hypothetical Mesoproterozoic supercontinent Columbia: implications of the Siberian-west Laurentian connection. Gondwana Research,2002,5(1): 35-39.
    [18]Wilde S and Youssef K. A re-evaluation of the origin and setting of the Late Precambrian Hammamat Group based on SHRIMP U-Pb dating of detrital zircons from Gebel Umm Tawat, North Eastern Desert, Egypt. Journal of the Geological Society,2002,159(5):595.
    [19]Zhao G, Sun M, Wilde S, et al. Assembly, accretion and breakup of the Paleo-Mesoproterozoic Columbia supercontinent:records in the North China Craton. Gondwana Research,2003,6(3):417-434.
    [20]Li Z, Wang J, Li X, et al. From Sibao orogenesis to Nanhua rifting:late Precambrian tectonic history of eastern South China'Can overview and field guide.2003, Beijing: Geological Publishing House.
    [21]Grabau A W. Stratigraphy of China, Part Ⅰ:Paleozoic and Older.1924, Beijing:The Geological Survey of Agriculture and Commerce.1-528
    [22]Huang B, Sun M Z, and Wu S X. Studies on genesis and characters of Caledonian migmatites in middle Wuyi Montains. Acta Petrologica Sinica,1994,10(4):427-439.
    [23]Ren J S. On the geotectonics of southern China. Acta Geologica Sinica-English Edition,1990, 64(4):275-287.
    [24]Hsu K J, Shu S, Jiliang L, et al. Mesozoic overthrust tectonics in south China. Geology,1988, 16(5):418.
    [25]Hsu K J, Li J, Chen H, et al. Tectonics of South China:key to understanding West Pacific geology. Tectonophysics,1990,183(1-4):9-39.
    [26]Li Z, Zhang L, and Powell C. South China in Rodinia:Part of the missing link between Australia, East Antarctica and Laurentia? Geology,1995,23(5):407.
    [27]Li Z, Li X, Zhou H, et al. Grenvillian continental collision in south China:New SHRIMP U-Pb zircon results and implications for the configuration of Rodinia. Geology,2002,30(2): 163.
    [28]Li Z. Tectonic history of the major East Asian lithospheric blocks since the mid-Proterozoic: A synthesis. Mantle dynamics and plate interactions in East Asia,1998,27:221-243.
    [29]Qiu Y, Gao S, McNaughton N, et al. First evidence of> 3.2 Ga continental crust in the Yangtze craton of south China and its implications for Archean crustal evolution and Phanerozoic tectonics. Geology,2000,28(1):11.
    [30]Zhang S, Zheng Y, Wu Y, et al. Zircon U-Pb age and Hf isotope evidence for 3.8 Ga crustal remnant and episodic reworking of Archean crust in South China. Earth and Planetary Science Letters,2006,252(1-2):56-71.
    [31]Zheng J, Griffin W, O'Reilly S, et al. Widespread Archean basement beneath the Yangtze craton. Geology,2006,34(6):417.
    [32]Yu J H, O'Reilly S Y, Wang L J, et al. Where was South China in the Rodinia supercontinent? Evidence from U-Pb geochronology and Hf isotopes of detrital zircons. Precambrian Research,2008,164(1-2):1-15.
    [33]Wan Y, Liu D, Xu M, et al. SHRIMP U-Pb zircon geochronology and geochemistry of metavolcanic and metasedimentary rocks in Northwestern Fujian, Cathaysia block, China:Tectonic implications and the need to redefine lithostratigraphic units. Gondwana Research,2007,12(1-2):166-183.
    [34]Liu R, Zhou H W, Zhang L, et al. Paleoproterozoic reworking of ancient crust in the Cathaysia Block, South China:Evidence from zircon trace elements, U-Pb and Lu-Hf isotopes. Chinese Science Bulletin,2009,54(9):1543-1554.
    [35]Li X H. Timing of the Cathaysia block formation:Constraints from SHRIMP U-Pb zircon geochronology. Episodes,1997,20(3):188-192.
    [36]Ma D Q, Huang D X, Xiao Z F, et al. eds. The crystalline basement of the Hainan Island-Stratigraphy and geochronology of the Baoban Group.1998, China University of Geosciences Press:Wuhan.60
    [37]Li W, Li X, and Li Z. Neoproterozoic bimodal magmatism in the Cathaysia Block of South China and its tectonic significance. Precambrian Research,2005,136(1):51-66.
    [38]Jahn B M. Geochemical and isotopic characteristics of UHP eclogites and ultramafic rocks of the Dabie orogen:implications for continental subduction and collisional tectonics. When Continents Collide:Geodynamics and Geochemistry of Ultrahigh-Pressure Rocks,1998: 203-239.
    [39]Li X H. SHRIMP ion microprobe zircon U-Pb age of the NE Jiangxi ophiolite and its tectonic implications. Geochimica,1994,23(2):125-131.
    [40]Li W X and Li X H. Adakitic granites within the NE Jiangxi Ophiolites, South China--geochemical and Nd isotopic evidence. Precambrian Research,2003,122:29-44.
    [41]Lee K, Chang H, and Park K. Neoproterozoic bimodal volcanism in the central Ogcheon belt, Korea:age and tectonic implication. Precambrian Research,1998,89(1):47-57.
    [42]Lee S, Cho M, Cheong C, et al. Age, geochemistry, and tectonic significance of Neoproterozoic alkaline granitoids in the northwestern margin of the Gyeonggi massif, South Korea. Precambrian Research,2003,122(1):297-310.
    [43]Li X. U-Pb zircon ages of granites from the southern margin of the Yangtze Block:timing of Neoproterozoic Jinning:Orogeny in SE China and implications for Rodinia Assembly. Precambrian Research,1999,97(1):43-57.
    [44]Li X, Li Z, Zhou H, et al. U-Pb zircon geochronology, geochemistry and Nd isotopic study of Neoproterozoic bimodal volcanic rocks in the Kangdian Rift of South China:implications for the initial rifting of Rodinia. Precambrian Research,2002,113(1):135-154.
    [45]Li X, Li Z, Ge W, et al. Neoproterozoic granitoids in South China:crustal melting above a mantle plume at ca.825 Ma? Precambrian Research,2003,122(1):45-83.
    [46]Li Z, Li X, Kinny P, et al. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents:evidence for a mantle superplume that broke up Rodinia. Precambrian Research,2003,122(1):85-109.
    [47]Ling W, Gao S, Zhang B, et al. Neoproterozoic tectonic evolution of the northwestern Yangtze craton, South China:implications for amalgamation and break-up of the Rodinia Supercontinent Precambrian Research,2003,122(1):111-140.
    [48]Ma G G, Li H Q, and Zhang Z C. On the time constraint of the Sinian in South China. Journal of Yichang Institute of Geology and Mineral Resources,1984,8:1-29.
    [49]Zhou H W, Li X H, Wang H R, et al. U-Pb zircon geochronology of basic volcanic rocks of the Yingyangguan Group in Hezhou, Guangxi, and its tectonic implications. Geological Review,2002,48 (Supplement):22-25.
    [50]Wang J, Li X, Duan T, et al. Zircon SHRIMP U-Pb dating for the Cangshuipu volcanic rocks and its implications for the lower boundary age of the Nanhua strata in South China. Chinese Science Bulletin,2003,48(16):1663-1669.
    [51]Wang J, Li Z, Duan T, et al. Stratigraphic and sedimentological records of the Neoproterozoic rift basins in southern China. Li ZX, Wang J, Li XH, Zhang S. From Sibao Orogenesis to Nanhua Rifting:Late Precambrian Tectonic History of Eastern South China-An Overview and Field Guide,2003:26-39.
    [52]Zeng W, Zhou H W, Zhong Z Q, et al. Single zircon U-Pb ages and their tectonic implications of Neoproterozoic magmatic rocks in southeastern Guizhou, China. Geochimica,2005, 34(6):548-556.
    [53]Li Z C, Wang G H, and Zhang Z C. Isotopic age spectrum of the Huangling granitic batholith, western Hubei. Geology and Mineral Resources of South China,2002(3):19-28.
    [54]Ge W C, Li X H, Li Z X, et al. Mafic intrusions in Longsheng arcs:Age and its geological implications. Chines Journal of Geology,2001,36(1):112-118.
    [55]Valentine J W and Moores E M. Plate-tectonic Regulation of Faunal Diversity and Sea Level: a Model. Nature,1970,228(5272):657-659.
    [56]McMenamin M and McMenamin D. The emergence of animals:the Cambrian breakthrough.1990, New York:Columbia University Press
    [57]Dalziel I. Pacific margins of Laurentia and East Antarctica-Australia as a conjugate rift pair: evidence and implications for an Eocambrian supercontinent Geology,1991,19(6):598.
    [58]Moores E. Southwest USCEast Antarctic (SWEAT) connection:a hypothesis:Geology, v.19. doi,1991,10:0091-7613.
    [59]Li Z, Bogdanova S, Collins A, et al. Assembly, configuration, and break-up history of Rodinia:A synthesis. Precambrian Research,2008,160(1-2):179-210.
    [60]Piper J. Palaeomagnetism and the continental crust.1987:John Wiley and Sons Inc., New York, NY
    [61]Li Z, Evans D, and Zhang S. A 90 spin on Rodinia:possible causal links between the Neoproterozoic supercontinent, superplume, true polar wander and low-latitude glaciation. Earth and Planetary Science Letters,2004,220(3-4):409-421.
    [62]Li Z, Zhang L, and Powell C. South China in Rodinia:Part of the missing link between Australia CEast Antarctica and Laurentia? Geology,1995,23(5):407.
    [63]Li Z, Li X, Kinny P, et al. The breakup of Rodinia:did it start with a mantle plume beneath South China? Earth and Planetary Science Letters,1999,173(3):171-181.
    [64]Jiang G, Sohl L, and Christie-Blick N. Neoproterozoic stratigraphic comparison of the Lesser Himalaya (India) and Yangtze block (south China):Paleogeographic implications. Geology,2003,31(10):917.
    [65]Yang Z, Sun Z, Yang T, et al. A long connection (750-380 Ma) between South China and Australia:paleomagnetic constraints. Earth and Planetary Science Letters,2004,220(3-4): 423-434.
    [66]Chen J F, Foland K A, Xing F M, et al. Magmatism along the southeast margin of the Yangtze block:Precambrian collision of the Yangtze and Cathysia blocks of China. Geology,1991,19(8):815.
    [67]Zhou M, Yan D, Kennedy A, et al. SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China. Earth and Planetary Science Letters,2002,196(1-2):51-67.
    [68]Zhou M, Kennedy A, Sun M, et al. Neoproterozoic arc(?)\related mafic intrusions along the northern margin of South China:implications for the accretion of Rodinia. The Journal of Geology,2002,110:611-618.
    [69]Zhou J C, Wang X L, Qiu J S, et al. Lithogeochemistry of Meso-and Neoproterozoic mafic-ultramafic rocks from northern Guangxi. Acta Geologica Sinica,2003,19(1):9-18.
    [70]Zhou J, Wang X, Qiu J, et al. Geochemistry of Meso-and Neoproterozoic mafic-ultramafic rocks from northern Guangxi, China:Arc or plume magmatism? GEOCHEMICAL JOURNAL-JAPAN-,2004,38(2):139-152.
    [71]Huang J Q, Ren J S, Jiang C F, et al. eds. Geotectonic Evolution of China.1980, Science Press: Beijing.124
    [72]Liu B J and Xu X S. eds. Atlas of lithofacies and paleogeography of South China.1994, Science Press:Beijing.188
    [73]Su W, Huff W, Ettensohn F, et al. K-bentonite, black-shale and flysch successions at the Ordovician-Silurian transition, South China:Possible sedimentary responses to the accretion of Cathaysia to the Yangtze Block and its implications for the evolution of Gondwana. Gondwana Research,2009,15(1):111-130.
    [74]Sun T. A new map showing the distribution of the granites in South China and its explanatory notes. Geological Bulletin of China,2006,25(3):332-335.
    [75]Shu L S. Predevonian tectonic evolution of south China:from Cathaysian Block to Caledonian period folded orogenic belt. Geological Journal of China Universities,2006, 12(4):418-431.
    [76]Ding X, Zhou X, and Sun T. The episodic growth of the continental crustal basement in south China:single zircon LA-ICPMS U-Pb dating of Guzhai granodiorite in Guangdong. Geologcial Review,2005,51(4):382-392.
    [77]Ding S, Hu J, Song B, et al. U-Pb dating of zircon fromthe bed parallel anatectic granitic intrusion in the Baoban group in Hainan Island and the tectonic implication. Science in China Series D:Earth Sciences,2005,48(12):2092-2103.
    [78]Lou F, Shen W, Wang D, et al. Zircon U-Pb Isotopic Chronology of the Wugongshan Dome Compound Granite in Jiangxi Province. Acta Geologica Sinica,2005,79(5):636-644.
    [79]Sun T. The Mesozoic magmatic rocks assemblages and their petrogenesis, South China.2005, Report of Postdoctoral Research of Nanjing University:Nanjing.41
    [80]Geng H Y, Xu X S, O'Reilly S Y, et al. Cretaceous volcanic-intrusive magmatism in western Guangdong and its geological significance. Science in China:Series D Earth Sciences, 2006,49(7):696-713.
    [81]Peng S, Jin Z, Liu Y, et al. Petrochemistry, Chronology and Tectonic Setting of Strong Peraluminous Anatectic Granitoids in Yunkai Orogenic Belt, Western Guangdong Province, China. Journal of China University of Geosciences,2006,17(1):1-12.
    [82]Wang Y, Fan W, Zhao G, et al. Zircon U-Pb geochronology of gneissic rocks in the Yunkai massif and its implications on the Caledonian event in the South China Block. Gondwana Research,2007,12(4):404-416.
    [83]Zeng Y and Liao Q A. Caledonian granites in the western Wuyi and inversion of the Orogenic process. Regional Geology of China,2000,19(4):344-349.
    [84]Wang J, Tu X, and Sun D. U-Pb dating of anatectic migmatites at Gaozhou in the Yunkai Block, western Guangdong, China. Geochimica,1999,28(3).
    [85]Zeng W, Zhang L, Zhou H W, et al. Caledonian reworking of Paleoproterozoic basement in the Cathaysia Block:Constraints from zircon U-Pb dating, Hf isotopes and trace elements. Chinese Science Bulletin,2008,53(6):895-904.
    [86]Li C F. Fundamental features of migmatites in Guangzhou district. Guangdong Geology, 1991,6(1):17-31.
    [87]Wang D Z and Shen W Z. Genesis of granitoids and crustal evolution in southeast China. Earth Science Frontiers (China University of Geosciences, Beijing),2003,10(3):209-220.
    [88]Ren J S. Thoughts on the study of tectonics of China. Geological Review,1996,42(4): 290-294.
    [89]Cocks L. Ordovician and Silurian global geography. Journal of the Geological Society,2001, 158:197-210.
    [90]Burrett C, Long J, and Stait B. Early-Middle Palaeozoic biogeography of Asian terranes derived from Gondwana. Geological Society London Memoirs,1990,12(1):163.
    [91]Zheng Y F. The location of the South China in the reconstructions of the Neoproterozoic supercontinent. Chinese Science Bulletin,2004,49(8):715-717.
    [92]Van der Voo R. Paleomagnetism of the Atlantic, Tethys, and Iapetus oceans.1993: Cambridge University Press
    [93]Nie S Y. Paleoclimatic and paleomagnetic constraints on the Paleozoic reconstructions of South China, North China and Tarim. Tectonophysics,1991,196(3-4):279-308.
    [94]Zhao X, Coe R, Gilder S, et al. Palaeomagnetic constraints on the palaeogeography of China: implications for Gondwanaland. Australian Journal of Earth Sciences,1996,43(6): 643-672.
    [95]Li Z and Powell C. Late Proterozoic to early Paleozoic paleomagnetism and the formation of Gondwanaland. Gondwana Eight:Rotterdam, Balkema,1993:9-21.
    [96]Hu X J, Xu J K, Tong Z X, et al. The Precambrian Geology of Southwestern Zhejiang Province.1991, Beijing:Geological Publishing House
    [97]Jin W S, Zhuang J M, Yang C X, et al. Characteristics of Petrology, Geochemistry and Metamorphism of the Precaledonian Regional Metamorphic Rocks in Fujian Province. Geology of Fujian,1992,11(4):241-261.
    [98]Chen J and Jahn B. Crustal evolution of southeastern China:Nd and Sr isotopic evidence. Tectonophysics,1998,284(1-2):101-133.
    [99]Chen J F, Guo X S, Tang J F, et al. Nd isotopic model ages:implications of the growth of the continental crust of southeastern China. Journal of Nanjing University,1999,35(6): 649-658.
    [100]Hong D, Xie X, and Zhang J. An exploration on the composition, nature and evolution of mid-lower crust in South China based on the Sm-Nd isotopic data of granites. Geological Journal of China Universities (in Chinese),1999,5:361-371.
    [101]Fu S C, Chen J M, and Lin W S. Geological characteristics of late Archean metamorphic rocks in the Qiuyuan area of Pucheng county, Fujian Province. Geology of Fujian,1991, 10(2):103-113.
    [102]Li X H, Sun M, Wei G J, et al. Geochemical and Sm-Nd isotopic study of amphibolites in the Cathaysia Block, southeastern China:evidence for an extremely depleted mantle in the Paleoproterozoic. Precambrian Research,2000,102(3-4):251-262.
    [103]Mei H L, Zhuang J M, and Yang C X. P-T-t paths and geodynamic implication of Precambrian metamorphic rocks in northern Fujian. Geology of Fujian,1993,12(3): 182-194.
    [104]Jin W S and Sun D Z. Deep crustal structure and its evolution of South China.1997, Beijing: Geological Publishing House
    [105]Zhao G and Cawood P. Tectonothermal evolution of the Mayuan assemblage in the Cathaysia Block:Implications for Neoproterozoic collision-related assembly of the South China Craton. American Journal of Science,1999,299(4):309.
    [106]Zhuang J M, Huang Q Z, Deng B Z, et al. Study on Strata Unit Division of Precambrian Metamorphic Rocks in Fujian Province.2000, Xiamen:Xiamen University Press
    [107]Zhao F Q, Chen Y Z, and Li R A. Study on the multiple deformations and structural levels of the Precaledonian metamorphic basement in Northern Fujian. Geology of Fujian,1993, 12(1):33-44.
    [108]Gan X C, Li H M, Sun D Z, et al. Single zircon U-Pb age and its geological significance of the "Hexi Group", southwestern Zhejiang Province. Journal of Nanjing university (Earth Sciences),1993,5(3):361-364.
    [109]Gan X C, Li H M, Sun D Z, et al. A geochronologicaI study on Early Proterozoic granitic rocks,southwestern Zhejiang. Acta Petrologica Et Mineralogica,1995,14(1):1-8.
    [110]Dickin A P. Radiogenic Isotope Geology.2006; Available from:http://www.onafarawayday. com/Radiogenic/Ch2/Ch2-2.htm
    [111]Worley J and Kvech S. ICP-MS.2000; Available from:http://www.cee.vt.edu/ ewr/environmental/teach/smprimer/icpms/icpms.htm
    [112]Hanchar J and Miller C. Zircon zonation patterns as revealed by cathodoluminescence and backscattered electron images:implications for interpretation of complex crustal histories. Chemical Geology,1993,110(1-3):1-13.
    [113]Hanchar J and Rudnick R. Revealing hidden structures:the application of cathodoluminescence and back-scattered electron imaging to dating zircons from lower crustal xenoliths. Lithos,1995,36(3-4):289-303.
    [114]Rubatto D and Gebauer D. Use of cathodoluminescence for U-Pb zircon dating by ion microprobe:Some examples from the western Alps. Cathodoluminescence in Geosciences, ed. M. Pagel, V. Barbin, P. Blanc, et al.2000.373-400
    [115]Corfu F, Hanchar J, Hoskin P, et al. Atlas of zircon textures. Reviews in Mineralogy and Geochemistry,2003,53(1):469.
    [116]Yuan H, Gao S, Liu X, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry. Geostandards and geoanalytical Research,2007,28(3):353-370.
    [117]Ludwig K R. Isoplot 4.0. Berkeley Geochronology Center Special Publication No.4,2008: 77.
    [118]Dodson M. Closure temperature in cooling geochronological and petrological systems. Contributions to Mineralogy and Petrology,1973,40(3):259-274.
    [119]Bottomley R and York D.40Ar-39Ar age determinations on the Owyhee basalt of the Columbia Plateau. Earth and Planetary Science Letters,1976,31(1):75-84.
    [120]Steiger R and J ger E. Subcommission on geochronology:convention on the use of decay constants in geochronology and cosmochronology. Earth and Planetary Science Letters, 1977,36:359-362.
    [121]Griffin W, Wang X, Jackson S, et al. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos,2002, 61(3-4):237-269.
    [122]DeBievre P and Taylor P D P. Table of the isotopic composition of the elements. International Journal of Mass Spectrometry and Ion Processes,1993,123:1-149.
    [123]Chu M, Chung S, Song B, et al. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet Geology,2006,34(9):745.
    [124]Scherer E, Munker C, and Mezger K. Calibration of the lutetium-hafnium clock. Science, 2001,293(5530):683.
    [125]Blichert-Toft J and Albarde F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters,1997,148(1-2): 243-258.
    [126]Vervoort J and Blichert-Toft J. Evolution of the depleted mantle:Hf isotope evidence from juvenile rocks through time. Geochimica Et Cosmochimica Acta,1999,63(3-4):533-556.
    [127]Vervoort J and Patchett J. Behavior of hafnium and neodymium isotopes in the crust: constraints from Precambrian crustally derived granites. Geochimica Et Cosmochimica Acta,1996,60(19):3717-3733.
    [128]Wu Y B and Zheng Y F. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin,2004,49(15):1554-1569.
    [129]Hoskin P and Ireland T. Rare earth element chemistry of zircon and its use as a provenance indicator. Geology,2000,28(7):627.
    [130]Belousova E, Griffin W, O'Reilly S, et al. Igneous zircon:trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology,2002,143(5): 602-622.
    [131]Taylor S and McLennan S. The continental crust:its composition and evolution. New York: Oxford,1985.
    [132]Grove M and Harrison T.40Ar* diffusion in Fe-rich biotite. The American mineralogist, 1996,81(7-8):940-951.
    [133]Maniar P D and Piccoli P M. Tectonic discrimination of granitoids. Bulletin of the Geological Society of America,1989,101(5):635.
    [134]Barker F. Trondhjemite:definition, environment and hypotheses of origin. Trondhjemites, dacites, and related rocks,1979:1C12.
    [135]Sun S and McDonough W. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society London Special Publications,1989,42(1):313.
    [136]Pearce J. Role of the sub-continental lithosphere in magma genesis at active continental margins. Continental basalts and mantle xenoliths,1983,249.
    [137]Rudnick R and Gao S. Composition of the continental crust, Rudnick, RL (ed.) Treatise in Geochemistry, Vol.3, The Crust.2003, Elsevier, Amsterdam.
    [138]Wood D, Joron J, and Treuil M. A re-appraisal of the use of trace elements to classify and discriminate between magma series erupted in different tectonic settings. Earth and Planetary Science Letters,1979,45(2):326-336.
    [139]Gibson S A, Kirkpatrick R J, Emmerman R, et al. The trace element composition of the lavas and dykes from a 3 km vertical section through a lava pile of Eastern Iceland. Journal of Geophysics Research,1982,87:6532-6546.
    [140]Pearce J A. ed. A users guide to basalt discrimination diagram. Trace element geochemistry of volcanic rocks:Applications for massive sulphide exploration., ed. D. A. Wyman. Vol. 12.1996, Geological Association of Canada, Short Course Notes.79-113
    [141]Miyashiro A. Volcanic rock series in island arcs and active continental margins. American Journal of Science,1974,274(4):321.
    [142]Pearce N and Leng M. The origin of carbonatites and related rocks from the Igaliko Dyke Swarm, Gardar Province, South Greenland:field, geochemical and CO-Sr-Nd isotope evidence. Lithos,1996,39(1-2):21-40.
    [143]Wintsch R and Kvale C. Differential mobility of elements in burial diagenesis of siliciclastic rocks. Journal of Sedimentary Research-Section A-Sedimentary Petrology and Processes, 1994,64(2):349-361.
    [144]Watson E and Harrison T. Zircon thermometer reveals minimum melting conditions on earliest Earth. Science,2005,308(5723):841.
    [145]Watson E, Wark D, and Thomas J. Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology,2006,151(4):413-433.
    [146]Bea F, Montero P, Gonzalez-Lodeiro F, et al. Zircon thermometry and U-Pb ion-microprobe dating of the gabbros and associated migmatites of the Variscan Toledo Anatectic Complex, Central Iberia. Journal of Geological Society,2006,163(5):847.
    [147]Baldwin J, Brown M, and Schmitz M. First application of titanium-in-zircon thermometry to ultrahigh-temperature metamorphism. Geology,2007,35(4):295.
    [148]Hanchar J and Hoskin P. Zircon.2003:Mineralogical Society of America
    [149]McDougall I and Harrison T. Geochronology and Thermochronology by the 40Ar/39Ar Method.1999:Oxford University Press, USA
    [150]Butler R F, Gehrels G E, Baldwin S L, et al. Paleomagnetism and geochronology of the Ecstall pluton in the Coast Mountains of British Columbia:Evidence for local deformation rather than large-scale transport Journal of Geophysical Research-Solid Earth,2002,107(B1).
    [151]Hoskin P W O and Ireland T R. Rare earth element chemistry of zircon and its use as a provenance indicator. Geology,2000,28(7):627-630.
    [152]Whitehouse M and Kamber B. On the overabundance of light rare earth elements in terrestrial zircons and its implication for Earth's earliest magmatic differentiation. Earth and Planetary Science Letters,2002,204(3-4):333-346.
    [153]Rickwood P. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos,1989,22(4):247-263.
    [154]Hoisch T D. A muscovite-biotite geothermometer. American Mineralogist,1989,74: 565-572.
    [155]Liu R. Pre-Hercynian crustal anatexis in the Cathaysia Block:A case study from Zhejiang and Fujian provinces, in China University of Geosciences.2009, China University of Geosciences:Wuhan.97
    [156]Gehrels G E. Detrital zircon geochronology of the Taku terrane, southeast Alaska. Canadian Journal of Earth Sciences,2002,39(6):921-931.
    [157]Xiang H, Zhang L, Zhou H W, et al. U-Pb zircon geochronology and Hf isotope study of metamorphosed basic-ultrabasic rocks from metamorphic basement in southwestern Zhejiang:The response of the Cathaysia Block to Indosinian orogenic event Science in China Series D-Earth Sciences,2008,51(6):788-800.
    [158]Xu X S, O'Reilly S Y, Griffin W L, et al. The crust of Cathaysia:Age, assembly and reworking of two terranes. Precambrian Research,2007,158(1-2):51-78.
    [159]Wu R, Zheng Y, Wu Y, et al. Reworking of juvenile crust:Element and isotope evidence from Neoproterozoic granodiorite in South China. Precambrian Research,2006,146(3-4): 179-212.
    [160]Sun W H, Zhou M F, Gao J F, et al. Detrital zircon U-Pb geochronological and Lu-Hf isotopic constraints on the Precambrian magmatic and crustal evolution of the western Yangtze Block, SW China. Precambrian Research,2009,172(1-2):99-126.
    [161]Boger S, Wilson C, and Fanning C. Early Paleozoic tectonism within the East Antarctic craton:The final suture between east and west Gondwana? Geology,2001,29(5):463.
    [162]Jayananda M, Moyen J F, Martin H, et al. Late Archaean (2550-2520 Ma) juvenile magmatism in the Eastern Dharwar craton, southern India:constraints from geochronology, Nd-Sr isotopes and whole rock geochemistry. Precambrian Research,2000, 99(3-4):225-254.
    [163]Liu R, Zhang B R, Zhang H F, et al. U-Pb Zircon Age, Geochemical and Sr-Nd-Hf Isotopic Compositions of Neoproterozoic Granitoids in Northwestern Margin of Yangtze Block (South China):Implications for Neoproterozoic Tectonic Evolution. Journal of Earth Science,2009,20(4):659-680.
    [164]Griffin W, Belousova E, Shee S, et al. Archean crustal evolution in the northern Yilgarn Craton:U-Pb and Hf-isotope evidence from detrital zircons. Precambrian Research,2004, 131(3-4):231-282.
    [165]Veevers J, Saeed A, Belousova E, et al. U-Pb ages and source composition by Hf-isotope and trace-element analysis of detrital zircons in Permian sandstone and modern sand from southwestern Australia and a review of the paleogeographical and denudational history of the Yilgarn Craton. Earth-Science Reviews,2005,68(3-4):245-279.
    [166]Bickford M E, Mueller P A, Kamenov G D, et al. Crustal evolution of southern Laurentia during the Paleoproterozoic:Insights from zircon Hf isotopic studies of ca.1.75 Ga rocks in central Colorado. Geology,2008,36(7):555-558.
    [167]Wang C, Campbell I, Allen C, et al. Rate of growth of the preserved North American continental crust:Evidence from Hf and O isotopes in Mississippi detrital zircons. Geochimica Et Cosmochimica Acta,2009,73(3):712-728.
    [168]Li Z, Wartho J, Occhipinti S, et al. Early history of the eastern Sibao Orogen (South China) during the assembly of Rodinia:New mica 40Ar/39Ar dating and SHRIMP U-Pb detrital zircon provenance constraints. Precambrian Research,2007,159(1-2):79-94.
    [169]Wang X L, Zhou J C, Qiu J S, et al. LA-ICP-MS U-Pb zircon geochronology of the Neoproterozoic igneous rocks from Northern Guangxi, South China:Implications for tectonic evolution. Precambrian Research,2006,145(1-2):111-130.
    [170]Zhang S, Zheng Y, Wu Y, et al. Zircon U-Pb age and Hf-O isotope evidence for Paleoproterozoic metamorphic event in South China. Precambrian Research,2006, 151(3-4):265-288.
    [171]Zhang S, Zheng Y, Wu Y, et al. Zircon isotope evidence for>=3.5 Ga continental crust in the Yangtze craton of China. Precambrian Research,2006,146(1-2):16-34.
    [172]Zheng Y F, Zhao Z F, Wu Y B, et al. Zircon U-Pb age, Hf and O isotope constraints on protolith origin of ultrahigh-pressure eclogite and gneiss in the Dable orogen. Chemical Geology,2006,231(1-2):135-158.
    [173]Ye M, Li X, Li W, et al. SHRIMP zircon U-Pb geochronological and whole-rock geochemical evidence for an early Neoproterozoic Sibaoan magmatic arc along the southeastern margin of the Yangtze Block. Gondwana Research,2007,12(1-2):144-156.
    [174]Xiong Q, Zheng J P, Yu C M, et al. Zircon U-Pb age and Hf isotope of Quanyishang A-type granite in Yichang:signification for the Yangtze continental cratonization in Paleoproterozoic. Chinese Science Bulletin,2009,54(3):436-446.
    [175]Wu Y B, Gao S, Gong H J, et al. Zircon U-Pb age, trace element and Hf isotope composition of Kongling terrane in the Yangtze Craton:refining the timing of Palaeoproterozoic high-grade metamorphism. Journal of Metamorphic Geology,2009,27(6):461-477.
    [176]Rino S, Komiya T, Windley B, et al. Major episodic increases of continental crustal growth determined from zircon ages of river sands; implications for mantle overturns in the Early Precambrian. Physics of the Earth and Planetary Interiors,2004,146(1-2):369-394.
    [177]Jiao W F, Wu Y B, Yang S H, et al. The oldest basement rock in the Yangtze Craton revealed by zircon U-Pb age and Hf isotope composition. Science in China Series D-Earth Sciences, 2009,52(9):1393-1399.
    [178]Shui T. Tectonic framework of the continental basement of southeast China. Science in China Series B,1988,31:885-896.
    [179]Wang K L, O'Reilly S Y, Griffin W L, et al. Sulfides in mantle peridotites from Penghu Islands, Taiwan:Melt percolation, PGE fractionation, and the lithospheric evolution of the South China block. Geochimica Et Cosmochimica Acta,2009,73(15):4531-4557.
    [180]Zhang F R, Shu L S, Wang D Z, et al. Discussions on the tectonic setting of Caledonian granitoids in the eastern segment of South China. Earth Science Frontiers,2009,16(1): 248-260.
    [181]Wang H L, Xu X Y, Chen J L, et al. Dating and geochemical characteristics of the Yanwan Paleozoic collisional intrusion in the west segment of Northern Qinling Mts. Acta Geologica Sinica,2009,83(3):353-364.
    [182]Wang T, Wang X, Tian W, et al. North Qinling Paleozoic granite associations and their variation in space and time:Implications for orogenic processes in the orogens of central China. Science in China Series D:Earth Sciences,2009,52(9):1359-1384.
    [183]Wu Y B, Hanchar J M, Gao S, et al. Age and nature of eclogites in the Huwan shear zone, and the multi-stage evolution of the Qinling-Dabie-Sulu orogen, central China. Earth and Planetary Science Letters,2009,277(3-4):345-354.
    [184]Zhang L, Zhong Z Q, Zhang H, et al. The formation of foliated (garnet-bearing) granites in the Tongbai-Dabie orogenic belt:partial melting of subducted continental crust during exhumation. Journal of Metamorphic Geology,2009,27(9):789-803.
    [185]Sun W, Li S, Chen Y, et al. Timing of Synorogenic Granitoids in the South Qinling, Central China:Constraints on the Evolution of the Qinling-Dabie Orogenic Belt. The Journal of Geology,2002,110:457-468.
    [186]Lu X P, Wu F Y, Zhao C B, et al. Triassic U-Pb age for zircon from granites in the Tonghua area and its response to the Dabie-Sulu ultrahigh-pressure collisional orogenesis. Chinese Science Bulletin,2003,48(15):1616-1623.
    [187]Chen W F, Chen P R, Zhou X M, et al. Single Zircon LA-ICP-MS U-Pb Dating of the Guandimiao and Wawutang Granitic Plutons in Hunan, South China and Its Petrogenetic Significance. Acta Geologica Sinica,2007,81(1).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700