南极苔原温室气体通量时空变化规律与产生机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,全球变暖导致南极冰川融化退缩,南极沿海无冰区苔原面积日益扩大;同时,南极海岸也是重要的海洋动物聚居地,每年夏季大量海洋动物排泄物为苔原土壤提供了丰富的养分,从而为土壤中CO_2、CH_4、N_2O等温室气体的产生与排放创造了有利条件。在中国第15次南极科学考察期间,孙立广教授首次开拓了西南极法尔兹半岛苔原N_2O、CH_4通量的观测,之后美国、韩国、意大利和巴西等国的学者也在南极苔原区开展了相关观测研究。但前期的研究在区域上比较单一,难以准确获得南极苔原温室气体通量的时空变化规律及其影响因素;另一方面,已有的研究多侧重于宏观温室气体排放通量的观测,而在南极苔原土壤温室气体产生的微观机理层次上的研究严重欠缺。鉴于以上两点考虑,本文以西南极法尔兹半岛和东南极米洛半岛地区为研究区域,采用静态箱法对南极苔原不同生态区(包括:普通苔原、海洋动物聚居地以及湖泊湿地等)温室气体通量进行了较为系统的现场观测,结合大量模拟实验研究了南极苔原土壤温室气体产生与排放的过程;并首次应用稳定同位素手段来研究南极苔原土壤源温室气体的产生机理,获得大量科学数据,在微观与宏观层次上拓展和深化了南极苔原温室气体的研究领域。主要研究内容及研究结果如下:
     (1)西南极法尔兹半岛苔原不同生态区温室气体通量时空变化规律
     对西南极法尔兹半岛苔原不同生态区温室气体排放通量进行了对比观测研究,发现海洋动物聚居地是南极大气N_2O的强排放点源,是全球N_2O的新来源,同时也是南极大气CH_4的重要排放源;而普通苔原土壤是弱的N_2O和CH_4排放源。相关分析表明:土壤中海洋动物粪来源的TOC、TN含量和土壤水位控制着南极苔原N_2O和CH_4排放通量的空间变化,冻融过程影响N_2O和CH_4通量的季节变化。另外,对阿德雷岛和生物湾的苔原植被区进行了连续两年夏季的现场观测,发现靠近企鹅、海豹聚居地的苔原植被区是大气CO_2较强的吸收汇和N_2O的排放源。
     (2)东南极米洛半岛湿地湖泊系统温室气体通量时空变化规律
     对东南极米洛半岛苔原湿地和富藻湖泊近岸水体的温室气体通量进行了观测,结果表明:苔原湿地是较强的N_2O排放源和弱的CH_4排放源。苔原湿地N_2O通量随地下水位的增长而降低,水位是控制N_2O通量空间变化的主要因素;CH_4通量则受到水位和地温的共同影响。此外,观测结果表明米洛半岛富藻湖泊是南极夏季强烈的CO_2吸收汇和重要的N_2O、CH_4排放源,且温室气体通量受到多种因素的影响:湖泊近岸水体N_2O通量和气温、NO_3~--N浓度显著正相关,与水位呈负相关关系;CO_2通量和日辐射量(DTR)、水温呈负相关关系;CH_4通量受到湖泊温度、水位和总溶解性固体(TDS)含量的综合影响。
     (3)南极苔原土壤温室气体产生与排放过程实验模拟研究
     恒温条件下,企鹅粪、鸟成土和海豹粪土在有氧条件下的CO_2、CH_4排放通量高于厌氧培育,通量与TOC含量显著相关;企鹅粪在有氧条件下的N_2O通量较高,但粪土样品则是在厌氧条件下排放出更多的N_2O,表明反硝化是粪土N_2O的主要产生过程。同时,冻融交替过程能促进土壤温室气体的迸发排放,其中企鹅粪是强的CH_4和CO_2排放源而粪土是强的N_2O排放源。此外,土壤水分变化对温室气体通量影响显著:CH_4排放通量在77%Mc含水率时达到最大;N_2O通量在29%~49%Mc范围内随土壤水分含量的增加而增加;CO_2排放通量与土壤水分含量呈对数相关关系。不同培育条件的室内模拟实验结果表明:在南极夏季,海洋动物新鲜粪、鸟成土和海豹粪土有较强的温室气体排放潜力。
     (4)南极地区和海洋大气温室气体稳定同位素时空变化特征
     在野外获得了海洋动物聚居地土壤N_2O同位素自然丰度,与当地背景大气相比,海洋动物聚居地排放的N_2O显著富集轻同位素。野外同位素数据与室内厌氧培育条件下得到粪土N_2O同位素值相近,表明反硝化是粪土N_2O的主要产生过程。对近地面大气的研究发现,南极近地面大气N_2O浓度低于全球大气N_2O平均值,但其同位素值偏高,且N_2O的δ~(15)N和δ~(18)O与气温、大气N_2O浓度负相关,表明南极大气N_2O可能受到了平流层低浓度、富~(15)N与~(18)O的N_2O向对流层反向注入的影响。同时,南极近地面大气CH_4浓度略高于全球大气CH_4平均浓度,且δ~(13)C值较大气背景值略高,可能受到了南极地区富13C的人为源的影响。此外,采集了上海至南极航线上(30°N~69°S)的洋面大气样品,发现洋面大气N_2O浓度由北向南逐渐降低,N_2O的~(15)N与~(18)O的空间变化规律不一致,可能受到局部洋区复杂因素的影响。而航线上北半球海洋边界层大气的CH_4浓度明显高于南半球,δ~(13)C平均值也高于大气背景值,表明海洋边界层大气CH_4受到富~(13)C的人为源的影响。
Antarctic glacier is melting because of global warming and the area of ice-free tundra in coastal Antarctica is expanding. Coastal Antarctica is important habitat for marine animals. Due to the deposition of marine animal excreta every summer, the fertile tundra soil in coastal Antarctica is favorable to the production and emission of greenhouse gases (CO_2, CH_4 and N_2O). During CHINARE-15, for the first time, Prof. Sun Liguang observed N_2O and CH_4 fluxes from tundra soils on Fildes Peninsula, western Antarctica. Later, scholars from America, Korea, Italy and Brazil also observed greenhouse gas fluxes in Antarctica tundra zones. However, former study regions in Antarctica are limited and it is difficult to obtain exact temporal and spatial variations of greenhouse gas fluxes and influence factors. On the other hand, many studies focused on the macro-observation of fluxes and researches on production mechanism of greenhouse gases are scare. Therefore, we observed greenhouse gas fluxes from different ecological zones (normal tundra, sea animal colonies, tundra wetland and littoral zones of lake) on Antarctica using static chamber method. Main study areas are located on Fildes Peninsula, western Antarctica and Millor Peninsula, eastern Antarctica. Field observations combined with simulation experiments, the processes of greenhouse gas production and emission were studied. And for the first time, stable isotope technique was used to study the production mechanism of greenhouse gases emission from Antarctic tundra soil. A lot of data was obtained and the studies of greenhouse gases in Antarctic tundra were expanded and deepen at micro and macro levels. Main contents and results are as follows:
     (1) Temporal and spatial variations of greenhouse gas fluxes from different tundra ecosystems on Fildes Peninsula, western Antarctica
     Greenhouse gas fluxes from different ecological zones were observed on Fildes Peninsula. Results implied that marine animal colonies were strong source of N_2O in coastal Antarctica and new source of global N_2O. The colonies also were important source of Antarctic atmospheric CH_4. However, normal tundra soil was weak source of N_2O and CH_4. Correlation analysis results implied that, the content of soil TOC and TN from marine animal excreta and water table controlled spatial variation of N_2O and CH_4 fluxes while freezing-thawing process controlled temporal variaton of the fluxes. In addition, greenhouse gas fluxes from two moss tundra zones of Ardley Island and Shengwu Cove were observed for two continuous summers, indicating that moss tundra zones were the sink of atmospheric CO_2 and weak source of N_2O in Antarctica.
     (2) Temporal and spatial variations of greenhouse gas fluxes from tundra wetlands and littoral zones of lakes on Millor Peninsula, eastern Antarctica
     Greenhouse gas fluxes from tundra wetlands and littoral zones of lakes on Millor Peninsula were observed, indicating that tundra wetlands were strong source of N_2O and weak source of CH_4. N_2O fluxes from tundra wetlands decreased with increasing water table, so water table affected N_2O spatial variation; CH_4 fluxes were controlled with water table and ground temperature together. In addition, the observations showed that alga-rich lakes were strong sink of atmospheric CO_2 and important source of N_2O and CH_4 in Antarctica. Greenhouse gas fluxes from lakes were influenced with various environmental factors. N_2O flux was significantly correlated with air temperature and NO_3~--N concentration, but negatively correlated with water table. Daily total radiation (DTR) and water temperature affected CO_2 emission while water temperature, water table and total dissolved solids (TDS) content affected CH_4 emission together.
     (3) Simulation experiments about greenhouse gas fluxes from Antarctic soils
     Under constant temperature conditions, CO_2 and CH_4 fluxes from all soil samples under aerobic conditions were higher than under anaerobic conditions and the fluxes were correlated with soil TOC contents. N_2O fluxes from penguin guano under aerobic conditions were higher than under anaerobic conditions while N_2O fluxes from ornithogenic soil and seal colony soil under anaerobic conditions were higher, indicating that denitrification was the main production process of N_2O emission from ornithogenic soil and seal colony soil. Furthermore, freezing-thawing cycles could induce high greenhouse gas fluxes. Penguin guano was stronger emitter for CH_4 and CO_2 while seal colony soil was stronger emitter for N_2O. Water content also had an impact on greenhouse gas fluxes. CH_4 flux at 77%Mc was the largest; N_2O flux increased with increasing water content in the range of 29%Mc~49%Mc; CO_2 flux had a logarithmic correlation with water content. Simulation experiment results showed that penguin guano, ornithogenic soil and seal colony soil had strong potential for greenhouse gas emissions.
     (4) Temporal and spatial variations of isotope values of atmospheric greenhouse gases in Antarctica and above oceanic surface
     The natural stable isotope abundance of N_2O emitted from Antarctic sea animal colonies was analyzed. The soil-emitted N_2O was ~(15)N- and ~(18)O-depleted compared with N_2O in local ambient air. The data from in situ field observations and laboratory experiments pointed to denitrification as the predominant N_2O source from Antarctic sea animal colonies. In addition, the concentrations and isotopes of atmospheric N_2O and CH_4 near the surface in Antarctica were investigated. Results showed that average atmospheric N_2O concentration in Antarctica was lower than global average while the averageδ~(15)N andδ~(18)O-N_2O value in Antarctica was higher than global average. Theδ~(15)N andδ~(18)O showed significantly negative correlation with N_2O concentration, indicating that theδvalues of N_2O were significantly affected by the return flux into the troposphere of stratospheric N_2O with low levels and the enriched ~(15)N and ~(18)O. The average concentrations of atmospheric CH_4 in Antarctica was slightly higher than global average and averageδ13C-CH_4 value was also higher than global average, indicating that theδvalues of CH_4 may be affected with ~(13)C-riched CH_4 with from anthropogenic source in Antarctica. The temporal and spatial variations ofδ~(15)N andδ~(18)O of atmospheric N_2O andδ13C of atmospheric CH_4 on the course from Shanghai to Antarctica(30°N~69°S)were analyzed. Atmospheric N_2O concentration above the oceanic surface decreased from Shanghai to Antarctica. Theδ~(15)N linearly increased with latitude and negatively correlated with air temperature. The differences between spatial variations ofδ~(15)N andδ~(18)O indicated the isotopic compostions of atmospheric N_2O above the oceanic surface were affected by complicated factors such as the currents in the regional ocean areas. Meanwhile, atmospheric CH_4 concentration of Northern Hemisphere was higher than the concentration of Southern Hemisphere and the averageδ~(13)C of CH_4 was higher than global average, suggesting the major proportion of CH_4 may be affected with ~(13)C-riched CH_4 from fossil fuel and biomass burning.
引文
Alm, J., Juutinen, S., Saarnio, S., Silvola, J., Nykanen, H., Martikainen, P. J. 1996. Temporal and spatial variations in CH_4 emissions of flooded meadows and vegetated hydrolittoral. In: Laiho, R., Laine, J., Vasander, H. (Eds.), In Northern Peatlands in Global Climatic Change. The Academy of Finland, Helsinki, Finland.
    Ambus, P., Lowrance, R. 1991. Comparison of denitrification in two riparian soils. Soil Science Society of America Journal, 55(4): 994-997.
    An, S., Joye, S. B. 2001. Enhancement of coupled nitrification-denitrification by benthic photosynthesis in shallow estuarine sediments. Limnology and Oceanography, 46(1): 62-74.
    Andersen, D. T., McKay, C. P., Wharton, R. A. 1998. Dissolved gases in perennially ice-covered lakes of the McMurdo Dry Valleys, Antarctica. Antarctic Science, 10: 124-133.
    Aselmann, I., Crutzen, P. J. 1989. Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions. Journal of Atmospheric Chemistry, 8(4): 307-358.
    Barrett, J. E., Virginia, R. A., Wall, D. H., Cary, S. C., Adams, B. J., Hacker, A. L., Aislabie, J. M. 2006. Co-variation in soil biodiversity and biogeochemistry in northern and southern Victoria Land, Antarctica. Antarctic Science, 18(04): 535-548.
    Bartlett, K. B., Crill, P. M., Sass, R. L., Harriss, R. C., Dise, N. B. 1992. Methane emissions from tundra environments in the Yukon–Kuskokwim delta, Alaska. Journal of Geophysical Research, 97(D15): 16645–16660.
    Bartlett, K. B., Crill, P. M., Sebacher, D. I., Harriss, R. C., Wilson, J. O., Melack, J. M. 1988. Methane flux from the central Amazon flood plain. Journal of Geophysical Research, 93: 1571-1582.
    Bazhin, N. M. 2004. Influence of plants on the methane emission from sediments. Chemosphere, 54: 209-215.
    Bird, M., Santrùcková, H., Lloyd, J., Lawson, E. 2002a. The isotopic composition of soil organic carbon on a north–south transect in western Canada. European Journal of Soil Science, 53(3): 393-403.
    Bird, M. I., SantrùCková, H., Arneth, A., Grigoriev, S., Gleixner, G., Kalaschnikov, Y. N., Lloyd, J., Schulze, E. D. 2002b. Soil carbon inventories and carbon-13 on a latitude transect in Siberia. Tellus Series B-Chemical and Physical Meteorology, 54(5): 631-641.
    Boehme, S. E., Sabine, C. L., Reimers, C. E. 1998. CO_2 fluxes from a coastal transect: atime-series approach. Marine Chemistry, 63(1-2): 49-67.
    Bol, R., Toyoda, S., Yamulki, S., Hawkins, J. M. B., Cardenas, L. M., Yoshida, N. 2003. Dual isotope and isotopomer ratios of N_2O emitted from a temperate grassland soil after fertiliser application. Rapid Communications in Mass Spectrometry, 17(22): 2550-2556.
    Bottner, P. 1985. Response of microbial biomass to alternate moist and dry conditions in a soil incubated with 14C- and 15N-labelled plant material. Soil Biology and Biochemistry, 17(3): 329-337.
    Bowden, R. D., Nadelhoffer, K. J., Boone, R. D., Melillo, J. M., Garrison, J. B. 1993.
    Contributions of aboveground litter, belowground litter, and root respiration to total soil respiration in a temperate mixed hardwood forest. Canadian Journal of Forest Research, 23(7): 1402-1407.
    Brand, W. A. 1995. PreCon: A Fully Automated Interface for the Pre-Gc Concentration of Trace Gases on Air for Isotopic Analysis. Isotopes in Environmental and Health Studies, 31(3): 277-284.
    Bremner, J. 1997. Sources of nitrous oxide in soils. Nutrient Cycling in Agroecosystems, 49(1): 7-16.
    Burkins, M. B., Virginia, R. A., Wall, D. H. 2001. Organic carbon cycling in Taylor Valley, Antarctica: quantifying soil reservoirs and soil respiration. Global Change Biology, 7(1): 113-125.
    Bussmann, I. 2005. Methane release through resuspension of littoral sediment. Biogeochemistry, 74: 283-302.
    Butler, J. H., Elkins, J. W., Thompson, T. M., Egan, K. B. 1989. Tropospheric and dissolved N_2O of the West Pacific and East Indian Oceans during the El Ni?o southern oscillation event of 1987. Journal of Geophysical Research, 94(D12): 14865-14877.
    Cai, Z. C., Qin, S. W. 2006. Dynamics of crop yields and soil organic carbon in a long-term fertilization experiment in the Huang-Huai-Hai Plain of China. Geoderma, 136(3-4): 708-715.
    Cai, Z. C., Tsuruta, H., Minami, K. 2000. Methane emission from rice fields in China: Measurements and influencing factors. Journal of Geophysical Research-Atmospheres, 105(D13): 17231-17242.
    Cai, Z. C., Xing, G. X., Yan, X. Y., Xu, H., Tsuruta, H., Yagi, K., Minami, K. 1997. Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilisers and water management. Plant and Soil, 196(1): 7-14.
    Cai, Z. C., Xing, G. X., Shen, G. Y., Xu, H., Yan, X. Y., Tsuruta, H., Yaqi K., Minami, K. 1999.Measurements of CH_4 and N_2O emissions from rice paddies in Fengqiu, China. Soil Science and Plant Nutrition, 45(1): 1-13.
    Cannone, N., Wagner, D., Hubberten, H. W., Guglielmin, M. 2008. Biotic and abiotic factors influencing soil properties across a latitudinal gradient in Victoria Land, Antarctica. Geoderma, 144(1-2): 50-65.
    Cao, M. K., Marshall, S., Gregson, K. 1996. Global carbon exchange and methane emissions from natural wetlands: Application of a process-based model. Journal Geophysical Research, 101(D9): 14399-14414.
    Carran, R., Theobald, P., Evans, J. 1995. Emission of nitrous-oxide from some grazed pasture soils in New Zealand. Soil Research, 33(2): 341-352.
    Chanton, J. O., Whiting, G. J., Blair, N. E., Lindau, C. W., Bollich, P. K. 1997. Methane emission from rice: stable isotopes, diurnal variations, and CO_2 exchange. Global Biogeochemical Cycles, 11: 15–27.
    Chapman, D. M.,高瑞平. 1994.澳大利亚森林火灾的管理与火生态的研究.应用生态学报, 5(4): 409-414.
    Chen, L. Q., Gao, Z. Y. 2007. Spatial variability in the partial pressures of CO_2 in the northern Bering and Chukchi seas. Deep Sea Research Part II: Topical Studies in Oceanography, 54(23-26): 2619-2629.
    Chen, Y., McNamara, N. P., Dumont, M. G., Bodrossy, L., Stralis-Pauese, N., Murrell, J. C. 2008. The impact of burning and Calluna removal on below-ground methanotroph diversity and activity in a peatland soil. Applied Soil Ecology, 40(2): 291-298.
    Cheng, X. L., Luo, Y. Q., Xu, Q., Lin, G. H., Zhang, Q. F., Chen, J. K., Li, B. 2010. Seasonal variation in CH_4 emission and its 13C-isotopic signature from Spartina alterniflora and Scirpus mariqueter soils in an estuarine wetland. Plant and Soil, 327(1): 85-94.
    Choudhary, M. A., Akramkhanov, A., Saggar, S. 2002. Nitrous oxide emissions from a New Zealand cropped soil: tillage effects, spatial and seasonal variability. Agriculture, Ecosystems & Environment, 93(1-3): 33-43.
    Christensen, S., Christensen, B. T. 1991. Organic matter available for denitrification in different soil fractions: effect of freeze/thaw cycles and straw disposal. Journal of Soil Science, 42(4): 637-647.
    Christensen, S., Tiedje, J. M. 1990. Brief and vigorous N_2O production by soil at spring thaw. Journal of Soil Science, 41(1): 1-4.
    Christensen, T. R. 1993. Methane emission from Arctic tundra. Biogeochemistry, 21: 117–139.
    Christensen, T. R., Cox, P. 1995. Response of Methane Emission from Arctic Tundra toClimatic-Change - Results from a Model Simulation. Tellus Series B-Chemical and Physical Meteorology, 47(3): 301-309.
    Christensen, T. R., Ekberg, A., Str?m, L., Mastepanov, M., Panikov, N., ?quist, M., Svensson, B. H., Nyk(?)nen, H., Martikainen, P. J., Oskarsson, H. 2003. Factors controlling large scale variations in methane emissions from wetlands. Geophysical Research Letters, 30(7): 1414.
    Christensen, T. R., Jonasson, S., Callaghan, T. V., Havstr?m, M. 1995. Spatial variation in high-latitude methane flux along a transect across Siberian and European tundra environments. Journal of Geophysical Research, 100(D10): 21035-21045.
    Christensen, T. R., Prentice, I. C., Kaplan, J., Haxeltine, A., Sitch, S. 1996. Methane flux from northern wetlands and tundra: an ecosystem source modelling approach. Tellus, 48B: 652-661.
    Cole, J. A., Brown, C. M. 1980. Nitrite reduction to ammonia by fermentative bacteria: a short circuit in the biological nitrogen cycle. FEMS Microbiology Letters, 7: 65-72.
    Cole, J. J., Caraco, N. F. 2001. Emissions of Nitrous Oxide (N_2O) from a Tidal, Freshwater River, the Hudson River, New York. Environmental Science & Technology, 35(6): 991-996.
    Conrad, R. (2007). Microbial Ecology of Methanogens and Methanotrophs. Advances in Agronomy. Donald, L. S., Academic Press. Volume 96: 1-63.
    Corredor, J. E., Morell, J. M., Bauza, J. 1999. Atmospheric Nitrous Oxide Fluxes from Mangrove Sediments. Marine Pollution Bulletin, 38(6): 473-478.
    Crill, P. M., Bartlett, K. B., Hariss, R. C., Gorham, E., Verry, E. S., Sebacher, D. L. 1988. Methane flux from Minnesota peatlands. Global Biogeochemical Cycles, 2: 371–384.
    Croxall, J. P. 1987. The status and conservation of Antarctic seals and seabirds: A review. Environment International, 13(1): 55-70.
    Dalal, R. C., Allen, D. E. 2008. Greenhouse gas fluxes from natural ecosystems. Australian Journal of Botany, 56(5): 369-407.
    Davidson, E. A., Schimel, J. P. 1995. Microbial processes of production and consumption of nitric oxide, nitrous oxideand methane. In: Matson, P.A., Harriss, R.C. (Eds.), Biogenic Trace Gases: Measuring Emissions From Soil and Water. Blackwell Science, Malden, MA: 327-357.
    Davidson, E. A., Verchot, L. V., Cattanio, J. H., Ackerman, I. L., Carvalho, J. E. M. 2000. Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry, 48(1): 53-69.
    Dawson, J. J. C., Billett, M. F., Hope, D., Palmer, S. M., Deacon, C. M. 2004. Sources and sinks of aquatic carbon in a peatland stream continuum. Biogeochemistry, 70(1): 71-92.
    Del Giorgio, P. A., Cole, J. J., Caraco, N., Peter, R. H. 1999. Linking planktonic biomass and metabolism to net gas fluxes in northern temperate lakes. Ecology, 80: 1422-1431.
    Denmead, O. T. 1983. Micrometerological methods for measuring gaseous losses of nitrogen in the field. Freney, J. R., Simpson, J. R. Gaseous loss of nitrogen from plant-soil systems. The Hague: Martinus Nijhoff/Dr. W. Junk Publisher.
    Devol, A. H. 1991. Direct measurement of nitrogen gas fluxes from continental shelf sediments. Nature, 349(6307): 319-321.
    Ding, W., Cai, Z., Tsuruta, H. 2004. Cultivation, nitrogen fertilization, and set-aside effects on methane uptake in a drained marsh soil in Northeast China. Global Change Biology, 10(10): 1801-1809.
    Ding, W., Cai, Z., Tsuruta, H., Li, X. 2003. Key factors affecting spatial variation of methane emissions from freshwater marshes. Chemosphere, 51: 167-173.
    Dong, H., Zhu, Z., Shang, B., Kang, G., Zhu, H., Xin, H. 2007. Greenhouse gas emissions from swine barns of various production stages in suburban Beijing, China. Atmospheric Environment, 41(11): 2391-2399.
    Dore, J. E., Popp, B. N., Karl, D. M., Sansone, F. J. 1998. A large source of atmospheric nitrous oxide from subtropical North Pacific surface waters. Nature, 396(6706): 63-66.
    Dowrick, D. J., Hughes, S., Freeman, C., Lock, M. A., Reynolds, B., Hudson, J. A. 1999. Nitrous oxide emissions from a gully mire in mid-Wales, UK, under simulated summer drought. Biogeochemistry, 44(2): 151-162.
    Edwards, A. C., Killham, K. 1986. The effect of freeze/thaw on gaseous nitrogen loss from upland soils. Soil Use and Management, 2(3): 86-91.
    Erskine, P. D., Bergstrom, D. M., Schmidt, S., Stewart, G. R., Tweedie, C. E., Shaw, J. D. 1998. Subantarctic Macquarie Island– a model ecosystem for studying animal-derived nitrogen sources using15N natural abundance. Oecologia, 117(1): 187-193.
    Etheridge, D. M., Pearman, G. I., Fraser, P. J. 1992. Changes in tropospheric methane between 1841 and 1978 from a high accumulation-rate Antarctic ice core. Tellus Series B-Chemical and Physical Meteorology, 44(4): 282-294.
    Fan, C. X., Ford, P. W., Hu, W. P., Qin, B. Q. 2003. Divergence of carbon dioxide fluxes in different trophic areas of Taihu Lake, China. Journal of Environmental Sciences, 15: 433-442.
    Freney, J. R. 1997. Emission of nitrous oxide from soils used for agriculture. Nutrient Cycling in Agroecosystems, 49(1): 1-6.
    Fromin, N., Pinay, G., Montuelle, B., Landais, D., Ourcival, J. M., Joffre, R., Lensi, R. 2010.Impact of seasonal sediment desiccation and rewetting on microbial processes involved in greenhouse gas emissions. Ecohydrology, 3(3): 339-348.
    Fung, I., Prather, M., John, J., Lerner, J., Matthews, E. 1991. Three-dimensional model synthesis of the global methane cycle. Journal of Geophysical Research, 96: 13033-13065.
    Funk, D. W., Pullman, E. R., Peterson, K. M., Crill, P. M., Billings, W. D. 1994. Influence of water table on carbon dioxide, carbon monoxide, and methane fluxes from taiga bog microcosm. Global Biogeochemical Cycles, 8: 271-278.
    Ghude, S. D., Jain, S. L., Arya, B. C. 2009. Temporal evolution of measured climate forcing agents at South Pole, Antarctica. Current Science, 96(1): 49-57.
    Granli, T., Boeckman, O. C. 1994. Nitrous oxide from agriculture. Norwegian Journal of Agricultural Sciences, 12: 1-128.
    Gregorich, E. G., Hopkins, D. W., Elberling, B., Sparrow, A. D., Novis, P., Greenfield, L. G., Rochette, P. 2006. Emission of CO_2, CH4 and N_2O from lakeshore soils in an Antarctic dry valley. Soil Biology & Biochemistry, 38: 3120–3129.
    Griffith, D. W. T., Toon, G. C., Sen, B., Blavier, J., Fran?ois, Toth, R. A. 2000. Vertical profiles of nitrous oxide isotopomer fractionation measured in the stratosphere. Geophysical Research Letters, 27(16): 2485-2488.
    Groffman, P., Driscoll, C., Fahey, T., Hardy, J., Fitzhugh, R., Tierney, G. 2001. Effects of mild winter freezing on soil nitrogen and carbon dynamics in a northern hardwood forest. Biogeochemistry, 56(2): 191-213.
    Hao, X., Chang, C., Larney, F. J., Travis, G. R. 2001. Greenhouse Gas Emissions during Cattle Feedlot Manure Composting. Journal Environmental Quality, 30(2): 376-386.
    Hendriks, D. M. D., van Huissteden, J., Dolman, A. J., van der Molen, M. K. 2007. The full greenhouse gas balance of an abandoned peat meadow. Biogeosciences, 4(3): 411-424.
    Hirota, M., Senga, Y., Seike, Y., Nohara, S., Kunii, H. 2007. Fluxes of carbon dioxide, methane and nitrous oxide in two contrastive fringing zones of coastal lagoon, Lake Nakaumi, Japan. Chemosphere, 68: 597-603.
    Hochstein, L. I., Tomlinson, G. A. 1988. The enzymes associated with denitrification. Annual Review of Microbiology, 42: 231-261.
    Holton, J. R. 1990. On the Global Exchange of Mass between the Stratosphere and Troposphere. Journal of the Atmospheric Sciences, 47(3): 392-395.
    Hopkins, D. W., Sparrow, A. D., Gregorich, E. G., Novis, P., Elberling, B., Greenfield, L. G. 2008. Redistributed lacustrine detritus as a spatial subsidy of biological resources for soils in an Antarctic dry valley. Geoderma, 144(1-2): 86-92.
    Huang, Y. A. O., Sass, R. L., Fisher, F. M. 1998. Model estimates of methane emission from irrigated rice cultivation of China. Global Change Biology, 4(8): 809-821.
    Huiskes, A., Boschker, H., Lud, D., Moerdijk-Poortvliet, T. 2006. Stable Isotope Ratios as a Tool for Assessing Changes in Carbon and Nutrient Sources in Antarctic Terrestrial Ecosystems. Plant Ecology, 182(1): 79-86.
    Huttunen, J. T., Alm, J., Liikanen, A., Juutinen, S., Larmola, T., Hammar, T., Silvola, J., Martikainen, P. J. 2003a. Fluxes of methane, carbon dioxide and nitrous oxide in boreal lakes and potential anthropogenic effects on the aquatic greenhouse gas emissions. Chemosphere, 52(3): 609-621.
    Huttunen, J. T., Juutinen, S., Alm, J., Larmola, T., Hammar, T., Silvola, J., Martikainen, P. J. 2003b. Nitrous oxide flux to the atmosphere from the littoral zone of a boreal lake. Journal of Geophysical Research, 108(D14): 4421.
    Huttunen, J. T., Nykanen, H., Turunen, J., Martikainen, P. J. 2003c. Methane emissions from natural peatlands in the northern boreal zone in Finland, Fennoscandia. Atmospheric Environment, 37: 147-151.
    Hynst, J., Simek, M., Brucek, P., Petersen, S. O. 2007. High fluxes but different patterns of nitrous oxide and carbon dioxide emissions from soil in a cattle overwintering area. Agriculture, Ecosystems & Environment, 120(2-4): 269-279.
    IPCC. 2007. Climate Change 2007: The Physical Science Basis. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2007.
    Jansson, M., Bergstr?m, A.-K., Blomqvist, P., Drakare, S. 2000. Allochthonous organic carbon and phytoplankton/bacterioplankton production relationships in lakes. Ecology, 81(11): 3250-3255.
    Joabsson, A., Christensen, T. R. 2001. Methane emissions from wetlands and their relationship with vascular plants: an Arctic example. Global Change Biology, 7: 919–932.
    Jones, S. K., Rees, R. M., Skiba, U. M., Ball, B. C. 2005. Greenhouse gas emissions from a managed grassland. Global and Planetary Change, 47(2-4): 201-211.
    Jungkunst, H. F., Fiedler, S. 2007. Latitudinal differentiated water table control of carbon dioxide, methane and nitrous oxide fluxes from hydromorphic soils: feedbacks to climate change. Global Change Biology, 13(12): 2668-2683.
    Juutinen, S., Alm, J., Larmola, T., Huttunen, J., Morero, M., Saarnio, S., Martikainen, P., Silvola, J. 2003. Methane (CH4) release from littoral wetlands of boreal lakes during an extended flooding period. Global Change Biology, 9(3): 413-424.
    Kaiser, J., Brenninkmeijer, C. A. M., R?ckmann, T. 2002. Intramolecular 15N and 18O fractionationin the reaction of N_2O with O(1D) and its implications for the stratospheric N_2O isotope signature. Journal of Geophysical Research, 107(D14): 4214.
    Kaiser, J., Rockmann, T., Brenninkmeijer, C. A. M. 2003. Complete and accurate mass spectrometric isotope analysis of tropospheric nitrous oxide. Journal of Geophysical Research, 108(D15): 4476, doi: 4410.1029/2003JD003613.
    Kammann, C., Grünhage, L., Müller, C., Jacobi, S., J?ger, H. J. 1998. Seasonal variability and mitigation options for N_2O emissions from differently managed grasslands. Environmental Pollution, 102(1, Supplement 1): 179-186.
    Keerthisinghe, D. G., Freney, J. R., Mosier, A. R. 1993. Effect of wax-coated calcium carbide and nitrapyrin on nitrogen loss and methane emission from dry-seeded flooded rice. Biology and Fertility of Soils, 16(1): 71-75.
    Keller, M., Kaplan, W. A., Wofsy, S. C. 1986. Emissions of N_2O, CH4 and CO_2 From Tropical Forest Soils. Journal of Geophysical Research, 91(D11): 11791-11802.
    Kieft, T. L., soroker, E., firestone, M. K. 1987. Microbial biomass response to a rapid increase in water potential when dry soil is wetted. Soil Biology and Biochemistry, 19(2): 119-126.
    Kim, J., Verma, S. B. 1992. Soil surface CO_2 flux in a Minnesota peatland. Biogeochemistry, 18: 37-51.
    Kim, K. R., Craig, H. 1993. Nitrogen-15 and Oxygen-18 Characteristics of Nitrous Oxide: A Global Perspective. Science, 262(5141): 1855-1857.
    Kim, K. R., Craig, H. 1990. Two-isotope characterization of N_2O in the Pacific Ocean and constraints on its origin in deep water. Nature, 347(6288): 58-61.
    Kim, Y., Tanaka, N. 2002. Winter N_2O emission rate and its production rate in soil underlying the snowpack in a subboreal region, Japan. Journal of Geophysical Research, 107(D19): 4406.
    King, J. Y., Reeburgh, W. S., Regli, S. K. 1998. Methane emission and transport by arctic sedges in Alaska: results of a vegetation removal experiment. Journal of Geophysical Research, 103: 29083-29092.
    Knox, G. A. 1994. The Biology of the Southern Ocean. Cambridge University Press, New York.
    Koponen, H. T., Fl?jt, L., Martikainen, P. J. 2004. Nitrous oxide emissions from agricultural soils at low temperatures: a laboratory microcosm study. Soil Biology and Biochemistry, 36(5): 757-766.
    Lafleur, P. M., Humphreys, E. R. 2008. Spring warming and carbon dioxide exchange over low Arctic tundra in central Canada. Global Change Biology, 14(4): 740-756.
    Lai, D. Y. F. 2009. Methane Dynamics in Northern Peatlands: A Review. Pedosphere, 19(4): 409-421.
    Lansdown, J. M., Quay, P. D., King, S. L. 1992. CH4 production via CO_2 reduction: a source of 13C depleted CH4. Geochimica et Cosmochimica Acta, 56: 3493–3503.
    Larsen, K. S., Jonasson, S., Michelsen, A. 2002. Repeated freeze-thaw cycles and their effects on biological processes in two arctic ecosystem types. Applied Soil Ecology, 21(3): 187-195.
    Lassey, K. R., Lowe, D. C., Brenninkmeijer, C. A. M., Gomez, A. J. 1993. Atmospheric methane and its carbon isotopes in the southern hemisphere: Their time series and an instructive model. Chemosphere, 26(1-4): 95-109.
    Law, C. S., Rees, A. P., Owens, N. J. P. 1993. Nitrous oxide production by estuarine epiphyton. Limnology and Oceanography, 38(2): 435-441.
    Le Mer, J., Roger, P. 2001. Production, oxidation, emission and consumption of methane by soils: A review. European Journal of Soil Biology, 37(1): 25-50.
    Legrand, M., Ducroz, F., Wagenbach, D., Mulvaney, R., Hall, J. 1998. Ammonium in coastal Antarctic aerosol and snow: Role of polar ocean and penguin emissions. Journal of Geophysical Research, 103(D9): 11043-11056.
    Lindeboom, H. J. 1984. The nitrogen pathway in a penguin rockery. Ecology, 65: 269-277.
    Liu, X. D., Sun, L. G., Xie, Z. Q., Yin, X. B., Zhu, R. B., Wang, Y. H. 2007. A preliminary record of the historical seabird population in the Larsemann Hills, East Antarctica, from geochemical analyses of Mochou Lake sediments. Boreas, 36(2): 182-197.
    Liu, X. D., Sun, L. G., Xie, Z. Q., Zhu, R. B., Yin, X. B., Zhao, S. P. 2004. The record of seabird activity in the sediments of Mochou Lake near Zhongshan Station southeastern Antarctica. Chinese Journal of Polar Science, 16: 295-309.
    Lowe, D. C., Brenninkmeijer, C. A. M., Brailsford, G. W., Lassey, K. R., Gomez, A. J., Nisbet, E. G. 1994. Concentration and 13C records of atmospheric methane in New Zealand and Antarctica: Evidence for changes in methane sources. Journal of Geophysical Research, 99(D8): 16913-16925.
    Lowe, D. C., Brenninkmeijer, C. A. M., Manning, M. R., Sparks, R., Wallace, G. 1988. Radiocarbon determination of atmospheric methane at Baring Head, New Zealand. Nature, 332(6164): 522-525.
    Lowe, D. C., Brenninkmeijer, C. A. M., Tyler, S. C., Dlugkencky, E. J. 1991. Determination of the isotopic composition of atmospheric methane and its application in the Antarctic. Journal of Geophysical Research-Atmospheres, 96(D8): 15455-15467.
    Lowe, D. C., Wallace, G., Sparks, R. J. 1987. Applications of AMS in the atmospheric and oceanographlc sciences. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 29(1-2): 291-296.
    Ludwig, B., Teepe, R., Lopes de Gerenyu, V., Flessa, H. 2006. CO_2 and N_2O emissions from gleyic soils in the Russian tundra and a German forest during freeze-thaw periods--a microcosm study. Soil Biology and Biochemistry, 38(12): 3516-3519.
    Luiz?o, F., Matson, P., Livingston, G., Luiz?o, R., Vitousek, P. 1989. Nitrous oxide flux following tropical land clearing. Global Biogeochemcal Cycles, 3(3): 281-285.
    Lund, M., Lafleur, P. M., Roulet, N. T., Lindroth, A., Christensen, T. R., Aurela, M., Chojnicki, B. H., Flanagan, L. B., Humphreys, E. R., Laurila, T., Oechel, W. C., Olejnik, J., Rinne, J., Schubert, P. E. R., Nilsson, M. B. 2010. Variability in exchange of CO_2 across 12 northern peatland and tundra sites. Global Change Biology, 16(9): 2436-2448.
    Mandernack, K. W., Rahn, T., Kinney, C., Wahlen, M. 2000. The biogeochemical controls of the 15N and 18O of N_2O produced in landfill cover soils. Journal of Geophysical Research, 105(D14): 17709-17720.
    Marani, L., Alvala, P. C. 2007. Methane emissions from lakes and floodplains in Pantanal, Brazil. Atmospheric Environment, 41: 1627–1633.
    Mariotti, A. 1983. Atmospheric nitrogen is a reliable standard for natural 15N abundance measurements. Nature, 303(5919): 685-687.
    Martikainen, P. J., Nykanen, H., Crill, P., Silvola, J. 1993. Effect of a lowered water table on nitrous oxide fluxes from northern peatlands. Nature, 366(6450): 51-53.
    Matthias, A. D., Artiola, J. F., Musil, S. A. 1993. Preliminary study of N_2O flux over irritated bermudagrass in a desert environment. Agricultural and Forest Meteorology, 64: 29-45.
    Michalski, G., Bockheim, J. G., Kendall, C., Thiemens, M. 2005. Isotopic composition of Antarctic Dry Valley nitrate: implication for NOy sources and cycling in Antarctica. Geophysical Research Letters, 32, L13817, doi:10.1029/2004GL022121.
    Middelburg, J., Klaver, G., Nieuwenhuize, J., Markusse, R., Vlug, T., Nat, F. 1995. Nitrous oxide emissions from estuarine intertidal sediments. Hydrobiologia, 311(1): 43-55.
    Minkkinen, K., Laine, J. 2006. Vegetation heterogeneity and ditches create spatial variability in methane fluxes from peatlands drained for forestry. Plant and Soil, 285(1): 289-304.
    Misselbrook, T. H., Webb, J., Chadwick, D. R., Ellis, S., Pain, B. F. 2001. Gaseous emissions from outdoor concrete yards used by livestock. Atmospheric Environment, 35(31): 5331-5338.
    Moore, T. R., Roulet, N., Knowles, R. 1990. Spatial and temporal variations of CH_4 flux from subarctic/northern boreal fens. Global Biogeochemical Cycles, 4: 29-46.
    Moriizumi, J., Nagamine, K., Iida, T., Ikebe, Y. 1998. Carbon isotopic analysis of atmospheric methane in urban and suburban areas: Fossil and non-fossil methane from local sources. Atmospheric Environment, 32(17): 2947-2955.
    Morrissey, L. A., Livingston, G. P. 1992. Methane emissions from Alaska Arctic tundra: an assessment of local spatial variability. Journal of Geophysical Research, 97: 16661-16670.
    Mosier, A. R., Duxbury, J. M., Freney, J. R., Heinemeyer, O., Minami, K., Johnson, D. E. 1998.
    Mitigating agricultural emissions of methane. Climatic Change, 40(1): 39-80.
    Mosier, A. R., Heinemeyer, O. 1985. Current methods used to estimate N_2O and N2 emissions from field soils. Golterman H I. Denitrification in the Nitrogen Cycle. New York: Plenum Press.
    Mountfort, D. O., Kaspar, H. F., Downes, M. 1999. Partitioning effects during terminal carbon and electron flow in sediments of a low-salinity meltwater pond near Bratina Island, McMurdo Ice Shelf, Antarctica. Applied and Environmental Microbiology, 65(12): 5493-5499.
    Nakano, T., Kuniyoshi, S., Fukuda, M. 2000. Temporal variation in methane emission from tundra wetlands in a permafrost area, northeastern Siberia. Atmospheric Environment, 34: 1205-1213.
    Naqi, W. A., Yoshinari, T., Jayakumar, D. A., Altabet, M. A., Narvekar, P. V., Devol, A. H., Brandes, J. A., Codispoti, L. A. 1998. Budgetary and biogeochemical implications of N_2O isotope signatures in the Arabian Sea. Nature, 394: 462-464.
    Neue, H. U., Scharpenseel, H. W. 1984. Gaseous products of the decomposition of organic matter in submerged soils. International Rice Research Institute (IRRI). Organic Matter and Rice. Los Banos: IRRI: 311-328.
    Neumann, K., Lyons, W. B., Priscu, J. C., Donahoe, R. J. 2001. CO_2 concentrations in perennially ice-covered lakes of Taylor Valley, Antarctica. Biogeochemistry, 56(1): 27-50.
    Nevison, C. D., Weiss, R. F., Erickson, D. J., III. 1995. Global oceanic emissions of nitrous oxide. Journal of Geophysical Research, 100(C8): 15809-15820.
    Nishimura, S., Sawamoto, T., Akiyama, H., Sudo, S., Yagi, K. 2004. Methane and nitrous oxide emissions from a paddy field with Japanese conventional water management and fertilizer application. Global Biogeochem. Cycles, 18(2): GB2017.
    Nykanen, H., Alm, J., Silvola, J., Tolonen, K., Martikainen, P. J. 1998. Methane fluxes on boreal peatlands of different fertility and the effect of long-term experimental lowering of the water table on flux rates. Global Biogeochemical Cycles, 12: 53–69.
    Ogawa, M., Yoshida, N. 2005. Nitrous oxide emission from the burning of agricultural residue. Atmospheric Environment, 39(19): 3421-3429.
    Pérez, T., Trumbore, S. E., Tyler, S. C., Davidson, E. A., Keller, M., de Camargo, P. B. 2000. Isotopic variability of N_2O emissions from tropical forest soils. Global Biogeochem. Cycles, 14(2): 525-535.
    Paerl, H. W., Priscu, J. C. 1998. Microbial phototrophic, heterotrophic, heterotrophic, and diazotrophic activities associated with aggregates in the permanent ice cover of Lake Bonney, Antarctica. Microbial Ecology, 36(3): 221-230.
    Panikov, N. S., Dedysh, S. N. 2000. Cold season CH_4 and CO_2 emission from boreal peat bogs (West Siberia): Winter fluxes and thaw activation dynamics. Global Biogeochem. Cycles, 14(4): 1071-1080.
    Papen, H., Butterbach-Bahl, K. 1999. A 3-year continuous record of nitrogen trace gas fluxes from untreated and limed soil of a N-saturated spruce and beech forest ecosystem in Germany 1. N_2O emissions. Journal of Geophysical Research, 104(D15): 18487-18503.
    Papen, H., Renneberg, H. 1990. Microbial processes involved in emissions of radioactively important trace gases. Transactions 14th International Congress of Soil Science, Kyoto, 2: 232-237.
    Park, J.-H., Day, T., Strauss, S., Ruhland, C. 2007. Biogeochemical pools and fluxes of carbon and nitrogen in a maritime tundra near penguin colonies along the Antarctic Peninsula. Polar Biology, 30(2): 199-207.
    Park, S., Atlas, E. L., Boering, K. A. 2004. Measurements of N_2O isotopologues in the stratosphere: Influence of transport on the apparent enrichment factors and the isotopologue flux to the troposphere. Journal of Geophysical Research, 109(D01305): doi: 10.1029/2003JD003731.
    Park, S., Pérez, T., Boering, K. A., Trumbore, S. E., Gil, J., Marquina, S., Tyler, S. C. 2011. Can N_2O stable isotopes and isotopomers be useful tools to characterize sources and microbial pathways of N_2O production and consumption in tropical soils? Global Biogeochem. Cycles, 25(1): GB1001.
    Popp, B. N., Westley, M. B., Toyoda, S., Miwa, T., Dore, J. E., Yoshida, N., Rust, T. M., Sansone, F. J., Russ, M. E., Ostrom, N. E., Ostrom, P. H. 2002. Nitrogen and oxygen isotopomeric constraints on the origins and sea-to-air flux of N_2O in the oligotrophic subtropical North Pacific gyre. Glob Biogeochem Cycle, 16(4): 1064, doi:1010.1029/2001GB001806.
    Poungparn, S., Komiyama, A., Tanaka, A., Sangtiean, T., Maknual, C., Kato, S., Tanapermpool, P., Patanaponpaiboon, P. 2009. Carbon dioxide emission through soil respiration in a secondary mangrove forest of eastern Thailand. Journal of Tropical Ecology, 25: 393-400.
    Priemé, A., Christensen, S. 2001. Natural perturbations, drying-wetting and freezing-thawing cycles, and the emission of nitrous oxide, carbon dioxide and methane from farmed organic soils. Soil Biology and Biochemistry, 33(15): 2083-2091.
    Priscu. 1997. The biogeochemistry of nitrous oxide in permanently ice-covered lakes of theMcMurdo Dry Valleys, Antarctica. Global Change Biology, 3(4): 301-315.
    Priscu, J. C., Wolf, C. F., Takacs, C. D., Fritsen, C. H., Laybourn-Parry, J., Roberts, E. C., Sattler, B., Lyons, W. B. 1999. Carbon Transformations in a Perennially Ice-Covered Antarctic Lake. BioScience, 49(12): 997-1008.
    Quay, P. D., King, S. L., Stutsman, J., Wilbur, D. O., Steele, L. P., Fung, I., Gammon, R. H., Brown, T. A., Farwell, G. W., Grootes, P. M., Schmidt, F. H. 1991. Carbon isotopic composition of atmospheric CH_4: Fossil and biomass burning source strengths. Global Biogeochem. Cycles, 5(1): 25-47.
    R?ver, M., Heinemeyer, O., Kaiser, E.-A. 1998. Microbial induced nitrous oxide emissions from an arable soil during winter. Soil Biology and Biochemistry, 30(14): 1859-1865.
    Rahn, T., Wahlen, M. 1997. Stable Isotope Enrichment in Stratospheric Nitrous Oxide. Science, 278(5344): 1776-1778.
    Rahn, T., Wahlen, M. 2000. A reassessment of the global isotopic budget of atmospheric nitrous oxide. Global Biogeochemical Cycles, 14(2): 537-543.
    Raich, J. W., Schlesinger, W. H. 1992. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus Series B-Chemical and Physical Meteorology, 44(2): 81-99.
    Raich, J. W., Tufekciogul, A. 2000. Vegetation and soil respiration: correlations and controls. Biogeochemistry, 48(1): 71-90.
    Rantakari, M., Kortelainen, P. 2005. Interannual variation and climatic regulation of the CO_2 emission from large boreal lakes. Global Change Biology, 11(8): 1368-1380.
    Rasmussen, R. A., Khalil, M., Moraes, F. 1993. Permafrost methane content: 1. Experimental data from sites in northern Alaska. Chemosphere, 26(1-4): 609-616.
    Rastogi, M., Singh, S., Pathak, H. 2002. Emission of carbon dioxide from soil. Current Science, 82(5): 510-517.
    Regina, K., Nyk?nen, H., Silvola, J., Martikainen, P. 1996. Fluxes of nitrous oxide from boreal peatlands as affected by peatland type, water table level and nitrification capacity. Biogeochemistry, 35(3): 401-418.
    Regina, K., Silvola, J., Martikainen, P. J. 1999. Short-term effects of changing water table on N_2O fluxes from peat monoliths from natural and drained boreal peatlands. Global Change Biology, 5(2): 183-189.
    Regina, K., Syvasalo, E., Hannukkala, A., Esala, M. 2004. Fluxes of N_2O from farmed peat soils in Finland. European Journal of Soil Science, 55(3): 591-599.
    Renault, P., Stengel, P. 1994. Modeling Oxygen Diffusion in Aggregated Soils: I. Anaerobiosisinside the Aggregates. Soil Sci. Soc. Am. J., 58(4): 1017-1023.
    Repo, M. E., Huttunen, J. T., Naumov, A. V., Chichulin, A. V., Lapshina, E. D., Bleuten, W., Martikainen, P. J. 2007. Release of CO_2 and CH_4 from small wetland lakes in western Siberia. Tellus Series B-Chemical and Physical Meteorology, 59(5): 788-796.
    Riera, J. L., Schindler, J. E., Kratz, T. K. 1999. Seasonal dynamics of carbon dioxide and methane in two clear-water lakes and two bog lakes in northern Wisconsin, U.S.A. Canadian Journal of Fisheries and Aquatic Sciences, 56(2): 265-274.
    Saarnio, S., Winiwarter, W., Leit?o, J. 2009. Methane release from wetlands and watercourses in Europe. Atmospheric Environment, 43(7): 1421-1429.
    Sameshima-Saito, R., Chiba, K., Minamisawa, K. 2004. New method of denitrification analysis of bradyrhizobium field isolates by gas chromatographic determination of 15N-labeled N2. Applied and Environmental Microbiology, 70(5): 2886-2891.
    Sass, R. L., Fisher, F. M., Wang, Y. B., Turner, F. T., Jund, M. F. 1992. Methane emissions from rice fields: the effect of floodwater management. Global Biogeochemical Cycles, 6: 249–262.
    Schürmann, A., Mohn, J., Bachofen, R. 2002. N_2O emissions from snow-covered soils in the Swiss Alps. Tellus Series B-Chemical and Physical Meteorology, 54(2): 134-142.
    Schaefer, C. E. G. R., Simas, F. N. B., Gilkes, R. J., Mathison, C., da Costa, L. M., Albuquerque, M. A. 2008. Micromorphology and microchemistry of selected Cryosols from maritime Antarctica. Geoderma, 144(1-2): 104-115.
    Schimel, J. P., Clein, J. S. 1996. Microbial response to freeze-thaw cycles in tundra and taiga soils. Soil Biology and Biochemistry, 28(8): 1061-1066.
    Schmidt, H.-L., Werner, R. A., Yoshida, N., Well, R. 2004. Is the isotopic composition of nitrous oxide an indicator for its origin from nitrification or denitrification? A theoretical approach from referred data and microbiological and enzyme kinetic aspects. Rapid Communications in Mass Spectrometry, 18(18): 2036-2040.
    Schrier-Uijl, A., Kroon, P., Leffelaar, P., van Huissteden, J., Berendse, F., Veenendaal, E. 2010a. Methane emissions in two drained peat agro-ecosystems with high and low agricultural intensity. Plant and Soil, 329(1): 509-520.
    Schrier-Uijl, A., Veraart, A., Leffelaar, P., Berendse, F., Veenendaal, E. 2011. Release of CO_2 and CH_4 from lakes and drainage ditches in temperate wetlands. Biogeochemistry, 102(1): 265-279.
    Schrier-Uijl, A. P., Kroon, P. S., Hensen, A., Leffelaar, P. A., Berendse, F., Veenendaal, E. M. 2010b. Comparison of chamber and eddy covariance-based CO_2 and CH_4 emission estimates in a heterogeneous grass ecosystem on peat. Agricultural and Forest Meteorology, 150(6):825-831.
    Sebacher, D. I., Harriss, R. C., Bartlett, K. B., Sebacher, S. M., Grice, S. S. 1986. Atmospheric methane sources: Alaskan tundra bogs, an alpine fen, and a subarctic boreal marsh. Tellus, 38B: 1-10.
    Segers, R. 1998. Methane production and methane consumption: a review of processes underlying wetland methane fluxes. Biogeochemistry, 41(1): 23-51.
    Simas, F. N. B., Schaefer, C. E. G. R., Melo, V. F., Albuquerque-Filho, M. R., Michel, R. F. M., Pereira, V. V., Gomes, M. R. M., da Costa, L. M. 2007. Ornithogenic cryosols from Maritime Antarctica: Phosphatization as a soil forming process. Geoderma, 138(3-4): 191-203.
    Singh, H. B., Salas, L. J., Shigeishi, H. 1979. The distribution of nitrous oxide (N_2O) in the global atmosphere and the Pacific Ocean. Tellus, 31(4): 313-320.
    Skiba, U., Fowler, D., Smith, K. 1994. Emissions of NO and N_2O from soils. Environmental Monitoring and Assessment, 31(1): 153-158.
    Smith, M. S., Zimmerman, K. 1981. Nitrous Oxide Production by Nondenitrifying Soil Nitrate Reducers1. Soil Science Society of America Journal, 45(5): 865-871.
    Smith, S. V., Hollibaugh, J. T. 1993. Coastal metabolism and the oceanic organic carbon balance. Reviews of Geophysics, 31(1): 75-89.
    Sollie, S., Verhoeven, J. 2008. Nutrient Cycling and Retention Along a Littoral Gradient in a Dutch Shallow Lake in Relation to Water Level Regime. Water, Air and Soil Pollution, 193(1): 107-121.
    Solomon, S., Qin, D., Manning, M., Alley, R. B., Berntsen, T., Bindoff, N. L., Chen, Z. 2007. Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. Cambridge, United Kingdom and New York, NY, USA.
    Song, C. C., Wang, Y. S., Wang, Y. Y., Zhao, Z. C. 2006. Emission of CO_2, CH_4 and N_2O from freshwater marsh during freeze-thaw period in Northeast of China. Atmospheric Environment, 40(35): 6879-6885.
    Spagnoli, F., Bergamini, M. C. 1997. Water-Sediment Exchange of Nutrients During Early Diagenesis and Resuspension of Anoxic Sediments from the Northern Adriatic Sea Shelf. Water, Air and Soil Pollution, 99(1): 541-556.
    Steele, L. P., Dlugokencky, E. J., Lang, P. M., Tans, P. P., Martin, R. C., Masarie, K. A. 1992. Slowing down of the Global Accumulation of Atmospheric Methane during the 1980s. Nature, 358(6384): 313-316.
    Steudler, P. A., Melillo, J. M., Feigl, B. J., Neill, C., Piccolo, M. C., Cerri, C. C. 1996.Consequence of forest-to-pasture conversion on CH_4 fluxes in the Brazilian Amazon Basin. Journal of Geophysical Research, 101(D13): 18547-18554.
    Stevens, C. M., Rust, F. E. 1982. The carbon isotopic composition of atmospheric methane. Journal of Geophysical Research, 87(C7): 4879-4882.
    Str?m, L., Christensen, T. R. 2007. Below ground carbon turnover and greenhouse gas exchanges in a sub-arctic wetland. Soil Biology and Biochemistry, 39(7): 1689-1698.
    Strayer, R. F., Tiedje, J. M. 1978. Kinetic parameters of the conversion of methane precursors to methane in a hypereutrophic lake sediment. Applied Environmental Microbiology, 36(2): 330-340.
    Striegl, R. G., Michmerhuizen, C. M. 1998. Hydrologic influence on methane and carbon dioxide dynamics at two north-central Minnesota lakes. Limnology and Oceanography, 43: 1519-1529.
    Sun, L. G., Xie, Z. Q., Zhao, J. L. 2000. Palaeoecology: A 3,000-year record of penguin populations. Nature, 407(6806): 858-858.
    Sun, L. G., Liu, X. D., Yin, X. B., Zhu, R. B., Xie, Z. Q., Wang, Y. H. 2004a. A 1,500-year record of Antarctic seal populations in response to climate change. Polar Biology, 27(8): 495-501.
    Sun, L. G., Zhu, R. B., Xie, Z. Q., Xing, G. X. 2002. Emissions of nitrous oxide and methane from Antarctic Tundra: role of penguin dropping deposition. Atmospheric Environment, 36(31): 4977-4982.
    Sun, L. G., Zhu, R. B., Yin, X. B., Liu, X. D., Xie, Z. Q., Wang, Y. H. 2004b. A geochemical method for the reconstruction of the occupation history of a penguin colony in the maritime Antarctic. Polar Biology, 27(11): 670-678.
    Sun, X. X., Mu, C. C., Song, C. C. 2011. Seasonal and spatial variations of methane emissions from montane wetlands in Northeast China. Atmospheric Environment, 45(10): 1809-1816.
    Suyker, A. E., Verma, S. B., Clement, R. J., Billesbach, D. P. 1996. Methane flux in a boreal fen: season-long measurement by eddy correlation. Journal Geophysical Research, 101(D22): 28637-28647.
    Takakai, F., Morishita, T., Hashidoko, Y., Darung, U., Kuramochi, K., Dohong, S., Limin, S. H., Hatano, R. 2006. Effects of agricultural land-use change and forest fire on N_2O emission from tropical peatlands, Central Kalimantan, Indonesia. Soil Science and Plant Nutrition, 52(5): 662-674.
    Tank, S. E., Lesack, L. F. W., Hesslein, R. H. 2009. Northern Delta Lakes as summertime CO_2 absorbers within the arctic landscape. Ecosystems, 12: 144-157.
    Teepe, R., Brumme, R., Beese, F. 2001. Nitrous oxide emissions from soil during freezing andthawing periods. Soil Biology and Biochemistry, 33(9): 1269-1275.
    Teepe, R., Vor, A., Beese, F., Ludwig, B. 2004. Emissions of N_2O from soils during cycles of freezing and thawing and the effects of soil water, texture and duration of freezing. European Journal of Soil Science, 55(2): 357-365.
    Teh, Y., Silver, W., Sonnentag, O., Detto, M., Kelly, M., Baldocchi, D. 2011. Large Greenhouse Gas Emissions from a Temperate Peatland Pasture. Ecosystems, 14(2): 311-325.
    Ternon, J. F., Oudot, C., Dessier, A., Diverres, D. 2000. A seasonal tropical sink for atmospheric CO_2 in the Atlantic ocean: the role of the Amazon River discharge. Marine Chemistry, 68(3): 183-201.
    Thomas, R., Levin, I. 2005. High-precision determination of the changing isotopic composition of atmospheric N_2O from 1990 to 2002. Journal of Geophysical Research, 110: D21304, doi: 21310.21029/22005JD006066.
    Thompson, A. G., Wagner-Riddle, C., Fleming, R. 2004. Emissions of N_2O and CH_4 during the Composting of Liquid Swine Manure. Environmental Monitoring and Assessment, 91(1): 87-104.
    Tilsner, J., Wrage, N., Lauf, J., Gebauer, G. 2003. Emission of gaseous nitrogen oxides from an extensively managed grassland in NE Bavaria, GermanyⅡ. Stable isotope natural abundance of N_2O. Biogeochemistry, 63(3): 249-267.
    Toyoda, S., Yoshida, N., Urabe, T., Nakayama, Y., Suzuki, T., Tsuji, K., Shibuya, K., Aoki, S., Nakazawa, T., Ishidoya, S., Ishijima, K., Sugawara, S., Machida, T., Hashida, G., Morimoto, S., Honda, H. 2004. Temporal and latitudinal distributions of stratospheric N_2O isotopomers. Journal of Geophysical Research, 109(D8): D08308.
    Treonis, A. M., Wall, D. H., Virginia, R. A. 2002. Field and Microcosm Studies of Decomposition and Soil Biota in a Cold Desert Soil. Ecosystems, 5(2): 159-170.
    Turetsky, M. R., Wieder, R. K., Vitt, D. H. 2002. Boreal peatland C fluxes under varying permafrost regimes. Soil Biology & Biochemistry, 34: 907-912.
    Tyler, S. C. 1986. Stable carbon isotope ratios in atmospheric methane and some of its sources. Journal of Geophysical Research, 91(D12): 13232-13238.
    V?r?s, L., V.-Balogh, K., Koncz, E., Kovács, A. 2003. Phytoplankton and bacterioplankton production in a reed-covered water body. Aquatic Botany, 77(2): 99-110.
    van Bochove, E., Prévost, D., Pelletier, F. 2000. Effects of freeze–thaw and soil structure on nitrous oxide produced in a clay soil. Soil Science Society of America Journal, 64(5): 1638-1643.
    Van Groenigen, J. W., Zwart, K. B., Harris, D., van Kessel, C. 2005. Vertical gradients ofδ15N andδ18O in soil atmospheric N_2O—temporal dynamics in a sandy soil. Rapid Communications in Mass Spectrometry, 19(10): 1289-1295.
    Velichko, A. A., Kremenetski, C. V., Borisova, O. K., Zelikson, E. M., Nechaev, V. P., Faure, H. 1998. Estimates of methane emission during the last 125,000 years in Northern Eurasia Global and Planetary Change, 16: 159-180.
    Voytek, M. A., Priscu, J. C., Ward, B. B. 1999. The distribution and relative abundance of ammonia-oxidizing bacteria in lakes of the McMurdo Dry Valley, Antarctica. Hydrobiologia, 401: 113-130.
    Wada, E., Shibata, R., Torii, T. 1981. 15N abundance in Antarctica: origin of soil nitrogen and ecological implications. Nature, 292(5821): 327-329.
    Waddington, J. M., Roulet, N. T. 2000. Carbon balance of a boreal patterned peatland. Global Change Biology, 6(1): 87-97.
    Waddington, J. M., Roulet, N. Y., Swanson, R. V. 1996. Water table control of CH_4 emission enhancement by vascular plants in boreal peatlands. Journal of Geophysical Research, 101: 22775–22785.
    Wang, H., Wang, W., Yin, C., Wang, Y., Lu, J. 2006. Littoral zones as the "hotspots" of nitrous oxide (N_2O) emission in a hyper-eutrophic lake in China. Atmospheric Environment, 40(28): 5522-5527.
    Wang, H., Yang, L., Wang, W., Lu, J., Yin, C. 2007. Nitrous oxide (N_2O) fluxes and their relationships with water-sediment characteristics in a hyper-eutrophic shallow lake, China. Journal of Geophysical Research, 112(G1): G01005.
    Wang, J., Duan, C., Ji, Y., Sun, Y. 2010. Methane emissions during storage of different treatments from cattle manure in Tianjin. Journal of Environmental Sciences, 22(10): 1564-1569.
    Wang, L. F., Cai, Z. C., Yan, H. 2004. Nitrous oxide emission and reduction in a laboratory-incubated paddy soil response to pretreatment of water regime. Journal of Environmental Sciences-China, 16(3): 353-357.
    Ward, B. B., Priscu, J. C. 1997. Detection and characterization of denitrifying bacteria from a permanently ice-covered Antarctic lake. Hydrobiologia, 347: 57-68.
    Watanabe, T., Osada, T., Yoh, M., Tsuruta, H. 1997. N_2O and NO emissions from grassland soils after the application of cattle and swine excreta. Nutrient Cycling in Agroecosystems, 49(1): 35-39.
    Weathers, P. J. 1984. N_2O Evolution by Green Algae. Appl. Environ. Microbiol., 48(6): 1251-1253.
    Webster, F. A., Hopkins, D. W. 1996. Contributions from different microbial processes to N_2Oemission from soil under different moisture regimes. Biology and Fertility of Soils, 22(4): 331-335.
    Weiss, R. F. 1981. The Temporal and Spatial Distribution of Tropospheric Nitrous Oxide. Journal of Geophysical Research, 86(C8): 7185-7195.
    Whalen, S. C., Reeburgh, W. S. 1988. A methane flux time series for tundra environments. Global Biogeochemical Cycles, 2: 399-410.
    Whalen, S. C., Reeburgh, W. S. 1992. Interannual variations in tundra methane emission: a 4-year time series at fixed sites. Global Biogeochemical Cycles, 5: 261–273.
    Wille, C., Kutzbach, L., Sachs, T., Wagner, D., Pfeiffer, E.-M. 2008. Methane emission from Siberian arctic polygonal tundra: eddy covariance measurements and modeling. Global Change Biology, 14(6): 1395-1408.
    Worthy, D. E. J., Levin, I., Hopper, F., Ernst, M. K., Trivett, N. B. A. 2000. Evidence for a link between climate and northern wetland methane emissions. Journal of Geophysical Research, 105(D3): 4031-4038.
    Wrage, N., Lauf, J., del Prado, A., Pinto, M., Pietrzak, S., Yamulki, S., Oenema, O., Gebauer, G. 2004. Distinguishing sources of N_2O in European grasslands by stable isotope analysis. Rapid Communications in Mass Spectrometry, 18(11): 1201-1207.
    Wrage, N., Velthof, G. L., van Beusichem, M. L., Oenema, O. 2001. Role of nitrifier denitrification in the production of nitrous oxide. Soil Biology and Biochemistry, 33(12-13): 1723-1732.
    Wuebbles, D. J., Hayhoe, K. 2002. Atmospheric methane and global change. Earth-Science Reviews, 57(3-4): 177-210.
    Xing, G. X., Zhu, Z. L. 1997. Preliminary studies on N_2O emission fluxes from upland soils and paddy soils in China. Nutrient Cycling in Agroecosystems, 49(1): 17-22.
    Xiong, Z. Q., Xing, G. X., Zhu, Z. L. 2006. Water dissolved nitrous oxide from paddy agroecosystem in China. Geoderma, 136(3-4): 524-532.
    Xiong, Z. Q., Xing, G. X., Zhu, Z. L. 2007. Nitrous Oxide and Methane Emissions as Affected by Water, Soil and Nitrogen. Pedosphere, 17(2): 146-155.
    Xu, H., Cai, Z. C., Li, X. P., Tsuruta, H. 2000. Effect of antecedent soil water regime and rice straw application time on CH_4 emission from rice cultivation. Soil Research, 38(1): 1-12.
    Xu, H., Cai, Z. C., Tsuruta, H. 2003. Soil Moisture between Rice-Growing Seasons Affects Methane Emission, Production, and Oxidation. Soil Science Society of America Journal, 67(4): 1147-1157.
    Yamulki, S., Toyoda, S., Yoshida, N., Veldkamp, E., Grant, B., Bol, R. 2001. Diurnal fluxes andthe isotopomer ratios of N_2O in a temperate grassland following urine amendment. Rapid Communications in Mass Spectrometry, 15(15): 1263-1269.
    Yan, X. Y., Cai, Z. C. 1997. Laboratory study of methane oxidation in paddy soils. Nutrient Cycling in Agroecosystems, 49(1-3): 105-109.
    Yang, W., Amundson, R., Trumbore, S. 1994. A model for soil 14CO_2 and its implications for using 14C to date pedogenic carbonate. Geochimica et Cosmochimica Acta, 58(1): 393-399.
    Yavitt, J. B., Knapp, A. K. 1995. Methane emission to the atmosphere through emergent cattail (Typha latifolia L.) plants. Tellus Series B-Chemical and Physical Meteorology, 47(5): 521-534.
    Yoshida, N. 1983. Surface antigens of metacyclic trypomastigotes of Trypanosoma cruzi. Infect. Immun., 40(2): 836-839.
    Yoshida, N. 1988. 15N-depleted N_2O as a product of nitrification. Nature, 335(6190): 528-529.
    Yoshida, N., Hattori, A., Saino, T., Matsuo, S., Wada, E. 1984. 15N/14N ratio of dissolved N_2O in the eastern tropical Pacific Ocean. Nature, 307(5950): 442-444.
    Yoshida, N., Morimoto, H., Hirano, M., Koike, I., Matsuo, S., Wada, E., Saino, T., Hattori, A. 1989. Nitrification rates and 15N abundances of N_2O and NO3- in the western North Pacific. Nature, 342(6252): 895-897.
    Yoshida, N., Toyoda, S. 2000. Constraining the atmospheric N_2O budget from intramolecular site preference in N_2O isotopomers. Nature, 405(6784): 330-334.
    Zdanowski, M. K., Weglenski, P. 2001. Ecophysiology of soil bacteria in the vicinity of Henryk Arctowski Station, King George Island, Antarctica. Soil Biology and Biochemistry, 33(6): 819-829.
    Zhang, T., Barry, R. G., Knowles, K., Heginbottom, J. A., Brown, J. 1999. Statistics and characteristics of permafrost and ground-ice distribution in the Northern Hemisphere. Polar Geography, 23(2): 132-154.
    Zheng, X. H., Han, S. H., Huang, Y., Wang, Y. S., Wang, M. X. 2004. Re-quantifying the emission factors based on field measurements and estimating the direct N_2O emission from Chinese croplands. Global Biogeochemical Cycles, 18: GB2018, doi: 2010.1029/2003GB002167.
    Zhong, W. H., Cai, Z. C. 2007. Long-term effects of inorganic fertilizers on microbial biomass and community functional diversity in a paddy soil derived from quaternary red clay. Applied Soil Ecology, 36(2-3): 84-91.
    Zhu, R. B., Glindemann, D., Kong, D. M., Sun, L. G., Geng, J. J., Wang, X. R. 2007a. Phosphine in the marine atmosphere along a hemispheric course from China to Antarctica. Atmospheric Environment, 41(7): 1567-1573.
    Zhu, R. B., Kong, D. M., Sun, L. G., Geng, J. J., Wang, X. R., Glindemann, D. 2006. Tropospheric Phosphine and Its Sources in Coastal Antarctica. Environmental Science & Technology, 40(24): 7656-7661.
    Zhu, R. B., Liu, Y. S., Sun, L. G., Xu, H. 2007b. Methane emissions from two tundra wetlands in eastern Antarctica. Atmospheric Environment, 41(22): 4711-4722.
    Zhu, R. B., Liu, Y. S., Ma, J., Xu, H., Sun, L. G. 2008. Nitrous oxide flux to the atmosphere from two coastal tundra wetlands in eastern Antarctica. Atmospheric Environment, 42(10): 2437-2447.
    Zhu, R. B., Sun, L. G. 2005. Methane fluxes from tundra soils and snowpack in the maritime Antarctic. Chemosphere, 59(11): 1583-1593.
    Zhu, R. B., Sun, L. G., Ding, W. X. 2005. Nitrous oxide emissions from tundra soil and snowpack in the maritime Antarctic. Chemosphere, 59(11): 1667-1675.
    Zhu, R. B., Sun, L. G., Liu, X. D. 2003a. Atmospheric nitrous oxide observations above the oceanic surface during CHINARE-18. Progress in Natural Science, 13(8): 615 - 619.
    Zhu, R. B., Sun, L. G., Xie, Z. Q., Zhao, J. L. 2003b. Atmospheric nitrous oxide observations above the oceanic surface during the first Chinese Arctic Research Expedition. Chinese Journal of Polar Science, 14(2): 138-148.
    Zhu, R. B., Sun, L. G., Yin, X. B., Liu, X. D., Xing, G. X. 2004. Summertime surface N_2O concentration observed on Fildes Peninsula Antarctica: Correlation with total atmospheric O3 and solar activity. Advances in Atmospheric Sciences, 21(2): 204-210.
    蔡祖聪. 1999a.水分类型对土壤排放的温室气体组成和综合温室效应的影响.土壤学报, 36(4): 484-491.
    蔡祖聪. 1999b.中国稻田甲烷排放研究进展.土壤, 31(5): 266-269.
    蔡祖聪, Mosier, A. R. 1999.土壤水分状况对CH_4氧化,N_2O和CO_2排放的影响.土壤, 31(6): 289-294.
    蔡祖聪,徐华,马静. 2009.稻田生态系统CH_4和N_2O排放.中国科学技术大学出版社: 58-68.
    曹亚澄,孙国庆,韩勇,孙德玲,王曦. 2008.大气浓度下N_2O、CH_4和CO_2中氮、碳和氧稳定同位素比值的质谱测定.土壤学报, 45(2): 249-258.
    常宗强,冯起,司建华,苏永红,席海洋,郭瑞. 2007.祁连山高山草甸土壤CO_2通量的时空变化及其影响分析.环境科学, 28(10): 2389-2395.
    陈杰,龚子同. 2000.南极菲尔德斯半岛地区土壤中主要元素的迁移与富集.极地研究, 12(2): 1-8.
    陈立奇. 2003.南极地区与全球变化集成研究展望.地球科学进展, 18(1): 133-137.
    陈立奇,高众勇,王伟强,杨绪林. 2003.白令海盆pCO_2分布特征及其对北极碳汇的影响.中国科学, 33(8): 781-790.
    陈立奇,高众勇,杨绪林,詹力杨. 2004.北极地区碳循环研究意义和展望.极地研究, 16(3): 171-180.
    董云社,章申,齐玉春,陈佐忠,耿远波. 2000.内蒙古典型草地CO_2,N_2O,CH_4通量的同时观测及其日变化.科学通报, 45(3): 318-322.
    杜睿,王庚辰,吕达仁,万晓伟. 2001.内蒙古大针茅草原的N_2O和CH_4通量变化特征.中国环境科学, 21(4): 289-292.
    耿远波,章申,董云社,孟维奇,齐玉春,陈佐忠,王艳芬. 2001.草原土壤的碳氮含量及其与温室气体通量的相关性.地理学报, 56(1): 44-53.
    郝庆菊,王跃思,宋长春,江长胜. 2007.三江平原农田生态系统CO_2收支研究.农业环境科学学报, 26(4): 1556-1560.
    胡细全,李兆华,蔡鹤生. 2005.低温对处理低浓度废水的厌氧折流板反应器性能的影响.安全与环境工程, 12(3): 52-54,59.
    金会军,程国栋. 1997.冻土区甲烷排放研究进展.地球科学进展, 12(3): 276-283.
    金会军,吴杰,程国栋,中野智子,孙广友. 1999.青藏高原湿地CH_4排放评估.科学通报, 44(16): 1758-1762.
    李海防,夏汉平,熊燕梅,张杏锋. 2007.土壤温室气体产生与排放影响因素研究进展.生态环境, 16(6): 1781-1788.
    李栓科. 1995.东南极拉斯曼丘陵区的冰川作用.南极研究, 7(4): 7-16.
    李香兰,徐华,李小平,蔡祖聪. 2009.水分管理影响稻田甲烷排放研究进展.农业环境科学学报, 28(2): 221-227.
    刘嘉麒,钟华. 1996.渭南黄土中温室气体组分的初步研究.科学通报, 41(24): 2257-2260.
    刘强,刘嘉麒. 2000.北京斋堂黄土剖面主要温室气体组分初步研究.地质地球化学, 28(2): 82-86.
    刘实,王传宽,许飞. 2010. 4种温带森林非生长季土壤二氧化碳、甲烷和氧化亚氮通量.生态学报, 30(15): 4075-4084.
    孟磊,蔡祖聪,丁维新. 2005.长期施肥对土壤碳储量和作物固定碳的影响.土壤学报, 42(5): 769-776.
    朴河春,刘广深. 1995.全球冻融地区土壤是重要的N_2O释放源的综合分析.地球科学进展, 10(3): 283-288.
    宋长春,阎百兴,王跃思,王毅勇,娄彦景,赵志春. 2003.三江平原沼泽湿地CO_2和CH_4通量及影响因子.科学通报, 48(23): 2473-2477.
    孙恒,高众勇. 2009.南大洋海-气CO_2通量研究进展.极地研究, 21(1): 60-68.
    孙立广,谢周清,赵俊琳. 2000a.南极阿德雷岛湖泊沉积:企鹅粪土层识别.极地研究, 12(2):105-110.
    孙立广,谢周清,赵俊琳,邢光熹,施书莲,杜丽娟. 2000b.南极菲尔德斯半岛N_2O浓度的监测.科学通报, 45(11): 1195-1199.
    孙立广,朱仁斌,谢周清,赵俊琳,邢光熹,施书莲,杜丽娟. 2001a.南极菲尔德斯半岛植被土壤N_2O排放特征.环境科学, 22(4): 1-5.
    孙立广,朱仁斌,谢周清,赵俊琳,徐华. 2001b.南极Fildes半岛CH_4浓度监测.自然科学进展, 11(9): 995-998.
    孙立广,朱仁斌,谢周清,赵俊琳,徐华. 2001c.南极法尔兹半岛植被土壤CH_4通量特征.环境科学学报, 21(3): 296-300.
    孙立广,朱仁斌,尹雪斌,赵俊琳,邢光熹,施书莲,杜丽娟. 2001d. 1999年和2000年夏季南极菲尔德斯半岛N_2O浓度对比.极地研究, 13(2): 83-90.
    田晓瑞,舒立福,王明玉. 2003. 1991~2000年中国森林火灾直接释放碳量估算.火灾科学, 12(1): 6-10.
    王义祥,翁伯琦,黄毅斌. 2005.土地利用和覆被变化对土壤碳库和碳循环的影响.亚热带农业研究, 1(3): 44-51.
    王毅勇,陈卫卫,赵志春,顾江新. 2008.三江平原寒地稻田CH_4、N_2O排放特征及排放量估算.农业工程学报, 24(10): 170-176.
    王跃思,王明星,郑循华,龚晏邦,吕国涛,白建辉. 1994.北京大气甲烷浓度及其变化.科学通报, 39(14): 1306-1308.
    吴宝铃,魏江春. 1998.南极菲尔德斯半岛及其附近地区生态系统的研究,中国南极考察科学研究成果与进展.北京:海洋出版社: 65-361.
    吴满昌,孙可伟. 2006.温度波动对城市有机生活垃圾高温厌氧消化工艺影响.环境科学, 27(4): 805-809.
    武文明,杨光明,沙丽清. 2009.西双版纳地区稻田CO_2排放通量.生态学报, 29(9): 4983-4992.
    徐华,蔡祖聪,八木一行. 2008.水稻土CH_4产生潜力及其影响因素.土壤学报, 45(1): 98-104.
    詹力扬,陈立奇. 2007.南大洋大气氧化亚氮分布特征.极地研究, 19(1): 49-60.
    张锐,林念炜,赵晶,曾润颖,朱仁斌,孙立广,刘晓东. 2003.南极阿德雷岛地表沉积物中细菌多样性及对环境的响应.自然科学进展, 13(10): 1067-1072.
    张宪洲,刘允芬,钟华平,欧阳华. 2003.西藏高原农田生态系统土壤呼吸的日变化和季节变化特征.资源科学, 25(5): 103-107.
    张晓艳,张广斌,纪洋,马静,徐华,蔡祖聪. 2010.冬季淹水稻田CH_4产生、氧化和排放规律及其影响因素研究.生态环境学报, 19(11): 2540-2545.
    郑乐平,欧阳自远,张晓岚,王世杰,黎廷宇,万国江,曾世文. 2000.黔中岩溶地区草地土壤CO_2的稳定碳同位素组成.环境科学, 21(5): 38-41.
    朱玫,田洪海,唐孝炎. 1998.同位素方法在大气甲烷研究中的应用.环境与开发, 13(2): 1-6.
    朱仁斌,孙立广,谢周清,赵俊琳. 2001a.南极菲尔德斯半岛植被微区CO_2浓度的监测.环境科学, 22(4): 6-10.
    朱仁斌,孙立广,邢光熹,徐华. 2001b.南极苔原近地面CO_2、CH_4、N_2O浓度和通量的相互关系.中国科学技术大学学报, 31(5): 611-617.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700