塔什库尔干新生代碱性杂岩带的成因及构造意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青藏高原的形成被广泛解释为印度-亚洲大陆碰撞的结果,尽管吸引了大批国内外学者的注意,但对于高原的形成机制至今还远未取得共识。印度-亚洲大陆碰撞导致了青藏高原岩石圈的戏剧性巨大缩短和长期维持高海拔。在青藏高原许多重大的科学问题中,岩石圈的缩短过程与机制也是最具吸引力的科学问题之一。帕米尔构造结是青藏高原碰撞挤压表现最明显的地区之一,因而是揭示岩石圈缩短动力学过程的最佳场所;位于其中的塔什库尔干碱性杂岩带蕴含着岩石圈缩短过程的重要记录。
     塔什库尔干新生代碱性杂岩带位于帕米尔构造结中东部,出露在中国—塔吉克斯坦边境一带,平行于喀喇昆仑大断裂展布。该岩带由若干岩体组成,其中以苦子干、卡日巴生和赞坎三个岩体为其典型代表。塔什库尔干碱性岩带主要由碱性正长岩类、碱性花岗岩类和碱性—偏碱性花岗岩类组成,代表性岩石类型为霓辉石正长岩、透辉石正长花岗岩和黑云母二长花岗岩。通过锆石SHRIMP定年,获得苦子干岩体正长岩和正长花岗岩、卡日巴生二长花岗岩的形成年龄均为~11Ma。研究表明,在~11Ma发生的强烈的构造-岩浆事件之后,于~8Ma又发生了一次构造热事件(喀喇昆仑断裂强烈走滑运动,公格尔山和木孜塔格山的构造抬升)。岩石地球化学研究显示,该岩带的各种岩石类型都具有富钾、富碱和富钙的特点,属于钾质碱性花岗岩类,可归属为A型花岗岩类。然而,这类A型花岗岩并非形成于造山作用结束阶段,而是形成于造山过程中局部伸展(如喀喇昆仑断裂带走滑运动)的环境。通过对三个岩体岩石学、矿物学、地球化学的综合研究及相平衡分析认为,形成碱性杂岩体的岩浆来源于斜长石不稳定区(>60km),及石榴石与金红石稳定区(>50km)。因此,岩浆起源于加厚地壳底部榴辉岩相镁铁质岩石的低度部分熔融,且岩浆源区受到了流体的影响。这表明,在~11Ma时帕米尔构造结地区已经具有加厚地壳,其厚度至少大于50km。但是,由于陆壳的增厚是一个冷却的过程,塔什库尔干碱性岩浆活动有赖于深部(如幔源岩浆)的热贡献。比较合理的解释是该区在~11Ma时发生了大规模的岩石圈拆沉作用。除了挤压增厚和块体挤出之外,岩石圈拆沉作用也是调节岩石圈缩短的重要机制。
     在大陆碰撞挤压过程中,青藏高原岩石圈因挤压而缩短增厚。在这个过程中,地壳将发生分异,向下迁移的镁铁质物质将由于逐渐榴辉岩化而大大增加自身的密度,导致区域重力不稳定。当这种重力不稳定达到一定限度时,就会触发岩石圈拆沉作用,从而使岩石圈厚度大大减薄,导致软流圈上涌,产生岩浆活动,进一步导致岩石圈的弱化。继而,已经减薄的岩石圈可以通过软流圈顶面下降(散热引起)、岩浆底侵作用、或挤压等机制而再次加厚。拆沉-减薄-增厚这种深部过程的循环将可能会长期保持,导致高原地壳不断增厚和隆升。
The Tibetan Plateau, caused by India-Asia continental collision, has attracted many researchers all over the world. However, there is still not a convincing mechanism to explain how the plateau formed. It is the India-Asia continental collision that gave rise to the large lithospheric shortening of the Tibetan Plateau and kept its high-elevation. Among many scientific problems of Tibetan Plateau, one of the best attractive problems is the process and mechanism of lithospheric shortening. Pamir syntax is an outstanding example of lithospheric extreme thickening during continental collision and thus would be a perfect place to unveil dynamics of lithospheric shortening. The Taxkorgan alkaline complex belt right in this area implies and records the process of lithospheric shortening.Taxkorgan alkaline complex belt, paralleling the Karakorum fault, is located in the middle-east Pamir syntax and along the boundary between China and Tajikistan. This belt is composed of several intrusions among which Kuzigan, Karibasheng and Zankan are typical ones. Taxkorgan alkaline belt is made up of alkaline syenites, alkaline syenitoids and alkaline to sub-alkaline granites, with aegirine-augite syenite, diopside syenitoid and biotite adamellite as their representative rocks. By using SHRIMP U-Pb zircon, we obtain accurate ages of Kuzigan and Karibasheng intrusions, and both of them are ~11Ma. Based on field observation, petrology, mineralogy, chronology of Ar-Ar and SHRIMP U-Pb zircon and former studies, we find that there was a strongly tectonic-magmatic event at ~11Ma and a tectonically thermal event at ~8Ma in Pamir area. Being rich in potassium, alkali and calcium, this belt is a series of potassic and alkalic granitoids and belongs to A-type granites. However, this kind of A-type granitoids was not formed at the end of orogeny. It is a magmatic product induced by the regional extension (e.g. large scaled strike-slip movement of the Karakorum) during the orogenic process. After researches on petrology, mineralogy, geochemistry and phase equilibrium, the three alkaline intrusions came from sources that had no plagioclase (>60km) but had garnet and rutile (>50km) in their melting residue. Therefore, the magmas were the product of low partial melting of mafic eclogite at the base of the thickened crust, and their magma sources were affected by fluids. These results suggest that the crust of the Pamir syntax had been thickened at -11 Ma, with a curst thickness over 50km. But, because crustal thickening is a cooling process, there must have some heat contribution of deep process (e.g. mantle magmatism) to Taxkorgan alkaline magmatism. A reasonable mechanism is delamination that had happened at ~11Ma in Pamir syntax. Hence, except convergent thickening and block extrusion, delamination of lithosphere is also a very important mechanism to accommodate lithospheric shortening.During continental collision, convergence induced the lithospheric shortening and thickening of the Tibetan Plateau. In this process, the crust will be fractionated: the moving down mafic rocks will be eclogitization gradually and thus have a higher density to result in regionally gravitational instability. When this instability comes to a certain limit, delamination would happen. Consequently, the lithosphere become thinning, the asthenosphere is upwelling, magmatism is playing and the mechanical properties is weakening. Then the thinning lithosphere could be thickened again by asthenosphere top descending (caused by heat elimination), magma underplating, compressing and so on. Delamination to thinning to
    thickening, a cycle of deep process, will happen again and again in a long period, and induce crustal thickening and uplifting in Tibetan Plateau.
引文
1. Allegre CJ, Minster JF. Quantitative method of trace element behavior in magmatic processes. Earth Planet. Sci. Lett., 1978, 38:1-25.
    2. An Yin Zegers T E & van Keken P E, Middle Archean continent formation by crustal delamination, Geology, 2001, 29 (12): 1083-1086.
    3. Aydin F, Karsli O, Sadiklar MB. Mineralogy and chemistry of biotites from eastern Pontide granitoid rocks, NE-Turkey: some petrological implications for granitoid magmas. Chemic der Erde Geochemistry, 2003, 63: 163-182.
    4. Baker MB, Wyllie PJ. High-pressure apatite solubility in carbonate-rich liquids: Implications for mantle metasomatism. Geochimica et Cosmochimica Acta. 1992, 56 (9): 3409-3422.
    5. Baker, M.B., Hischmann, M.M., Ghiorso, M.S. et al. 1995. Compositions of near-solidus predictive melts from experiments and thermodynamic calculations, Nature, 375:308-311.
    6. Barbarin Bernard. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithosphere, 1999, 46 (3): 605-626.
    7. Bird P. Initiation of intracontinental subduction in the Himalaya, Journal of Geophysical Research, 1978, 83(B10): 4975-4987
    8. Boynton WV. 1984. Geochemistry oftbe rare earth elements: meteorite studies. In: Henderson P (eds) Rare earth element geochemistry. Elsevier, 63-114.
    9. Burtman V.S., Molnar P. 1993. Geological and geophysical evidence for deep subduction of continental crust beneath the Pamir. The geological society of America, Special paper, 281:1-76.
    10. Capaldi G., Chiesa S., Manetti P. et al. Tertiary anorogenic granites if the weatern border of the Yemen Plateau. Lithos, 1987, 20: 433-444.
    11. Chen W.P, Molnar P. Constraints on the seismic wave velocity structure beneath the Tibetian Plateau and their tectonic implications: Journal of Geophysical Research, 1981, 86: 5937-5962.
    12. Chung SL, Chu MF, Zhang YQ, et al. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Science Reviews, 2005, 68: 173-196.
    13. Collins W. J., Beams S.D., White A.J.R. et al. Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology, 1982, 80:189-200.
    14. Compston W, Williams IS, Krischvink JL, et al. Zircon U-P ages of early Cabbrian time-scale. J Geol Soc, 1992, 149: 171~184.
    15. Coutand I., Strecker M. R., Arrowsmith J. R. et al. 2002. Late Cenozoic tectonic development of the intramontane Alai Valley, (Pamir-Tien Shan region, central Asia): An example of intracontinental deformation due to the Indo-Eurasia collision. Tectonics, 21(6): 3-1-19.
    16. Defant M J & Drummond M S. Derivation of some modem arc magmas by melting of young subducted lithosphere, Nature, 1990, 347: 662-665.
    17. Deng JF, Luo ZH, Zhao HL, et al. Trachyte and syenite: petrogenesis constrained by the petrological phase equilibrium. Collected works of international symposium on geological science by department of geology, Peking University. Beijing: Seism publishing house, 1998, 745-757.
    18. Deng JF, Mo XX, Luo ZH et al. Inhomogeneity of the lithosphere of the Tibetan Plateau and implications for geodynamics. Science in China (D), 2001,44(Sup.): 56-63.
    19. Didier J, Barbarin B. 1991. Enclaves and Granite Petrology. Amsterdam: Elservier, 625.
    20. Ducea MN, Lutkov V, Minaev VT, et al. Building the Pamirs: the view from the underside. Geological Society of America, 2003, 31 (10): 849-852.
    21. Eby GN, Kochhar N. Geochemistry and petrogenesis of the Malani igneous suite, North Peninsular India Journal of the Geological Society of India, 1990b, 36 (2): 109-130.
    22. Eby GN, Krueger H.W., and Creasy J.W. Geology, geochronology, and geochemistry of the White Mountain Batholith, New Hampshire (in Eastern North American Mesozoic magmatism) Special Paper - Geological Society of America, 1992b, 268: 379-397.
    23. Eby GN, Woolldy A., Vic Din and Garthplatt. Geochemistry and petrogenesis of nepheline syenites: Kasungu-Chipala, Ilomba, and Ulindi nepheline syenite intrusions, north Nyasa alkaline province, Malawi. Journal of petrology, 1998, 39(8): 1405-1424.
    24. Eby GN. Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology, 1992a, 20:641-644.
    25. Eby G.N, Petrology, geochronology, mineralogy and geochemistry of Beemerville alkaline complex, northern New Jersey. In Puffer, J.H and Volkert RA (eds.), Neoproterozoic, Paleozoic, and Mesozoic Intrusive Rocks of Northern New Jersey and Southeastern New York. Twenty-first annual meeting geological association of New Jersey, Mahwah, 2004, NJ: 52-68.
    26. Eby GN. The A-type granitoids: a review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos., 1990a, 26(1-2): 115-134.
    27. Fletcher C.J.N., Beddoe-Stephens B. the petrology, chemistry and crystallization history for the Velasco alkaline province, eastern Bolivia. In: Fitton J.G and Upton B.GJ. (eds.), Alkaline Igneous Rocks. Geological Society Special Publication, 1987, 30:403-413
    28. Foley SF, Barth MG, Jenner GA. Rutile/melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas. Geochim. Cosmochim. Acta, 2000, 64: 933-938.
    29. Fyfe W. S. & Leonardos O. H., 1973, Ancient metamorphic-migmatite belts of the Brazilian African coasts, Nature, 244 (5417): 501-502
    30. Hacker Bradley, Luffi Peter, Lutkov Valery et al., 2005. Near-Ultrahigh Pressure Processing of Continental Crust: Miocene Crustal Xenoliths from the Pamir. Journal of Petrology, 46(8): 1661-1687.
    31. Halls HC& Zhang B X, 1998, Uplift structure of the southern Kapuskasing zone from 2.45 Ga dike swarm displacement. Geology. 26: 67-70;
    32. Hammarstrom J. M., Zen E-an. Aluminum in hornblende: An empirical igneous geobarometer. American Mineralogist, 1986,71: 1297-1313.
    33. Harrison T M, Grove M, Mckeegan K D et al Origin and episodic emplacement of the Manaslu intrusive complex, Central Himalaya, Journal of Petrology, 1999, 40(1): 3-19
    34. Hermann J. Allanite: thorium and light rare earth element carrier in subducted crust. Chemical Geology, 2002, 192: 289-306.
    35. Holland and June Blundy. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclaseContribution to Mineralogy and Petrology, 2001, 116: 433-447.
    36. Hollister LS, Grissom GC, Peters EK, et al. Confirmation of the empirical correlation of Al in hornblende with products of solidification in calc-alkaline plutons. American Mineralogist, 1987, 72: 231-239.
    37. Holt W. E., Wallace T. C. Crustal thickness and upper mantle velocities in the Tibetian Plateau region from the inversion of regional Pnl waveforms: Evidence for a thick upper mantle lid beneath southern Tibet: Journal of Geophysical Research, 1990, 95: 12499-12526.
    38. Huang, WL, Wyllie, PJ. Phase relationships of S-type granite with H_2O to 35kbar: Muscovite granite from Hamey Peak, South Dakota. Journal of Geophysical Research, 1981, 86 (B11): 10515-10529.
    39. Klemme S, Prowatke S, Hametner K, et al. Partitioning of trace elements between rutile and silicate melts: implications for subduction zones. Geochimica et Cosmochimica Acta, 2005, 69 (9): 2361-2371.
    40. Lacassin R, Valli F, Arnaud A, et al. Large-scale geometry, offset and kinematic evolution of the Karakomm fault, Tibet. Earth and Planetary Science Letters, 2004, 219: 255-269.
    41. Langmuir C H, Klein E M & Plank T. Petrological systematics of mid-ocean ridge basalts: Constraints on melt generation beneath ocean ridges, in book (J P Morgan et al eds.): Mantle flow and melt generation at mid-ocean ridges, AGU Geophysical Monograph Series, 1992, 71:183-280
    42.Le Maitre RW主编,1989.中译本.(王碧香等译)1991.火成岩分类及术语辞典.
    43. Leake BE, Woolley AR, Arps CES, et al. Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the international mineralogical association, Commission on new minerals and Mineral names. Canadian Mineralogist, 1997, 35:219-246
    44. LeFort P. Himalayas: the collided range;Present knowledge of the continental arc, Amer. J. Sci. 1975, 175A: 1-44.
    45. Litvinovsky BA, Zanvilevich AN, Wickham SM, et al. Origin of syenitic magmas from anorogenic granitoid series:syenite-granitic series from Transbaikalia. Petrology, 1999, 7: 483-508
    46. Loiselle M.C. and D.R.Wones. Characteristics and origin of anorogenic granites. Abstracts with programs-Geological Society of America, 1979, 11(7): 468.
    47. Luo ZH, Xiao XC, Cao YQ, et al. The Cenozoic mantle magmatism and motion of lithosphere on the north margin of the Tibetan Plateau, Science in China (Series D), 2001, 44(Supp.): 10-17.
    48. Lynch DJ, Musselman TE, Gutmann JT, et al. Isotopic evidence for the origin of Cenozoic volcanic rocks in the Pinacate volcanic field, northwestern Mexico. Lithosphere, 1993, 29: 295-302
    49. Maheo G, Guillot S, Blichert-Toft J, et al. A slab breakoff model for the Neogene thermal evolution of south Karakorum and south Tibet. Earth Planet Science Letters, 2002, 195: 45-58.
    50. Marques F.O., Cobbold P.R. Topography as a major factor in the development of arcuate thrust belts:insights from sandbox experiments. Tectonophysics, 2002, 348: 247-268.
    51. Mattauer M. Sur le mécanisme de formation de la schistosité dans l'Himalaya, Earth Planet. Sci. Lett, 1975, 28: 144-154.
    52. Michael A K, Zeitler P K. Temporal variations in the cooling and denudationhistory of the Hunza plutonic complexs, Karakoram Batholith, revealed by 40Ar/39Ar thermochronology. Trectonics, 1996, 15(2):403-415.
    53. Middlemost E.A.K. Naming materials in the magma/igneous rock system. Earth Science Reviwes,1994, 37: 215-224.
    54. Mihai N. Ducea, Valery Lutkov, Vladislav T. Minaev et al. Building the Pamirs: The view from the underside. Geology, 2003, 31(10): 849-852.
    55. Milan Rieder, Giancarlo Cavazzini et al. (Translated and edited by Li Shengrong). Nomenclature of the micas. Acta Mineralogica Sinica, 2001,21(2): 119-128.
    56. Miller C, Schuster R, Klezli U, et al. Post-collisional potassic and ultrapotassic magmatism in SW Tibet: geochemical and Sr-Nd-Pb-0 isotopic constraints for mantle source characteristics and petrogenesis. Journal of Petrology, 1999,40 (9): 1399-1424.
    57. Mo XX, Zhao ZD, Deng JF, et al. Petrology and geochemistry of post-collisional volcanic rocks from the Tibetan Plateau: Implications for lithospheric heterogeneity and collision-induced asthenospheric mantle. In: Dilek Y and Pavlides S, eds. Post-collisional tectonics and magmatism in the East Mediterranean Region. GSA Special Volume, 2006, in press.
    58. Morimoto N. Nomenclayure of pyroxenes. Schweiz Mineral Petrogr Mitt, 1988, B68: 95-111.
    59. Morse S A. Basalts and phase diagrams, Springer - Verlag New York Inc., 1980: 493.
    60. Muller D., Groves D.I. Potassic igneous rocks and associated gold-copper mineralization. 3~rd, updated and enlarged edition, Springer, 2000:1-209.
    61. Niu Y. Bulk-rock major and trace element compositions of abyssal peridotites: Implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges, J. Petrology, 2004,45(12): 2423-2458.
    62. Nockolds S.R Average chemical compositions of some igneous rocks. Bulletin of the geological society of America, 1954, V (65): 1007-1032.
    63. Parker DF. Origin of the trachyte-quartz trachyte-peralkalic rhyolite suite of the Oligocene Paisano volcano, Trana-Pecos Texas. Geol. Soc. Am. Bull, 1983,94: 614-629.
    64. Patino Douce, A. E. & McCarthy, T. C. Melting of crustal rocks during continental collision and subduction. In: Hacker, B. R. & Liou, J. G (ed.) When Continents Collide: Geodynamics and Geochemistry of Ultrahigh-Pressure Rocks. Dordrecht: Kluwer Academic: 1998,27-55.
    65. Patino Douce, A. E. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline grnitoids. 1997. Geology, 25: 743-746
    66. Pearce J A, Peate D W. Tectonic implications of the composition of volcanic arc magmas. Annu. Rev. Earth Planet. Sci. 1995,23: 251-285.
    67. Pearce J A. Trace element discrimination diagram for tectonic interpretation of granitic rocks. Petrology, 1984, 25: 656-682.
    68. Perkins D. Mineralogy. Prentice Hall, 2002,99.
    69. Pertermann M, Hirschmann MM. Anhydrous Partial Melting Experiments on MORB-like Eclogite: Phase Relations, Phase Compositions and Mineral-Melt Partitioning of Major Elements at 2-3 GPa. Journal of petrology, 2003, 44 (12): 2173-2201.
    70. Picher W.S. Granite type and tectonic environment. Mountain Building Processes. London: Academic Press, 1983:19-40.
    71. PlaCid J, Nardi L.V.S., Conceicao H, et al. Anorogenic alkaline granites from northeastern Brazil: major, trace, and rare earth elements in magmatic and metamorphic biotite and Na-mafic mineral. Journal of Asian earth sciences, 2001,19: 375-397.
    72. Powell C McA & Conaghan. Plate tectonics and the Himalayas, Earth Planet. Sci. Lett., 1973, 20: 1-12.
    73. Prowatke S and Klemme S. Effect of melt composition on the partitioning of trace elements between titanite and silicate melt. Geochimica et Cosmochimica Acta, 2005, 69 (3): 695-709.
    74. Qiang Wang, Frank McDermott, Ji-feng Xu et al. Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: Lower-crustal melting in an intracontinental setting. Geology, 2005, 33: 465-468.
    75. Rieder M, Cavazzini G, D'Yakonov Y.S., et al. Nomenclature of Micas. The Canadian Mineralogist, 1998,36 (3): 905.
    76. Ringwood AE. Composition and petrology of the Earth's mantle. McGraw-Hill, 1975:618.
    77. Rollinson HR. Using geochemical data: evaluation, presentation, interpretation 1st edition-paper. Prentice Hall, 1993:187.
    78. Schmidt MW. Amphibole composition in tonalite as a function of pressure: An experimental calibration of the Al-in-hornblende barometer. Contributions to Mineralogy and Petrology, 1992,110: 304-310.
    79. Schwab M., Ratschbacher L., Frisch W. Constraining the exhumation history and tectonic evolution of the NE-and Central Pamirs. Terra Nostra, 1999 (2), 14th Himalaya-Karakoram-Tibet workshop: 138-139.
    80. Searle M P & Godin L. The South Tibetan Detachment and the Manaslu Leucogranite: A Structural Reinterpretation and Restoration of the Annapurna-Manaslu Himalaya, Nepal, The Journal of Geology, 2003, 111: 505-523.
    81. Skjerlie K P, Patino Douce A E. The fluid-absent partial melting of a zoisite-bearing quartz eclogite from 1.0 to 3.2 GPa: Implications for melting in thickened continental crust and for subduction-zone processes. Jounral of Petrology, 2002,43: 291 ~314.
    82. Stephen F. Foley, Matthias G. Barth, George A. Jenner. Rutile/melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas. Geochimica et Cosmochimica Acta, 2000, 64 (5): 933-938.
    83. Sutcliffe RH, Smith AR, Doherty W, et al. Mantle derivation of Archean amphibole-bearing granitoids and associated mafic rocks: evidence from the southern Superrior Province, Canada. Contrib. Mineral. Petrol. 1990,105: 255-274
    84. Tapponnier P, Xu ZQ, Roger F et al. Oblique stepwise rise and growth of the Tibet Plateau. Science, 2001,294 (23): 1671-1677.
    85. Thompson AB, Schulmann K, Jezek J, et at. Thermally softened continental extensional zones (arcs and rifts) as precursours to thickened orogenic belts. Tectonophysics, 2001, 332: 115-141.
    86. Thompson RN. 1982. British Tertiary volcanic province. Scott. J. Geol., 18: 59-107.
    87. Tiepolo M, Oberti R, Vannucci R. Trace-element incorporation in titanite: constraints from experimentally determined solid/liquid partition coefficients. Chemical geology, 2002,191: 105-119.
    88. Turner S, Armaud N, Liu J, et al. Post-collision shoshonitic volcanism on the Tibetan Plateau: implications for convective thinning of the lithosphere and the source of ocean island basalts. Journal of Petrology, 1996,37 (1): 45-71.
    89. Valderez P. Ferreira, Alcides N. Sial. Pyroxene and amphibole chemistry of peralkalic ultra-potassic Syenite and associated pyroxenite, northeastern brazil: an approach to test liquid immiscibility process. Revista Brasileira de Geociencias, 1993,23(2): 139-146.
    90. Villa I.M., Lemennicier Y., LeFort P. Late Miocene to early Pliocene tectonometamorphic and cooling in south-central Karakorum and Idus-Tsangpo suture, Chogo Lungma area (NE Pakistan), Tectonophysics, 1996, 260:201-214.
    91. Waldhor M, Apple E, Frisch W, et al. Palaeomagnetic investigation in the Pamirs and its tectonic implications. Journal of Asian Earth Sciences, 2001,19:429-451.
    92. Wang Q, McDermott F, Xu JF, et al. Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: lower-crustal melting in an intracontinental setting. Geology, 2005,33: 465-468.
    93. Wang Q, Zhang PZ, Freymueller JT, et al. Present-day crustal deformation in China constrained by global positioning system measurements. Science, 2001,294:544-577.
    94. Whalen J B, Currie K L, Chaocell B W. A-type granites : Geochemical characteristics , discrimination and petrogensis. Contribution to Mineralogy and Peteology, 1987,95: 407-419.
    95. Whalen J.B., Currie K.L. The Topsails igneous terrane, Western Newfoundland: evidence for magma mixing. Contribution to Mineralogy and petrology, 1984, 87: 319-327.
    96. Whalen, J. B., Jenner, G A., Longstaffe, F. J., et al. Geochemical and isotopic (O, Nd, Pb and Sr) constraints on A-type granite petrogenesis based on the Topsails Igneous Suite, Newfoundland Appalachians. 1996. Journal of Petrology, 37:1463-1489.
    97. Williams IS, Claesson S. Isotope evidence for the Precambrian province and Caledonian metamorphism of high grade paragneiss from the Seve Nappes, Scandinavian Caledonides, II. Ion microprobe zircon U-Th-Pb. Contrib. Mineral Petrol, 1987, 97: 205-217.
    98. Wilson M. Igneous petrogenesis. London: Unwin Hyman Press, 1989: 295-323.
    99. Winter JD. Introduction to igneous and metamorphic petrology. Prentice Hall, 2002, 103.
    100. Wright J.B. A simple alkalinity ratio and its application to question of non-orogenic granite genesis. Geol. Mag., 1969, 106 (4): 370-384.
    101. Wyllie PJ. Constraints imposed by experimental petrology on possible and impossible magma sources and products. Phil. Trans. R. Soc. Lond. A310,1984: 439-456.
    102. Wyllie PJ. Crustal anatexis:an experimental review. Tectonophus, 1977, 43: 41-71.
    103. Xu R H, Zhang Y Q, Xie Y W, et al. Isotopic geochemistry of plutonic rocks. In: Pan Y S (ed.).
     Geological evolution of the Karakorum and Kunlun Mountains. Beijing: Seismological Press, 1996, 137-186.
    104. Yin A. and Harrison M., Geologic Evolution of the Himalayan-Tibetan Orogen. Annu. Rev. Earth Planet. Sci..2000, 28:211-80
    105. Yin A. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth-Science Reviews, 2006, 76 (1-2): 1-131.
    106.谌宏伟,罗照华,莫宣学等.东昆仑造山带三叠纪岩浆混合成因花岗岩的岩浆底侵作用机制.中国地质,2005,32(3):386-395.
    107.谌宏伟.壳—幔相互作用及其效应:以昆仑造山带岩浆起源与演化为例[硕士论文],中国地质大学(北京),2003.
    108.程启芬,毛建仁,苏郁香等.长江中下游中酸性侵入岩中的黑云母及其地质意义.中国科学院南京地质矿产研究所所刊,1987,18(3):56-70.
    109.邓晋福,罗照华,苏尚国等.岩石成因、构造环境与成矿作用.北京:地质出版社,2004:3-49.
    110.邓晋福,莫宣学,罗照华等,青藏高原岩石圈不均—性及其动力学意义。中国科学D辑,2001,31:55-60.
    111.邓晋福,吴宗絮,赵海玲等.下地壳性质与壳幔交换,单文琅主编:《岩石圈构造和深部作用》,北京,地质出版社,1999:1-7.
    112.邓晋福,赵海玲,莫宣学等.中国大陆根柱构造-大陆动力学的钥匙.北京:地质出版社,1996.1-105.
    113.邓万明.青藏高原北部新生代板内火山岩.北京:地质出版社,1998,180
    114.丁道桂,王道轩,刘新伟,孙世群.西昆仑造山带与盆地.北京:地质出版社,1996:101-106.
    115.丁林,张进江,周勇等.青藏高原岩石圈演化的记录:藏北超钾质及钠质火山岩的岩石学与地球化学特征.岩石学报,1999,15(3):408-421.
    116.丁林,钟大赉,潘裕生等.东喜马拉雅构造结上新世以来快速抬升的裂变径迹证据.科学通报,1995,40(16):1497-1500.
    117.高锐,肖序常,高弘等.西昆仑—塔里木-天山岩石圈深地震探测综述,地质能报,2002,21(1):11-18.
    118.姜春发,杨经绥,冯秉贵等.昆仑开合构造,北京:地质出版社,1992:1-224.
    119.姜耀辉,杨万志.青藏高原西部喜马拉雅期花岗岩类特征及岩石系列.岩石矿物学杂志,2000,19(4):289-296.
    120.柯珊,罗照华,莫宣学.塔什库尔干新生代碱性杂岩造岩矿物化学分析及成因意义.岩石矿物学杂志,2006,25(2):148-156.
    121.李海兵,Valli F,许志琴等.喀喇昆仑断裂的变形特征及构造演化.中国地质,2006,33(2):239-254.
    122.李吉均.青藏高原的地貌演化与亚洲季风.海洋地质与第四纪地质,1999,19(1):1-11
    123.李天福,马鸿文,钾质火山岩的成因研究,地学前缘,1998,5(3):133-143.
    124.李廷栋.青藏高原隆升的过程和机制.地球学报,1995,16(1):1-9.
    125.李向东,王克卓,塔里木盆地西南及邻区特提斯格局和构造意义,新疆地质,2000,18(2):113-120.
    126.李向东,王克卓.帕米尔隆升过程中地壳的一种重要缩短机制—以齐姆根构造转换域为例.新疆地质,2003,21(1):9-15.
    127.李永安,李强,张慧等,塔里木及其周边古地磁研究与盆地形成演化,新疆地质,1995,13(4):293-372.
    128.梁涛,罗照华,李文韬等,托云火山群的火山地质特征及其构造意义,新疆地质,2005a,23(2):105-110.
    129.梁涛.托云盆地新生代碱性玄武岩及其构造意义初探:[硕士论文],中国地质大学(北京),2005b.
    130.刘勉.造山带的重力滑塌.张友学主编:《地球的结构、演化和动力学》第六章,北京:高等教育出版社,2002:177-205.
    131.罗照华,邓晋福,韩秀卿.太行山造山带岩浆活动及其造山过程反演.北京:地质出版社,1999,1-124.
    132.罗照华,柯珊,曹永清等.东昆仑印支晚期幔源岩浆活动.地质通报,2002,21(6):292-907.
    133.罗照华,柯珊,谌宏伟.埃达克岩的特征、成因及构造意义.地质通报,2002,21(7):436-440.
    134.罗照华,莫宣学,侯增谦等.板块碰撞过程中壳幔相互作用及其成藏成矿效应.见郑度,姚檀栋等著:青藏高原隆升与环境效应,第三章,北京:科学出版社,2004:117-163.
    135.罗照华,莫宣学,柯珊.塔什库尔干碱性杂岩体形成时代及其地质意义.新疆地质,2003,21(1):46-50。
    136.罗照华,莫宣学,万渝生等.青藏高原最年轻碱性玄武岩SHRIMP年龄的地质意义.岩石学报,2006a,22(3):578-584.
    137.罗照华,詹华明,魏阳等.造山后脉岩组合的岩石成因—对岩石圈拆沉作用的约束.地学前缘,2006b,in press.
    138.马昌前.大陆岩石圈与软流圈之间的耦合关系—大陆动力学研究的突破口.地学前缘(中国地质大学,北京),1995,2(1-2):159-165.
    139.马华东,杨子江.塔里木盆地西南新生代盆地演化特征.新疆地质,2003,21(1):92-95.
    140.莫宣学,邓晋福,董方浏.西南三江造山带火山岩—构造组合及其意义.高校地质学报,2001,7(2):121-138.
    141.莫宣学,赵志丹,邓晋福等.印度—亚洲大陆主碰撞过程的火山作用响应.地学前缘,2003,10(3):135-148.
    142.牛耀龄.Generation and evolution of basaltic magmas:some basic concepts and a new view on the origin of Mesozoic-Cenozoic basalitic volcanism in eastern China.高校地质学报,2005,11(1): 9-46.
    143.潘保田,李吉均,李炳元.青藏高原地面抬升证据讨论.兰州大学学报(自然科学版),2000,36(3):100-111
    144.潘裕生.青藏高原的形成与隆升.地学前缘,1999,6(3):153-163
    145.钱青.Adakite的地球化学特征及成因.岩石矿物学杂志,2001,20(3):297-306.
    146.邱家骧,李昌年,喻学惠.秦巴碱性岩[M].北京:地质出版社,1993:1-175.
    147.施光海,苗来成,张福勤等.内蒙古锡林浩特A型花岗岩的时代及区域构造意义.科学通报,2004,49:384-389.
    148.宋彪,张玉海,万渝生等.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论.地质评论,2002,48(增刊):26-30.
    149.苏玉平,唐红峰.A型花岗岩的微量元素地球化学.矿物岩石地球化学通报,2005,24(3):245-251.
    150.王成善,丁学林,青藏高原隆升研究新进展综述,地球科学进展,1998,13(6):526-531
    151.王军,西昆仑卡日巴生岩体和苦子干岩体的隆升—来处磷灰石裂变径迹分析的证据,地质评论,1998,44(4):435-441.
    152.王立本编译.角闪石命名法—国际矿物学协会新矿物及矿物命名委员会角闪石专业委员会的报告.岩石矿物学杂志,2001,20(1):84-100.
    153.王联魁,夏斌,张玉泉等.研究“钾质和钠质两个地幔富碱岩浆体系”的刍议.高校地质学报,2003,9(4):545-555.
    154.王中刚,王元龙,毕华,朱笑青,昆仑山—阿尔金山地区的三条富碱侵入岩带.华南地质与矿产,2002,3:2-8
    155.韦栋梁,夏斌,张玉泉等.滇西卓潘—六合碱性岩的辉石成分及其岩石化学特征.矿物岩石,2005,25(2):15-19
    156.魏春生,郑永飞,赵子福.中国东部A型花岗岩形成时代及物质来源的Nd-Sr-O同位素地球化学制约.岩石学报,2001,171:95-111.
    157.吴元保,郑永飞.锆石成因矿物学研究及其对U—Pb年龄解释的制约.科学通报,2004,49(16):1589-1604.
    158.肖序常,刘训,高锐等.西昆仑及邻区岩石圈结构构造演化——塔里木南—西昆仑多学科地学端面简要报道.地质通报,2002,21(2):63-68.
    159.肖序常,王军,苏犁等.再论西昆仑库地蛇绿岩及其构造意义.地质通报,2003,22(10):745-750.
    160.新疆地质矿产局二大队,新疆南疆西部地质图(1:50万)及说明书,北京:地质出版社,1985.251-361.
    161.许保良,王式洗,韩宝福等。富集性和亏损性A型花岗岩—以华北燕山和新疆乌伦古河地区岩石为例。北京大学学报(自然科学版),1998,34(2-3):352-362.
    162.许保良,阎国翰,黄福生等。冀北雾灵山碱性花岗质杂岩的岩石学、成因类型及构造意义。岩 石学报,1996,12(1):145-155.
    163.尹安.喜马拉雅-青藏高原造山带地质演化——显生宙亚洲大陆生长.地球学报,2001,22(3):193-230.
    164.曾广策,邱家骧.碱性岩的概念及其分类命名综述.地质科技情报,1996,15(1):31-37
    165.张国伟,董云鹏,姚安平.关于中国大陆动力学与造山带研究的几点思考.中国地质,2002,29(1):7-13.
    166.张宏飞,Nigel Harris,Randall Parrish等.北喜马拉雅淡色花岗岩地球化学:区域对比、岩石成因及其构造意义.地球科学—中国地质大学学报,2005,30(3):275-288.
    167.张进,马宗晋.西藏高原西、中、东的分段性及其意义.地质学报,2004,78(2):218-228.
    168.张旗,王焰,钱青等.中国东部燕山期埃达克岩的特征及其构造-成矿意义.岩石学报,2001,17(02):236-244.
    169.张旗,许继峰,王焰等.埃达克岩的多样性.地质通报,2004,23(9~10):959-965.
    170.张玉泉,西藏南部花岗岩类地球化学,花岗岩类地质,科学出版社,1982,5-13
    171.张玉泉,谢应雯.哀牢山—金沙江富碱侵入岩年代学和Nd,Sr同位素特征.中国科学(D辑),1997,27(4):289-293.
    172.张玉泉,谢应雯.碱性岩研究进展.见:欧阳自远主编,世纪之交矿物学岩石学地球化学的回顾与展望.北京:原子能出版社,1998,144-145.
    173.张玉泉,谢应雯.青藏高原及邻区富碱侵入岩—以苦干子和太和二岩体为例.中国科学(B辑),1994,24(10):1102-1108.
    174.赵振华.微量元素地球化学原理.北京:科学出版社,1997:1-56.
    175.郑剑东.喀喇昆仑断层与塔什库尔干地震形变带.地震地质,1993,15(2):107-113.
    176.周勇,许荣华,阎月华等.喀喇昆仑断裂带磁组构特征及其意义.岩石学报,2000,16(01):134-144.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700