日本南部黑潮路径变化及其相关物理现象研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黑潮作为西边界流的一支,由于流量和流向的特质,黑潮将大量的热量从北太平洋低纬输送到中高纬,对东亚及东南亚周边多个国家的气候和资源都有影响;另一方面,日本南部黑潮的路径变化对日本南部的渔业和航海造成影响。由于黑潮路径变化对人类社会活动有着不可忽视的影响,因此,研究黑潮路径变化特征及其相关的物理现象,对预防其带来的影响和减少人类财产损失、对进一步了解日本南部黑潮路径变化机制、以及为提高日本南部黑潮路径预报提供理论基础有着重要的意义。
     本文利用现有的各种海洋观测资料,包括融合卫星高度计海表高度数据、验潮站海平面数据、风应力数据、海平面气压数据、净表面热通量数据、海表温度以及次表层温盐数据等,以“日本南部黑潮路径变化及其相关物理现象”这个科学问题为中心,分析讨论了以下几个科学现象:
     众所周知,日本南部黑潮路径变化导致海面高度变化;比如,当黑潮处于典型大弯曲路径状态时,日本南部具有高的海面高度。因此,为了更好地了解日本南部海表高度的变化,本文首先基于卫星高度计海表高度数据,讨论了日本南部海表高度变化的线性趋势、季节变化、年内变化以及年际变化,并探讨了导致日本南部海表高度的季节变化、年内变化以及年际变化的物理机制。分析结果表明,日本南部海表高度的季节变化主要受海水热膨胀过程引起的比容高度季节变化的影响。另一方面,对于年内变化,影响日本南部海表高度变化的扰动主要位于北太平洋中部,且主要沿着纬度和黑潮延伸体向西传播。而对于年际变化,影响日本南部海表高度的扰动主要位于北太平洋中部和东部。
     另一方面,吐噶喇海峡、纪伊半岛以及伊豆诸岛的海平面变化与黑潮路径变化有密切联系。因此,本文基于验潮站海平面数据以及卫星高度计海表高度数据,从年内时间尺度以及年际时间尺度讨论了吐噶喇海峡、纪伊半岛以及伊豆诸岛海平面变化与离岸海表高度变化之间的关系;并讨论了导致吐噶喇海峡黑潮路径年内变化和纪伊半岛黑潮路径年际变化的物理机制。结果表明,来自上游以及下游的海洋中尺度扰动对吐噶喇海峡、纪伊半岛以及伊豆诸岛海平面的年内变化以及年际变化有重要的影响;另外,海洋中尺度扰动对吐噶喇海峡黑潮路径年内变化和纪伊半岛黑潮路径年际变化有重要的影响。另一方面,海流的速度锋面对黑潮路径的年内变化以及年际变化过程有重要的影响。
     基于海表高度等数据,本文讨论了日本南部黑潮路径经向位移的年际变化以及相关的物理机制,以及黑潮路径经向位移的年际变化引起相关的海洋变化。结果表明,日本南部上游黑潮路径年际变化的经向位移扰动能够影响下游黑潮路径的经向位移。黑潮路径经向位移年际变化的EOF分析结果表明,EOF第一模态的主成分能够描述日本南部黑潮近岸大弯曲路径和离岸大弯曲路径变化,EOF第二模态的主成分能够描述日本南部黑潮路径典型大弯曲路径变化。线性回归分析结果表明,沿黑潮延伸体传播的海表高度负异常扰动影响日本南部黑潮典型大弯曲路径变化;而沿黑潮延伸体传播的海表高度正异常扰动对日本南部黑潮近岸和离岸非大弯曲路径变化有着重要的影响。另一方面,日本南部黑潮路径年际变化对日本南部海表温度异常、次表层海温异常的分布以及海洋涡动能的分布有着重要的影响。
     最后,本文基于海表高度等数据,分析了日本南部黑潮处于不同路径状态时,涡旋与平均流之间的能量转化和雷诺应力空间分布的统计特征。结果表明,涡旋与平均流之间的能量转化和雷诺应力的分布随黑潮路径状态变化,且主要发生在九州岛东部以及纪伊半岛南部与东南部。在黑潮路径状态维持阶段,涡动量通量流向黑潮流轴;且黑潮流轴本身的非线性不稳定性影响涡动量通量的空间分布。另外,利用次表层温盐数据,探讨了黑潮处于不同路径状态时,日本南部海流系统的稳定性问题。结果表明,当黑潮处于离岸非大弯曲路径状态时,日本南部的海流系统更容易发生斜压不稳定性。另一方面,黑潮处于近岸非大弯曲路径状态和典型大弯曲路径状态时,日本南部海流系统具有相当的允许不稳定波发生窗口,但在前者情况下,日本南部海流系统中的最不稳定波具有更长的时间尺度。
As one of the western boundary currents, Kuroshio carries large amount of heattransporting from low latitudes to high latitudes due to its specific features of volumetransports in the North Pacific. This impacts the climates and resources of countries inthe East Asia and Southeast Asia. On the other hand, variations in Kuroshio path southof Japan also impact the fishery and voyage in that region. Due to the influences ofvariations in Kuroshio path on the human activities can not be ignored, studies on thecharacteristics of variations in Kuroshio path and its related physical phenomena havesignificant senses on reducing the property loss of human, making further understandthe mechanisms of variations in Kuroshio path, and providing basic theories to highlypredict its path.
     In this study, several oceanic observations, including merged altimetric seasurface height (SSH), sea level from tide gauge, wind stress, sea level pressure, netsurface heat flux, sea surface temperature (SST) and subsurface temperature/salinity,are used to investigate the variations in Kuroshio path south of Japan and its relatedphysical phenomena. During this investigation, descriptions in this study focus on thefollowing interesting phenomena.
     It is well-known that variations in Kuroshio path south of Japan lead to changesin sea surface height; such as, there is high sea surface height when Kuroshio takestypical lager meander path. In order to make variations in sea surface height clearly,spatiotemporal characteristics and driving mechanisms of linear trend, seasonalvariations, intraannual variations and interannual variations of SSH south of Japan,based on altimetric SSH, is firstly explored. Results show that changes in seasonalsteric height, which caused by thermal expansion of water column, have vital impactson the seasonal variations of SSH. The disturbances generated in the central North Pacific, transporting westward along latitudes and Kuroshio extension jet, have greatinfluences on the intraanual SSH south of Japan. On the other hand, the disturbanceswhich have important impacts on the interannual SSH south Japan are generated inthe central and eastern North Pacific.
     On the other hand, changes in Kuroshio path south of Japan have closerelationship with variations in sea level at Tokara Strait, Kii Peninsula and Izu Islands.Thus, the next problem in this study focuses on the intraannual and interannualvariations in sea level at Tokara Strait, Kii Peninsula and Izu Islands using sea leveldata from tide gauge and altimetric SSH. Moreover, intraannual variations inKuroshio path at Tokara Strait and interannual changes in Kuroshio path at KiiPeninsula are also explored. Results show that the mesoscale perturbations fromupstream and downstream significantly impact the intraannual and interannualvariations of sea level at Tokara Strait, Kii Peninsula and Izu Ridge. On the other hand,oceanic mesoscale perturbations and velocity front of currents have importantinfluences on the intraannual variation of Kuroshio path at Tokara Strait andinterannual variations of Kuroshio path at Kii Peninsula.
     Another point addressed in this study is the interannual meridional shifts ofKuroshio path south of Japan using altimetric SSH. The mechanism and relatedoceanic phenomena of interannual meridional shifts of Kuroshio path south of Japanare also addressed. Our result shows that perturbations of interannual meridionalshifts of Kuroshio path in the upstream could have influences on the changes ofKuroshio path in the downstream. After applying EOF analysis to the time series ofinterannual meridinal shifts of Kuroshio path, results show that the principlecomponent of the first EOF mode can represent near-and off-shore non-largemeander of Kuroshio path south of Japan; while the principle component of thesecond EOF mode can represent typical large meander of Kuroshio path south ofJapan. Moreover, results obtained by linear regression show that negative sea surfaceheight anomalies, which propagate along Kuroshio extension, can significantly impactthe typical large meander of Kuroshio path south of Japan; whereas positive seasurface height anomalies, which propagate along Kuroshio extension, can vitally influence the near-and off-shore non-large meander of Kuroshio path south of Japan.On the other hand, the interannual meridional displacements of Kuroshio path playimportant roles in the spatial distributions of changes in interannual sea surfacetemperature, subsurface temperature and eddy kinetic energy.
     The last issue discussed in this study is to explore the spatially statistical featuresof energy conversion between eddies and mean flow and Reynolds stresses whenKuroshio path south of Japan under different states using the altimetric sea surfaceheight. Our results show that distributions of energy conversion and Reynolds stressesdepend on the states of Kuroshio path south of Japan. And these distributions mostlylocate at the eastern of Kyushu and the southeast of Kii peninsula. During the periodof Kuroshio south of Japan taking a certain path, the eddy momentum fluxes flow toKuroshio jet. On the other hand, the nonlinear instabilities of Kuroshio jet haveinfluences on the spatial distribution of eddy momentum flux. Moveover, the currentstability south of Japan also discussed under different states of Kuroshio path usingsubsurface temperature and salinity data. Results show that the baroclinic instabilitywould be easily occurred for the current system south of Japan when Kuroshio pathtaking offshore non-large meander state. when Kuroshio path south of Japan takesnear-shore nonlarge meander and typical large meander, however, the both havecomparably permissible windows for unstable wave; whereas the most unstable wavesin current system south of Japan have longer timescale under the formercircumstances.
引文
丁良模.1992.黑潮关键区的海面放热量对长江地区梅雨降水的影响,海洋学报,14:47-54.
    丁良模.1996.黑潮海域海面放热量对山东夏季降水的影响,海洋学报,18:140-145.
    丁良模,谭铎,郑义芳.1985.长江中下游地区汛期降水与东海黑潮域海温场的呼应性,黄渤海海洋,3:37-41.
    范江涛,陈新军,曹杰,田思泉,钱卫国,刘必林.2010.西北太平洋柔鱼渔场变化与黑潮的关系,上海海洋大学学报,3:378-384.
    潘丰.2012.基于卫星高度计的黑潮及其延伸体低频变化的研究,国家海洋环境预报中心,硕士毕业论文,90pp.
    王强.2011.黑潮路径变异的可预报性研究,中国科学院大气物理研究所,博士毕业论文,114pp.
    王闪闪,管玉平,Li Zhi-Jin,Chao Yi,黄建平,2012.黑潮及其延伸区海表温度变化特征与大气环流相关性的初步分析,物理学报,61:169201
    徐龙.2003.日本以南黑潮与黑潮延伸体三维流场的季节变化,中国海洋大学,硕士毕业论文,72pp.
    郑沛楠.2009.黑潮对日本海边界环流的影响,中国海洋大学,博士毕业论文,141pp.
    Akima H.1970. A new method of interpolation and smooth curve fitting based onlocal procedures, J. ACM,17:589-602.
    Akitomo K, T Awaji, N Imasato.1991. Kuroshio path variation south of Japan1.Barotropic inflow-outflow model. J. Geophys. Res.,96:2549-2560.
    Akitomo K, S Masuda, T Awaji.1997. Kurosho path variation south of Japan:Stability of the paths in a multiple equilibrium regime. J. Oceanogr.,53:129-142.
    Akitomo K.2008. Effects of stratification and mesoscale eddies on Kuroshio pathvariation south of Japan, Deep-Sea Research I,55:997-1008.
    Akitomo, K, M. Kurogi.2001. Path transition of the Kuroshio due to mesoscaleeddies: a two-layer, wind-driven experiment. J. Oceanogr.,57:735-741.
    Andres M, Park J-H, Wimbush M, Zhu X H, Nakamura H, Kim K, Chang K-I.2009.Manifestation of the Pacific Decadal Oscillation in the Kuroshio. Geophys. Res.Lett.,36, doi:10.1029/2009GL039216.
    Awaji T, K Akitomo, N Imasato.1991. Numerical study of shelf water motion drivenby the Kuroshio: barotropic model. J. Phys. Oceanogr.,21:11-27.
    AVISO,2008. SSALTO/DUCAS user handbook:(M)SLA and (M)ADT near-realtime and delayed time products. Aviso Altimetry, Ramonville St. Agne, France,32pp.
    Balmaseda M A, Vidard A, Anderson D L T.2008. The ECMWF ocean analysissystem: ORA-S3. Mon. Weather Rev.,136:3018-3034.
    Bernstein R L, White W B.1981. Stationary and traveling mesoscale perturbations inthe Kuroshio Extension current. J. Phys. Oceanogr.,11:692-704.
    Bernstein R L, White W B.1982. Meridional eddy heat flux in the KuroshioExtension current. J. Phys. Oceanogr.,12:154-159.
    Berloff P, Meacham S P.1998. On the stability of the wind-driven circulation. J. Mar.Res.,56:937-993.
    Bretherton C S, Smith C, Wallace J M.1992. An intercomparison of methods forfinding coupled patterns in climate data. J. Climat.,5:541-560.
    Calafat F M, Chambers D P.2013. Quantifying recent acceleration in sea levelunrelated to internal climate variability. Geophys. Res. Lett.,40:3661-3666.
    Calafat F M, Chambers D P, Tsimplis M N.2012. Mechanisms of decadal sea levelvariability in the eastern North Atlantic and the Mediterranean Sea. J. Geophys.Res.,117, C09022, doi:10.1029/2012JC008285.
    Calafat F M, Marcos M, Gomis D.2010. Mass contribution to the Mediterranean Sealevel variability for the period1948–2000. Global Planet. Change,73:193–201.
    Cazenave A, Dominh K, Gennero M C, Ferret B.1998. Global mean sea level changeobserved by TOPEX/POSEIDON and ERS-1. Physics and Chemistry of the Earth,23:1069-1075.
    Cazenave A, Nerem R S.2004. Present-day sea level change: observations and causes.Review of Geophysics,42, doi:10.1029/2003RG000139.
    Cazenave A, Llovel W.2010. Contemporary sea level rise. Annual Review of MarineScience,2:145-173.
    Chao S, J P McCreary JR.1982. A numerical study of the Kuroshio south of Japan. J.Phys. Oceanogr.,12:679-693.
    Chao S.1984. Bimodality of the Kuroshio. J. Phys. Oceanogr.,14:92-103.
    Chelton D B, M G Schlax, R M Samelson,2011. Global observations of nonlinearmesoscale eddies. Prog. Oceanogr.,91:167-216.
    Chelton D B, R A de Szoke, M G Schlax, K EI Naggar, N Siwertz.1998. Geographicvariability of the first-baroclinic Rossby radius of deformation. J. Phys. Oceanogr.,28:433-460.
    Choi B-J, Haidvogel D B, Cho Y-K.2004. Nonseasonal sea level variations in theJapan/East Sea from satellite altimeter data. J. Geophys. Res.,109,doi:10.1029/2004JC002387.
    Church J A, White N J.2011. Sea-level rise from the late19thto the early21stcentury.Surv. Geophys.,32:585-602.
    Cummins P, Lagerloef G.2002. Low-frequency pycnocline depth variability at oceanweather station in the northeast Pacific. J. Phys. Oceanogr.,32:3207–3215.
    Deser C, Blackmon M L.1993. Surface climate variations over the North AtlanticOcean during winter:1900-1989. J Climat.,6:1743-1753.
    Dewar W K, Bane J.1989a. Gulf stream dynamics. Part I: Eddy energetics at73°W. J.Phys. Oceanogr.,19:1558-1573.
    Dewar W K, Bane J.1989b. Gulf stream dynamics. Part II: Eddy energetics at73°W.J. Phys. Oceanogr.,19:1574-1587.
    Di Lorenzo E, Schneider N, Cobb K M, Chhak K, Franks P J S, Miller A J,McWilliams J C, Bograd S J, Arango H, Curchister E, Powell T M, Rivere P.2008.North Pacific Gyre Oscillation links ocean climate and ecosystem change.Geophys. Res. Lett.,35, L08607, doi:10.1029/2007GL032838.
    Ducet N, Le Traon PY, Reverdin G.2002. Global high-resolution mapping of oceancirculation from TOPEX/Poseidon and ERS-1and-2. J. Geophys. Res.,105:19477-19498.
    Ebuchi N, K Hanawa.2000. Mesoscale eddies observed by TOLEX-ADCP andTOPEX/POSEIDON altimeter in the Kuroshio recirculation region south ofJapan. J. Oceanogr.,56:43-57.
    Ebuchi N, K Hanawa.2001. Trajectory of mesoscale eddies in the Kuroshiorecirculation region. J. Oceanogr.,57:471-480.
    Ebuchi N, K Hanawa.2003. Influence of Mesoscale Eddies on Variations of theKuroshio Path South of Japan. J. Oceanogr.,59:25-36.
    Endoh T, Hibiya T.2000. Numerical study of the generation and propagation oftrigger meanders of the Kuroshio south of Japan. J. Oceanogr.,56:409-418.
    Endoh T, Hibiya T.2001. Numerical simulation of the transient response of theKuroshio leading to the large meander formation south of Japan. J. Geophys. Res.,106,26833-26850, doi:10.1029/2000JC000776.
    Endoh T, Hibiya T.2009. Interaction between the trigger meander of the Kuroshio andthe abyssal anticyclone over Koshu Seamount as seen in the reanalysis data.Geophys. Res. Lett.,36, doi:10.1029/2009GL039389.
    Feng M, H Mitsudera, Y Yoshikawa.2000. Structure and variability of the Kuroshiocurrent in Tokara Strait. J. Phys. Oceanogr.,30:2257-2276.
    Fujii Y, H Tsujino, N Usui, H Nakano, M Kamachi.2008. Application of singularvector analysis to the Kuroshio large meander, J. Geophys. Res.,113,doi:10.1029/2007JC004476.
    Fujita K, Morikawa Y, Chen M Y, Sekine Y.1997. Sea level difference betweenKushimoto and Uragami associated with the variation in main Kuroshio pathsouth of Japan. Umito Sora,72:103-108.
    Gill A E, Niller P P.1973. The theory of the seasonal variability of the ocean. DeepSea Res.,20:141-177.
    Hanawa K, Yoshikawa Y, Taneda T.1996. TOLEX-ADCP monitoring. Geophys. Res.Lett.,23:2429-2432.
    Hall M M.1991. Energetics of the Kuroshio Extension at35°N,152°E. J. Phys.Oceanogr.,21:958-975.
    Halliwell Jr. G R.1998. Simulation of North Atlantic decadal/multidecadal winterSST anomalies driven by basin-scale atmospheric circulation anomalies. J. Phys.Oceanogr.,28:5-21.
    Hoskins B J, James I J, White G J.1983. The shape, propagation and mean-flowinteraction of large-scale weather systems. J. Atmos. Sci.,40:1595-1612.
    Hurlburt H E, O M Smedstat, R C Rhodes, J F Cayula, C N Barron, E J Metger.2000.A feasibility demonstration of ocean model eddy-resolving nowcast/forecast skillusing satellite altimeter data. NRL MR7320-00-8235, Naval Research Laboratory,Stennis Space Center, Hancock.
    Ishii M, Kimoto M, Kachi M.2003. Historical Ocean subsurface temperature analysiswith error estimates. Monthly Weather Review,131:51-73.
    Ishii M, Kimoto M, Sakamoto K, Iwasaki S I.2006. Steric sea level changesestimated from historical ocean subsurface temperature and salinity analyses. J.Oceanogr.,62:155-170.
    Ishii, M., A. Shouji, S. Sugimoto, and T. Matsumoto,2005: Objective analyses of SSTand marine meteorological variables for the20th century using COADS and theKobe Collection. Int. J. Climatol.,25:865-879.
    Ishikawa Y, T Awaji, N Komori, T Toyoda.2004. Application of Sensitivity AnalysisUsing an Adjoint Model for Short-Range Forecasts of the Kuroshio Path South ofJapan. J. Oceanogr.,60:293-301.
    Ichikawa K, Imawaki S.1994. Life history of a cyclonic ring detached from theKuroshio Extension as seen by the Geosat altimeter, J. Geophys. Res.,15:953-966.
    Itoh S, T sugimoto.2008. Current variability of the Kuroshio near the separation pointfrom the western boundary. J. Geophys. Res.,113, doi:10.1029/2007JC004682.
    Imawaki S, M Gotoh, H Yoritaka, N Yoshioka, A Misumi.1996. Detectingfluctuations of the Kuroshio axis south of Japan using TOPEX/POSEIDONaltimeter data. J. Oceanogr.,52:69-92.
    Jia F, Wu L, Qiu B.2011. Seasonal modulation of eddy kinetic energy and itsformation mechanism in the southeast Indian Ocean. J. Phys. Oceanogr.,41:657-665.
    JMA.2006.海洋の健康诊断表. Japan Meteorological Agency,1-3-4Otemachi,Chiyoda-ku, Tokyo100-8122, Japan.
    Kamachi M, T Kuragano, S Sugimoto, K Yoshita, T Sakurai, T Nakano, N Usui, FUboldi.2004. Short-range prediction experiments with operational dataassimilation system for the Kuroshio south of Japan. J. Oceanogr.,60:269-282.
    Kalnay et al.1996. The NCEP-NCAR4o-year reanalysis project. Bull. Am. Meteor.Soc.,77:437-471.
    Kasai A, Kimura S, Nakata H, Okazaki Y.2002. Entrainment of coastal water into afrontal eddy of the Kuroshio and its biological significance, J. Mar. Syst.,37:185-198.
    Kashima M, S Ito, K Ichikawa, S Imawaki, S Umatani, H Uchida, T Setou.2009.Quasiperiodic small meanders of the Kuroshio off Cape Ashizuri and theirinterannual modulation caused by quasiperiodic arrivals of mesoscale eddies. J.Oceanogr.,65:73-80.
    Kawabe M.1980. Sea level variations along the south coast of Japan and the largemeander in the Kuroshio. J. Oceanogr. Soc. Japan,36:97-104.
    Kawabe M.1985. Sea level variations at the Izu islands and typical stable paths of theKuroshio, J. Oceanogr. Soc. Jpn.,41:307-326.
    Kawabe M.1986. Transition processes between the three typical paths of theKuroshio. J. Oceanogr. Soc. Jpn.,42:174-191.
    Kawabe M.1987. Spectral properties of sea level and time scales of Kuroshio pathvariations. J. Oceanogr. Soc. Japan,43:111-123.
    Kawabe M.1989. Sea level changes south of Japan associated with thenon-large-meander path of the Kuroshio. J. Oceanogr. Soc. Japan,45:181-189.
    Kawabe M.1990. A steady model of typical non-large-meander paths of the Kuroshiocurrent. J. Oceanogr. Soc. Japan,46:55-67.
    Kawabe M.1995. Variations of current path, velocity, and volume transport of theKuroshio in relation with the large meander. J. Phys. Oceanogr.,25:3103-3117.
    Kawabe M.2005. Variations of the Kuroshio in the southern region of Japan:Conditions for large meander of the Kuroshio. J. Oceanogr.,61:529-537.
    Kelly A K, Singh S, Huang R X.1999. Seasonal variations of sea surface height in theGulf stress region. J. Phys. Oceanogr.,29:313-327.
    Kobashi F, Hanawa K.2004. Hydrographic features off the southeast coast of Kyushuduring the Kuroshio small meanders: A case study for small meanders thatoccurred in1994and1995spring. J. Oceanogr.,60:645-661.
    Kobashi F, Kawamura H.2001. Variation of sea surface height at periods of65-220days in the subtropical gyre of the North Pacific. J. Geophys. Res.,26:26817-26831.
    Komori N, T Awaji, Y Ishikawa, T Kuragano.2003. Short-range forecast experimentsof the Kuroshio path variabilities south of Japan using TOPEX/Poseidon altimetricdata. J. Geophys. Res.,108, doi:10.1029/2001JC001282.
    Kuroda H, Shimizu M, Hirota Y, Akiyama H.2007. Intraanual variability of sea levelaround Tosa Bay. J. Oceanogr.,63:849-862.
    Kurogi M, K. Akitomo.2003. Stable paths of the Kuroshio path south of Japandetermined by the wind stress field. J. Geophys. Res.,108,doi:10.1029/2003JC001853.
    Kurogi M, K. Akitomo.2006. Effects of stratification on the stable paths of theKuroshio and on their variation. Deep sea Res. I,53:1564-1577.
    Le Traon P Y, Faugere Y, Hernandez F, Dorandeu J, Mertz F, Ablain M.2003. Can wemerge GEOSAT Follow-On with TOPEX/Poseidon and ERS-2for an improveddescription of the ocean circulation? J. Atmos. Oceanic. Technol.,20:889-895.
    Ma L B, Wang Q.2013a. Interannual Variations in Energy Conversion and Interactionbetween the Mesoscale Eddy Field and Mean Flow in the Kuroshio South of Japan.Chinese J. Oceano. Limno., in press.
    Ma L B, Wang Q.2013b. Mean properties of mesoscale eddies in the Kuroshiorecirculation region. Chinese J. Oceanol. Limnol., in press.
    Masumoto Y.2004. Generation of small meanders of the Kuroshio south of Kyushu ina high-resolution ocean general circulation model. J. Oceanogr.,60:313-320.
    Mantua N J, Hare S R, Zhang Y, Wallace J M, Francis R C.1997. A Pacificinterdecadal climate oscillation with impacts on salmon production. Bulletin of theAmerican Meteorological Society,78:1069-1079.
    Minobe S.1997. A50-70year climate oscilation over the North Pacific and NorthAmerica. Geophys. Res. Lett.,24:683-686.
    Mitsudera H, T Waseda, Y Yoshikawa, B Taguchi.2001. Anticyclonic eddies andKuroshio meander formation. Geophys. Res. Lett.,28:2025-2028.
    Miyama T, Miyazawa Y.2013. Structure and dynamics of the sudden acceleration ofKuroshio off Cape Shionomisaki. Ocean Dynamics,63:265-281.
    Miyazawa Y, X Guo, T Yamagata.2004. Roles of mesoscale eddies in the Kuroshiopaths, J. Phys. Oceanogr.,34:2203-2222.
    Miyazawa Y, T Kagimoto, X Guo, H Sakuma.2008. The Kuroshio large meanderformation in2004analyzed by an eddy-resolving ocean forecast system. J.Geophys. Res., VOL.113, doi:10.1029/2007JC004226.
    Miyazawa Y, S Yamane, X Guo, T Yamagata.2005. Ensemble forecast of theKuroshio meandering. J. Geophys. Res.,110, doi:10.1029/2004JC002426.
    Moller J, Dommenget D, Semenov V A.2008. The annual peak in the SST anomalyspectrum. J. Climat.,21:2810-2823.
    Nagano A, M Kawabe.2005. Coastal disturbance in sea level propagating along thesouth coast of Japan and its impact on the Kuroshio. J. Oceanogr.,61:885-903.
    Nakamura H, A Nishina, K Tabata, M Higashi, A Habano, T Yamashiro.2012. Surfacevelocity time series derived from satalitte altimetry data in a section across theKuroshio southwest of Kyushu. J. Oceanogr.,68:321-336.
    Nitani H.1975. Variation of the Kuroshio South of Japan. J. Oceanogr. Soc. Jpn.,31:154-173.
    Oka E, M Kawabe.2003. Dynamics structure of the Kuroshio south of Kyushu inrelation to the Kuroshio path variations. J. Oceanogr.,59:595-608.
    Pedlosky J.1987. Geophysical fluid dynamics.624pp, Springer-Verlag, New York.
    Qiu B.1999. Seasonal eddy field modulation of the North Pacific SubtropicalCountercurrent: TOPEX/Poseidon observations and theory. J. Phys. Oceanogr.,29:2471-2486.
    Qiu B.2002. Large-scale variability in the midlatitude subtropical and subpolar NorthPacific Ocean: Observations and causes. J. Phys. Oceanogr.,32:353-375.
    Qiu B.2003. Kuroshio Extension variability and forcing of the Pacific decadaloscillations: Responses and potential feedback. J. Phys. Oceanogr.,33:2465-2482.
    Qiu B, Chen S M.2005. Variability of the Kuroshio extension jet, recirculation gyre,and mesoscale eddies on decadal timescales. J. Phys. Oceanogr.,35:2090-2103.
    Qiu B, Chen S M.2006. Decadal variability in the formation of the North PacificSubtropical Mode Water: Oceanic versus atmospheric control. J. Phys. Oceanogr.,36:1365-1380.
    Qiu B, S Chen.2010. Eddy-mean flow interaction in the decadally modulatingKuroshio Extension system. Deep-sea Res II.,57:1098-1110.
    Qiu B, Kelly K, Joyce T.1991. Mean flow and variability in the Kuroshio Extensionfrom Geosat altimetry data. J. Geophys. Res.,96:18491-18507.
    Qiu B, W Miao.2000. Kuroshio path variations south of Japan: Bimodality as aself-sustained internal oscillation. J. Phys. Oceanogr.,30:2124-2137.
    Reynolds R W, Smith T M, Liu C, Chelton D B, Casey K S, Schlax M G.2007. Dailyhigh-resolution-blended analysis for sea surface temperature. J. Climate,20:5473-5496.
    Rhodes R C, H E Hurlburt, A J Wallcraft, C N Barron, P J Martin, E J Metzger, J FShriver, D S Ko, O M Smedstad, S L Cross, A B Kara.2002. Navy real-timeglobal modering systems. Oceanography15:29–43(special issue—Navyoperational models: ten years later).
    Rio M H, S Guinehut, G Larnicol.2011. New CNES-CLS09global mean dynamictopography computed from the combination of GRACE data, altimetry, and in situmeasurements, J. Geophys. Res.,116, C07018, doi:10.1029/2010JC006505.
    Sasaki Y N, Minobe S, Asai T, Inatsu M.2012. Influence of the Kuroshio in the EastChina Sea on the early summer (Baiu) rain. J. Climat.,25:6627-6644.
    Sasaki Y N, Minobe S, Schneider N.2013. Decadal response of the Kuroshioextension jet to Rossby waves: observation and thin-jet theory. J. Phys. Oceanogr.,43:442-456.
    Sasaki Y N, Schneider N.2011. Decadal shifts of the Kuroshio Extension jet:application of thin-jet theory. J. Phys. Oceanogr.,41:979-993.
    Schopf P, Anderson D, Smith R.1981.-dispersion of low-frequency Rossby waves.Dyn. Atmos. Oceans,5:187-214.
    Sekine Y, Fujita K.1999. Why does the sea level difference between Kushimoto andUragami show periods of large meander and non-large meander paths of theKuroshio south of Japan? J. Oceanogr.,55:43-51.
    Sekine Y, Ishii H, Toba Y.1985. Spin-up and spin-down processes of the large coldwater mass of the Kuroshio south of Japan. J. Oceanogr. Society of Japan,41:207-212.
    Schmeits M J, H A Dijkstra.(2001). Bimodal behavior of the Kuroshio and the Gulfstream. J. Phys. Oceanogr.,31:3435-3456.
    Senjyu T, Matsuyama M, Matsubara N.1999. Interannual and decadal sea-levelvariations along the Japanese coast. J. Oceanogr.,55:619:633.
    Shimokawa S, Matsuura T.2010. Chaotic behaviors in the response of aquasigeostrophic oceanic double gyre to seasonal forcing. J. Phys. Oceanogr.,40:1458-1472.
    Solomon H.1978. Occurrence of small “trigger” meanders in the Kuroshio offsouthern Kyushu. J. Oceanogr. Soc. Japan,34:81-84.
    Stammer D.1997. Steric and wind-induced changes in TOPEX/Poseidon large-scalesea surface topography observations. J. Geophys. Res.,102:20987-21009.
    Sugimoto S, K Hanawa.2012. Relationship between the path of the Kuroshio in thesouth Japan and the path of the Kuroshio Extension in the east. J. Oceanogr.,68:219-225.
    Szabo D, Weatherly G L.1979. Energetics of the Kuroshio south of Japan. J. Mar.Res.,37:531-556.
    Tabata S, Thomas B, Ramsden D.1986. Annual and interannual variability of stericsea level along line P in the northeast Pacific Ocean. J. Phys.Oceanogr.,16:1378-1398.
    Taft B A.1972. Characteristics of the flow of the Kuroshio south of Japan. InKuroshio—Its Physical Aspects, H. Stommel and K.Yoshida, Eds., University ofTokyo Press,165-216.
    Tai C K, White W B.1990. Eddy variability in the Kuroshio Extension as revealed bygeosat altimetry: Energy propagation away from the jet, Reynolds stress, andseasonal cycle. J. Phys. Oceanogr.,20:1761-1777.
    Tamizawa K, Hanawa K, Kurasawa Y, Toba Y.1984. Variability of monthly mean sealevel and its regional features around Japan and Korea. In Ocean Hydro. Japanand East China Seas, ed. by T Ichiye, Elsevier, Amsterdam,273-285.
    Tanimoto Y, T Kanenari, H Tokinaga, S P Xie.2011. Sea level pressure minimumalong the Kuroshio and its extension. J. Climat.,24:4419-4434.
    Trenberth (1984), Signal versus Noise in the Southern Oscillation, Monthly WeatherReview112:326-332.
    Trenberth K E, Hurrell J W.1994. Decadal atmosphere-ocean variations in the Pacific.Climate Dynamics,9:303-319.
    Tsujino H, N Usui, H Nakano.2006. Dynamics of Kuroshio path variations in a highresolution general circulation model. J. Geophys. Res.,111, doi:10.1029/2005JC003118.
    Tsujino H, S Nishikawa, K Sakamoto, N Usui, H Nakano, G Yamanaka.2013. Effectsof large-scale wind variation on the Kuroshio path south of Japan in a60-yearhistorical GCM simulation. Climat. Dynam.,41:2287-2318.
    Usui N, H Tsujino, Y Fujii, M Kamachi.2006. Short-range prediction experiments ofthe Kuroshio path variabilities south of Japan. Ocean Dynamics,56:607-623.
    Usui N, H Tsujino, Y Fujii, M Kamachi.2008. Generation of a trigger meander for the2004Kuroshio large meander. J. Geophys. Res.,113, C01012,doi:10.1029/2007JC004266.
    Usui N, Tsujino H, Nakano H, Fujii Y, Kamachi M.2011. Decay mechanism of the2004/2005large meander. J. Geophys. Res.,116, doi:10,1029/2011JC007009.
    Vivier F, Kelly K A, Thompson L.1999. Contributions of wind forcing, waves, andsurface heating to sea surface height observations in the Pacific Ocean. J. Geophys.Res.,104:20767-20788.
    Wang Q, M Mu, H A Dijkstra.2012. Application of the conditional nonlinear optimalperturbation method to the predictability study of the Kuroshio large meader.Advan. Atmos. Sci.,29:118-134.
    Wang Q, M Mu, H A Dijkstra.2013. The similarity between optimal precursor andoptimally growing initial error in prediction of Kuroshio large meander and itsapplication to targeted observation. J. Geophys. Res.,118, doi:10.1029/jgrc.20084.
    Wang Q, L B Ma, Q Q Xu.2013. Optimal precursor of the transition from Kuroshiolarger meander to straight path. Chinese J Oceanol. Limnol.,31:1153-1161.
    Waseda T, H Mitsudera, B Taguchi, Y Yoshikawa.2002. On the eddy-Kuroshiointeraction: Evolution of mesoscale eddy. J. Geophys. Res.,107, doi:10.1029/2000JC000756.
    Waseda T, H Mitsudera, B Taguchi, Y Yoshikawa.2003. On the eddy-Kuroshiointeraction: Meander formation process. J. Geophys Res.,108, doi:10.1029/2002JC001583.
    Wilson W S, Dugan J P.1978. Mesoscale thermal variability in the vicinity of theKuroshio Extension. J. Phys. Oceanogr.,8:537-540.
    Woodworth P L, R Player.2003. The Permanent Service for Mean Sea Level: Anupdate to the21st century, J. Coast. Res.,19:287–295.
    Wunsch C, Ponte RM, Heimbach P.2007. Decadal trends in sea level patterns:1993–2004. J. Clim.20:5889-5911.
    Xu H, H Tokinaga, S P Xie.2010. Atmospheric Effects of the Kuroshio LargeMeander during2004-05. J. Climate,23:4704-4715.
    Yamagata T, Shibao Y, Umatani S.1985. Interannual variabiltiy of the KuroshioExtension and its relation to the Southern Oscillation/El Nino. J. Oceanogr. Soc.Japan,41:274-281.
    Yamagata T, S Umatani.1987. The capture of current meander by coastal geometrywith possible application to the Kuroshio current. Tellus,39A:161-169.
    Yamagata T, S Umatani.1989. Geometry-forced coherent structures as a model of theKuroshio large meander. J. Phys. Oceanogr.,19:130-138.
    Yamashiro T, M Kawabe.1996. Monitoring of position of the Kuroshio Axis in theTokara Strait using sea level data. J. Oceanogr.,52:675-687.
    Yasuda I, J H Yoon, N Suginohara.1985. Dynamics of the Kuroshio large meander:barotropic model. J. Oceanogr. Soc. Japan,41:259-273.
    Yasuda T, Sakurai K.2006. Interdecadal variability of the sea surface heigth aroundJapan. Geophys. Res. Lett.,33, L01606, doi:10.1029/2005GL024920.
    Yoshida S, Qiu B, Hacker P.2010. Wind-generated eddy characteristics in the lee ofthe island of Hawaii. J. Geophys. Res.,115, C03019, doi:10.1029/2009JC005417.
    Zhang Z, Ichikawa K.2005. Influence of the Kuroshio fluctuations on sea levelvariations along the south coast of Japan. J. Oceanogr.,61:979-985.
    Zhou J, Li P L, Yu H L.2012. Characteristics and mechanisms of sea surface height inthe South China Sea. Global and Planetary Change,88-89:20-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700