丙酮酸激酶在活化离子和底物诱导下的构象变化机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丙酮酸激酶(pyruvate kinase, PK)是糖酵解途径中的一个关键酶。在糖酵解途径中,PK在活化离子K+和Mg2+存在条件下,催化磷酸稀醇式丙酮酸(PEP)和二磷酸腺苷(ADP)转变为丙酮酸和三磷酸腺苷(ATP)。PK活性部位的结构表明,结构域B伸出到溶液中与结构域A形成一个口袋,活性部位就处在同一个亚基的结构域A和结构域B之间的口袋中,结构域B通过一个易弯曲的交联区域与结构域A相连。结构域B的旋转使得结构域A和结构域B之间的口袋“张开”代表了PK的非活性状态,口袋的“闭合”代表了PK的活性状态。结构域B具有高度的活动性,在两种构象中有40°的角度变化,而结构域C在“张开”和“闭合”的构象中都处在同样的位置。PK的活化离子-底物复合物的构象不同于自由酶的构象。文献中紫外光谱和荧光光谱研究表明在活化离子存在下或者温度降低时,蛋白的某些生色团由非水性环境变为水性环境。底物ADP在活化离子存在下并不干扰蛋白的紫外光谱。PEP的结合使得PK的结构更加紧密,也更加对称。相反,抑制剂苯丙氨酸(Phe)使得PK的结构更加松散。活化离子K+和Mg2+、底物ADP和PEP、抑制剂Phe对PK的二级结构都没有引起显著的变化。
     本文主要应用荧光淬灭技术研究了活化离子K+和Mg2+、底物ADP和PEP、抑制剂Phe、温度、盐酸胍对PK构象变化的影响,并尝试用等温滴定量热技术(ITC)进行PK与活化离子、底物之间的热动力学研究,以期探讨PK在诸多因素诱导下的构象变化规律及其与热动力学函数之间的关系。本研究得到了以下结论:
     1、活化离子K+和Mg2+、底物ADP和PEP、抑制剂Phe等对丙酮酸激酶的结构变化影响均很微弱,但能引起丙酮酸激酶结构域的移动和构象变化。在活化离子Mg2+或者Mg2+和K+共同作用下,丙酮酸激酶的活性部位更加暴露,处于更加亲水的环境。底物ADP对于丙酮酸激酶活性部位暴露程度的变化几乎没有作用,底物PEP的结合或者PEP和ADP共同的作用能明显降低丙酮酸激酶活性部位的暴露程度。Phe能抑制丙酮酸激酶的活性,还能显著地增大色氨酸残基的暴露程度。
     2、温度在10-30℃之间变化时,丙酮酸激酶的整体二级结构没有监测到变化,但能够引起丙酮酸激酶活性部位的构象变化。活性部位的暴露程度与温度之间有反相关性,温度越低活性部位暴露程度越高。
     3、PK在变性剂盐酸胍(GdnHCl)作用下的去折叠规律:当盐酸胍浓度在0.5M时,丙酮酸激酶解离成一个松散且失活的四聚体;当盐酸胍浓度达到1.5M时,丙酮酸激酶解离成扩大的二聚体,此时已经有部分二级结构丢失;当盐酸胍浓度进一步增大到2.5M时,丙酮酸激酶解离成完全无序的单体。但活化离子和底物能够部分抑制由于盐酸胍引起的丙酮酸激酶解离。
     本文还对蛋白磷酸化酶(Calcineurin, CN)在钙离子和钙调节蛋白(CaM)诱导下的构象变化机理进行了研究。CN是一个依赖于钙离子/钙调节蛋白(Ca2+/CaM)的丝氨酸/苏氨酸磷酸化酶,参与大量的细胞内信号的调节。CN是由A,B两个亚基组成的异二聚体蛋白酶:A亚基(CNA,61-kDa)是催化亚基,主要起催化作用;B亚基(CNB,19-kDa)是调节亚基,对酶的活性起着调节的作用。本论文通过丙烯酰胺荧光淬灭技术研究了CN在钙离子和钙调节蛋白诱导下的构象变化机理,得出如下结论:CN自我调节结构域(CNRR)通过封闭CN的活性部位而抑制CN的活性,而CaM的结合使得活性部位暴露出来;Ca2+结合到CNB上能够激活CaM结合到CNA的调节区域,然后在不需要CNB的情况下,CaM能够独自引起自我调节结构域发生构象变化,使CN得以激活。
Pyruvate kinase (PK) is a key regulatory glycolytic enzyme. PK catalyzes the physiological phosphorylation of ADP by PEP. The active-site structure of PK showed that domain B of PK protrudes into the solvent and forms a cleft with domain A. Domain B is attached to domain A by what appears to be a flexible hinge region. The active site lies in the pocket between domains A and B of the same subunit. The inactive state can be represented by a rotation of the domain B in opening of the cleft between the B and A domains, and the active state can be represented by closing of the cleft. The domain B is highly mobile and differs in 40°in the two conformers, whereas the domain C remains in the same position in the "open" and "closed" conformations. The enzyme-metal-substrate complex has a conformation which is different from that of free enzyme. The UV and fluorescence specrtrum studies reveal that the solvating environment of certain protein chromophores is in a non-aqueous environment at high temperature or in the absence of cations, and in an aqueous environment at low temperature or in the presence of cations. The substrate, ADP, didn't perturb the UV spectrum of the protein in the presence of activating cations. Binding of PEP induces PK to assume a more compact and symmetric structure. In contrast, Phe loosens the protein structure into an inactive or less active state. The binding of activating cations and/or substrates or the inhibitor retains the relative distribution of the secondary structures.
     In this work, the conformational change of PK induced by its activating cations K+/Mg2+, substrates ADP/PEP, and inhibitor Phe, have been studied by using fluorescence acrylamide quenching. Isothermal titration calorimetry (ITC) was used to address the thermodynamic properties of the reaction between PK and activating cations and/or substrates. The results are as follows:
     1. There is no significant change in the secondary structure in PK induced by its activating matels K+/Mg2+, substrates ADP/PEP, inhibitor Phe. However, it involves domain movements and conformational changes. The active site of PK was brought into an aqueous environment by interactions of Mg2+ or K+/Mg2+. ADP has little contribution on the solvent accessibility of tryptophan residues. Binding of PEP or PEP/ADP elicits a decrease in accessibility of PK active site. Phe can inhibit the activity of PK and in contract substrate PEP, increase the solvent accessibility of PK tryptophan residues.
     2. When enzyme is heated from 10℃to 30℃, there is also no significant change in the secondary structure. However, temperature would change the conformation of PK active site, the solvent accessibility of active site is inversely related to temperature.
     3. As a homo-tetramer, PK can be dissociated into a less compact and in-active tetramer in the presence of 0.5M GdnHCl. In the presence of 1.5M GdnHCl, PK was dissociated into dimmers dimer with a partial loss of the secondary structure. PK is a disordered monomer in the presence of 2.5M GdnHCl. Noteworthy, activating cations and substrates can partially reverse the conformational change induced by GdnHCl.
     The conformational changes of Calcineurin (CN) induced by Ca2+/CaM binding was also studied in this work. CN is a calcium/CaM-dependent Ser/Thr protein phosphatase and plays a critical role in the coupling of Ca2+signals to cellular responses. CN is a heterodimeric enzyme consisting of a 61-kDa subunit (CNA) with catalytic activity and the binding sites for Ca2+/CaM and a 19-kDa subunit (CNB). The conformational change mechanism was studied by fluorescence acrylamide quenching. The results are:the isolated regulatory region (CNRR) inhibits CN activity by occluding the catalytic site and that CaM binding exposes the catalytic site. The binding of Ca2+ to CNB enables CaM binding to the CNA regulatory region, and CaM binding then instructs an activating conformational change of the regulatory region that does not depend further on CNB.
引文
[1]S. Allert, I. Ernest, A. Poliszczak, F. R. Opperdoes, P. A. M. Michels. Molecular-cloning and analysis of 2 tandemly linked genes for pyruvate-kinase of trypanosoma-brucei [J]. European Journal of Biochemistry,1991,200(1):19-27.
    [2]J. Hattori, B. R. Baum, S. G. McHugh, S. D. Blakeley, D. T. Dennis, B. L. Miki. Pyruvate kinase isozymes:Ancient diversity retained in modern plant cells [J]. Biochemical Systematics and Ecology,1995,23(7-8):773-780.
    [3]E. Saavedra-Lira, L. Ramirez-Silva, R. Perez-Montfort. Expression and characterization of recombinant pyruvate phosphate dikinase from entamoeba histolytica [J]. Biochimica Et Biophysica Acta-Protein Structure and Molecular Enzymology,1998,1382(1):47-54.
    [4]F. J. Kayne, N. C. Price. Amino-acid effector binding to rabbit muscle pyruvate-kinase [J]. Archives of Biochemistry and Biophysics,1973,159(1): 292-296.
    [5]E. B. Waygood, B. D. Sanwal. Control of pyruvate kinases of escherichia-coli.1. Physicochemical and regulatory properties of enzyme activated by fructose 1,6-diphosphate [J]. Journal of Biological Chemistry,1974,249(1):265-274.
    [6]S. D. Blakeley, W. C. Plaxton, D. T. Dennis. Relationship between the subunits of leukoplastid pyruvate-kinase from ricinus-communis and a comparison with the enzyme from other sources [J]. Plant Physiology,1991,96(4):1283-1288.
    [7]E. Boles, F. Schulte, T. Miosga, K. Freidel, E. Schluter, F. K. Zimmermann, C. P. Hollenberg, J. J. Heinisch. Characterization of a glucose-repressed pyruvate kinase (pyk2p) in saccharomyces cerevisiae that is catalytically insensitive to fructose-1,6-bisphosphate [J]. Journal of Bacteriology,1997,179(9):2987-2993.
    [8]S. D'Auria, M. Rossi, P. Herman, J. R. Lakowicz. Pyruvate kinase from the thermophilic eubacterium bacillus acidocaldarius as probe to monitor the sodium concentrations in the blood [J]. Biophysical Chemistry,2000,84(2):167-176.
    [9]V. L. Knowles, D. T. Dennis, W. C. Plaxton. Purification of a novel pyruvate-kinase from a green-alga [J]. Febs Letters,1989,259(1):130-132.
    [10]A. Pawluk, R. K. Scopes, K. Griffithssmith. Isolation and properties of the glycolytic-enzymes from zymomonas-mobilis-the 5 enzymes from glyceraldehyde-3-phosphate dehydrogenase through to pyruvate-kinase [J]. Biochemical Journal,1986,238(1):275-281.
    [11]W. C. Plaxton, C. R. Smith, V. L. Knowles. Molecular and regulatory properties of leucoplast pyruvate kinase from brassica napus (rapeseed) suspension cells [J]. Archives of Biochemistry and Biophysics,2002,400(1):54-62.
    [12]W. C. Plaxton. Molecular and immunological characterization of plastid and cytosolic pyruvate-kinase isozymes from castor-oil-plant endosperm and leaf [J]. European Journal of Biochemistry,1989,181(2):443-451.
    [13]W. C. Plaxton, D. T. Dennis, V. L. Knowles. Purification of leukoplastid pyruvate-kinase from developing castor bean endosperm [J]. Plant Physiology,1990, 94(4):1528-1534.
    [14]W. C. Plaxton. Leukoplastid pyruvate-kinase from developing castor-oil seeds-characterization of the enzymes degradation by a cysteine endopeptidase [J]. Plant Physiology,1991,97(4):1334-1338.
    [15]F. B. Negm, F. A. Cornel, W. C. Plaxton. Suborganellar localization and molecular characterization of nonproteolytic degraded leukoplastid pyruvate-kinase from developing castor-oil seeds [J]. Plant Physiology,1995,109(4):1461-1469.
    [16]M. Lin, D. H. Turpin, W. C. Plaxton. Pyruvate-kinase isozymes from the green-alga, selenastrum-minutum.1. Purification and physical and immunological characterization [J]. Archives of Biochemistry and Biophysics,1989,269(1): 219-227.
    [17]A. Schramm, B. Siebers, B. Tjaden, H. Brinkmann, R. Hensel. Pyruvate kinase of the hyperthermophilic crenarchaeote thermoproteus tenax:Physiological role and phylogenetic aspects [J]. Journal of Bacteriology,2000,182(7):2001-2009.
    [18]L. A. Fothergill-Gilmore, D. J. Rigden, P. A. M. Michels, S. E. V. Phillips. Leishmania pyruvate kinase:The crystal structure reveals the structural basis of its unique regulatory properties [J]. Biochemical Society Transactions,2000,28(2): 186-190.
    [19]A. Mattevi, G. Valentini, M. Rizzi, M. L. Speranza, M. Bolognesi, A. Coda. Crystal-structure of escherichia-coli pyruvate-kinase type-i-molecular-basis of the allosteric transition [J]. Structure,1995,3(7):729-741.
    [20]C. R. Smith, V. L. Knowles, W. C. Plaxton. Purification and characterization of cytosolic pyruvate kinase from brassica napus (rapeseed) suspension cell cultures-implications for the integration of glycolysis with nitrogen assimilation [J]. European Journal of Biochemistry,2000,267(14):4477-4485.
    [21]H. Muirhead, D. A. Clayden, D. Barford, C. G. Lorimer, L. A. Fothergillgilmore, E. Schiltz, W. Schmitt. The structure of cat muscle pyruvate-kinase [J]. Embo Journal, 1986,5(3):475-481.
    [22]H. Sakai, T. Ohta. Molecular-cloning and nucleotide-sequence of the gene for pyruvate-kinase of bacillus-stearothermophilus and the production of the enzyme in escherichia-coli-evidence that the genes for phosphofructokinase and pyruvate-kinase constitute an operon [J]. European Journal of Biochemistry,1993, 211(3):851-859.
    [23]R. Beitner. Control of glycolytic-enzymes through binding to cell structures and by glucose-1,6-bisphosphate under different conditions-the role of Ca2+ and calmodulin [J]. International Journal of Biochemistry,1993,25(3):297-305.
    [24]E. Ponce, A. Martinez, F. Bolivar, F. Valle. Stimulation of glucose catabolism through the pentose pathway by the absence of the two pyruvate kinase isoenzymes in escherichia coli [J]. Biotechnology and Bioengineering,1998,58(2-3):292-295.
    [25]K. Tani, H. Fujii, S. Nagata, S. Miwa. Human-liver type pyruvate-kinase complete amino-acid sequence and the expression in mammalian-cells [J]. Proceedings of the National Academy of Sciences of the United States of America, 1988,85(6):1792-1795.
    [26]L. Baronciani, E. Beutler. Analysis of pyruvate kinase-deficiency mutations that produce nonspherocytic hemolytic-anemia [J]. Proceedings of the National Academy of Sciences of the United States of America,1993,90(9):4324-4327.
    [27]E. Eigenbrodt, F. Kallinowski, M. Ott, S. Mazurek, P. Vaupel. Pyruvate kinase and the interaction of amino acid and carbohydrate metabolism in solid tumors [J]. Anticancer Research,1998,18(5A):3267-3274.
    [28]G. M. Oremek, S. Teigelkamp, W. Kramer, E. Eigenbrodt, K. H. Usadel. The pyruvate kinase isoenzyme tumor m2 (tu m2-pk) as a tumor marker for renal carcinoma [J]. Anticancer Research,1999,19(4A):2599-2601.
    [29]W. Zwerschke, S. Mazurek, P. Massimi, L. Banks, E. Eigenbrodt, P. Jansen-Durr. Modulation of type m-2 pyruvate kinase activity by the human papillomavirus type 16 e7 oncoprotein [J]. Proceedings of the National Academy of Sciences of the United States of America,1999,96(4):1291-1296.
    [30]R. Oehler, G. Weingartmann, N. Manhart, U. Salzer, M. Meissner, W. Schlegel, A. Spittler, M. Bergmann, D. Kandioler, C. Oismuller, H. M. Struse, E. Roth. Polytrauma induces increased expression of pyruvate kinase in neutrophils [J]. Blood,2000,95(3): 1086-1092.
    [31]C. A. Raia, S. Dauria, A. Guagliardi, S. Bartolucci, M. Derosa, M. Rossi. Characterization of redox proteins from extreme thermophilic archaebacteria-studies on alcohol-dehydrogenase and thioredoxins [J]. Biosensors & Bioelectronics,1995, 10(1-2):135-140.
    [32]L. A. Fothergill-Gilmore, D. J. Rigden, P. A. M. Michels, S. E. V. Phillips. Leishmania pyruvate kinase:The crystal structure reveals the structural basis of its unique regulatory properties [J]. Biochemical Society Transactions,2000,28: 186-190.
    [33]T. Saeki, M. Hori, H. Umezawa. Pyruvate-kinase of escherichia-coli-its role in supplying nucleoside triphosphates in cells under anaerobic conditions [J]. Journal of Biochemistry,1974,76(3):631-637.
    [34]D. J. Creighton, I. A. Rose. Oxalacetate decarboxylase activity in muscle is due to pyruvate-kinase [J]. Journal of Biological Chemistry,1976,251(1):69-72.
    [35]K. Ashizawa, P. McPhie, K. H. Lin, S. Y. Cheng. An invitro novel mechanism of regulating the activity of pyruvate kinase-m2 by thyroid-hormone and fructose-1,6-bisphosphate [J]. Biochemistry,1991,30(29):7105-7111.
    [36]K. Ashizawa, T. Fukuda, S. Y. Cheng. Transcriptional stimulation by thyroid-hormone of a cytosolic thyroid-hormone binding-protein which is homologous to a subunit of pyruvate kinase-ml [J]. Biochemistry,1992,31(10): 2774-2778.
    [37]D. K. Stammers, H. Muirhead.3-dimensional structure of cat muscle pyruvate-kinase at 6 a resolution [J]. Journal of Molecular Biology,1975,95(2): 213-225.
    [38]D. I. Stuart, M. Levine, H. Muirhead, D. K. Stammers. Crystal-structure of cat muscle pyruvate-kinase at a resolution of 2.6 a [J]. Journal of Molecular Biology, 1979,134(1):109-142.
    [39]T. M. Larsen, L. T. Laughlin, H. M. Holden, I. Rayment, G. H. Reed. Structure of rabbit muscle pyruvate-kinase complexed with Mn2+, K+, and pyruvate [J]. Biochemistry,1994,33(20):6301-6309.
    [40]M. S. Jurica, A. Mesecar, P. J. Heath, W. X. Shi, T. Nowak, B. L. Stoddard. The allosteric regulation of pyruvate kinase by fructose-1,6-bisphosphate [J]. Structure, 1998,6(2):195-210.
    [41]A. D. Mesecar, T. Nowak. Metal-ion-mediated allosteric triggering of yeast pyruvate kinase.1. A multidimensional kinetic linked function analysis [J]. Biochemistry,1997,36(22):6792-6802.
    [42]E. Ponce, N. Flores, A. Martinez, F. Valle, F. Bolivar. Cloning of the 2 pyruvate-kinase isoenzyme structural genes from escherichia-coli-the relative roles of these enzymes in pyruvate biosynthesis [J]. Journal of Bacteriology,1995,177(19): 5719-5722.
    [43]E. B. Waygood, J. S. Mort, B. D. Sanwal. Control of pyruvate-kinase of escherichia-coli-binding of substrate and allosteric effectors to enzyme activated by fructose 1,6-bisphosphate [J]. Biochemistry,1976,15(2):277-282.
    [44]C. Garciaolalla, A. Garridopertierra. Purification and kinetic-properties of pyruvate-kinase isoenzymes of salmonella-typhimurium [J]. Biochemical Journal, 1987,241(2):573-581.
    [45]M. Malcovati, G. Valentini. Amp and fructose 1,6-bisphosphate-activated pyruvate kinases from escherichia-coli [J]. Methods in Enzymology,1982,90(2): 170-179.
    [46]T. Noguchi, H. Inoue, T. Tanaka. The ml-type and m2-type isozymes of rat pyruvate-kinase are produced from the same gene by alternative rna splicing [J]. Journal of Biological Chemistry,1986,261(29):3807-3812.
    [47]E. Vanschaftingen, F. R. Opperdoes, H. G. Hers. Stimulation of trypanosoma-brucei pyruvate-kinase by fructose 2,6-bisphosphate [J]. European Journal of Biochemistry,1985,153(2):403-406.
    [48]G. Valentin, L. Chiarelli, R. Fortin, M. L. Speranza, A. Galizzi, A. Mattevi. The allosteric regulation of pyruvate kinase-a site-directed mutagenesis study [J]. Journal of Biological Chemistry,2000,275(24):18145-18152.
    [49]F. E. Podesta, W. C. Plaxton. Plant cytosolic pyruvate-kinase-a kinetic-study [J]. Biochimica Et Biophysica Acta,1992,1160(2):213-220.
    [50]M. J. Kobr, H. Beevers. Gluconeogenesis in castor bean endosperm.1. Changes in glycolytic intermediates [J]. Plant Physiology,1971,47(1):48-52.
    [51]Z. Y. Hu, W. C. Plaxton. Purification and characterization of cytosolic pyruvate kinase from leaves of the castor oil plant [J]. Archives of Biochemistry and Biophysics,1996,333(1):298-307.
    [52]M. Lin, D. H. Turpin, W. C. Plaxton. Pyruvate-kinase isozymes from the green-alga, selenastrum-minutum.2. Kinetic and regulatory properties [J]. Archives of Biochemistry and Biophysics,1989,269(1):228-238.
    [53]S. Blakeley, S. Gottlobmchugh, J. X. Wan, L. Crews, B. Miki, K. Ko, D. T. Dennis. Molecular characterization of plastid pyruvate-kinase from castor and tobacco [J]. Plant Molecular Biology,1995,27(1):79-89.
    [54]K. Yamada, T. Noguchi. Nutrient and hormonal regulation of pyruvate kinase gene expression [J]. Biochemical Journal,1999,337(2):1-11.
    [55]S. Vaulont, A. Munnich, J. F. Decaux, A. Kahn. Transcriptional and posttranscriptional regulation of 1-type pyruvate-kinase gene-expression in rat-liver [J]. Journal of Biological Chemistry,1986,261(17):7621-7625.
    [56]A. Kahn. Transcriptional regulation by glucose in the liver [J]. Biochimie,1997, 79(2-3):113-118.
    [57]S. Marie, M. J. Diazguerra, L. Miquerol, A. Kahn, P. B. Iynedjian. The pyruvate-kinase gene as a model for studies of glucose-dependent regulation of gene-expression in the endocrine pancreatic beta-cell type [J]. Journal of Biological Chemistry,1993,268(32):23881-23890.
    [58]H. J. Kennedy, B. Viollet, I. Rafiq, A. Kahn, G. A. Rutter. Upstream stimulatory factor-2 (usf2) activity is required for glucose stimulation of 1-pyruvate kinase promoter activity in single living islet beta-cells [J]. Journal of Biological Chemistry, 1997,272(33):20636-20640.
    [59]M. J. Pagliassotti, K. A. Shahrokhi, M. Moscarello. Involvement of liver and skeletal-muscle in sucrose-induced insulin-resistance-dose-response studies [J]. American Journal of Physiology,1994,266(5):R1637-R1644.
    [60]S. P. J. Brooks, B. J. Lampi. Time course of enzyme changes after a switch from a high-fat to a low-fat diet [J]. Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology,1997,118(2):359-365.
    [61]M. E. Bizeau, C. Short, J. S. Thresher, S. R. Commerford, W. T. Willis, M. J. Pagliassotti. Increased pyruvate flux capacities account for diet-induced increases in gluconeogenesis in vitro [J]. American Journal of Physiology-Regulatory Integrative and Comparative Physiology,2001,281(2):R427-R433.
    [62]T. Kawaguchi, K. Osatomi, H. Yamashita, T. Kabashima, K. Uyeda. Mechanism for fatty acid "sparing" effect on glucose-induced transcription-regulation of carbohydrate-responsive element-binding protein by amp-activated protein kinase [J]. Journal of Biological Chemistry,2002,277(6):3829-3835.
    [63]M. E. Munoz, E. Ponce. Pyruvate kinase:Current status of regulatory and functional properties [J]. Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology,2003,135(2):197-218.
    [64]A. D. Mesecar, T. Nowak. Metal-ion-mediated allosteric triggering of yeast pyruvate kinase.2. A multidimensional thermodynamic linked function analysis [J]. Biochemistry,1997,36(22):6803-6813.
    [65]M. S. M. Jetten, M. E. Gubler, S. H. Lee, A. J. Sinskey. Structural and functional-analysis of pyruvate-kinase from corynebacterium-glutamicum [J]. Applied and Environmental Microbiology,1994,60(7):2501-2507.
    [66]R. Kapoor, T. A. Venkitasubramanian. Purification and properties of pyruvate-kinase from mycobacterium-smegmatis [J]. Archives of Biochemistry and Biophysics,1983,225(1):320-330.
    [67]E. B. Waygood, M. K. Rayman, B. D. Sanwal. Control of pyruvate kinases of escherichia-coli.2. Effectors and regulatory properties of enzyme activated by ribose 5-phosphate [J]. Canadian Journal of Biochemistry,1975,53(4):444-454.
    [68]V. L. Knowles, C. S. Smith, C. R. Smith, W. C. Plaxton. Structural and regulatory properties of pyruvate kinase from the cyanobacterium synechococcus pcc 6301 [J]. Journal of Biological Chemistry,2001,276(24):20966-20972.
    [69]L. T. Laughlin, G. H. Reed. The monovalent cation requirement of rabbit muscle pyruvate kinase is eliminated by substitution of lysine for glutamate 117 [J]. Archives of Biochemistry and Biophysics,1997,348(2):262-267.
    [70]R. L. Burke, P. Tekampolson, R. Najarian. The isolation, characterization, and sequence of the pyruvate-kinase gene of saccharomyces-cerevisiae [J]. Journal of Biological Chemistry,1983,258(4):2193-2201.
    [71]Y. C. Lone, M. P. Simon, A. Kahn, J. Marie. Complete nucleotide and deduced amino-acid-sequences of rat 1-type pyruvate-kinase [J]. Febs Letters,1986,195(1-2): 97-100.
    [72]M. Imarai, P. Hinrichsen, S. Bazaes, M. Wilkens, J. Eyzaguirre. Yeast pyruvate-kinase-essential lysine residues in the active-site [J]. International Journal of Biochemistry,1988,20(9):1001-1008.
    [73]P. F. Gomez, L. O. Ingram. Cloning, sequencing and characterization of the alkaline-phosphatase gene (phod) from zymomonas-mobilis [J]. Fems Microbiology Letters,1995,125(2-3):237-245.
    [74]R. Williams, T. Holyoak, G. McDonald, C. Gui, A. W. Fenton. Differentiating a ligand's chemical requirements for allosteric interactions from those for protein binding. Phenylalanine inhibition of pyruvate kinase [J]. Biochemistry,2006,45(17): 5421-5429.
    [75]J. F. Kachmar, P. D. Boyer. Kinetic analysis of enzyme reactions.2. The potassium activation and calcium inhibitionof pyruvic phosphoferase [J]. Journal of Biological Chemistry,1953,200(2):669-682.
    [76]C. H. Suelter, Singleto.R, F. J. Kayne, Arringto.S, J. Glass, A. S. Mildvan. Studies on interaction of substrate and monovalent and divalent cations with pyruvate kinase [J]. Biochemistry,1966,5(1):131-139.
    [77]G. H. Reed, M. Cohn. Electron-paramagnetic resonance studies of manganese(ii)-pyruvate kinase-substrate complexes [J]. Journal of Biological Chemistry,1973,248(18):6436-6442.
    [78]T. Nowak, A. S. Mildvan. Nuclear magnetic-resonance studies of selectively hindered internal motion of substrate analogs at active-site of pyruvate-kinase [J]. Biochemistry,1972,11(15):2819-2828.
    [79]F. J. Kayne, J. Reuben. Thallium-205 nuclear magnetic resonance as a probe for studying metal ion binding to biological macromolecules. Estimate of distance between monovalent and divalent activators of pyruvate kinase [J]. Journal of the American Chemical Society,1970,92(1):220-222.
    [80]J. Reuben, F. J. Kayne. Thallium-205 nuclear magnetic resonance study of pyruvate kinase and its substrates-evidence for a substrate-induced conformational change [J]. Journal of Biological Chemistry,1971,246(20):6227-6234.
    [81]C. H. Suelter. Enzymes activated by monovalent cations [J]. Science,1970, 168(3933):789-795.
    [82]A. M. Reynard, P. D. Boyer, D. D. Jacobsen, L. F. Hass. Correlation of reaction kinetics and substrate binding with mechanism of pyruvate kinase [J]. Journal of Biological Chemistry,1961,236(8):2277-2283.
    [83]K. Hayashi, T. Imoto, M. Funatsu. Enzyme-substrate complex in a muramidase catalyzed reaction.1. Difference spectrum of complex [J]. Journal of Biochemistry, 1963,54(5):381-385.
    [84]F. J. Kayne, C. H. Suelter. Effects of temperature substrate and activating cations on conformations of pyruvate kinase in aqueous solutions [J]. Journal of the American Chemical Society,1965,87(4):897-900.
    [85]M. Cohn. Magnetic resonance studies of metal activation of enzymic reactions of nucleotides and other phosphate substrates [J]. Biochemistry,1963,2(4):623-628.
    [86]Carminat.H, L. J. Deasua, Leiderma.B, Rozengur.E. Allosteric properties of skeletal muscle pyruvate kinase [J]. Journal of Biological Chemistry,1971,246(23): 7284-7288.
    [87]R. W. Oberfelder, L. L. Y. Lee, J. C. Lee. Thermodynamic linkages in rabbit muscle pyruvate-kinase-kinetic, equilibrium, and structural studies [J]. Biochemistry, 1984,23(17):3813-3821.
    [88]R. W. Oberfelder, B. G. Barisas, J. C. Lee. Thermodynamic linkages in rabbit muscle pyruvate-kinase-analysis of experimental-data by a 2-state model [J]. Biochemistry,1984,23(17):3822-3826.
    [89]E. Heyduk, T. Heyduk, J. C. Lee. Global conformational-changes in allosteric proteins-a study of escherichia-coli camp receptor protein and muscle pyruvate-kinase [J]. Journal of Biological Chemistry,1992,267(5):3200-3204.
    [90]T. G. Consler, E. C. Uberbacher, G. J. Bunick, M. N. Liebman, J. C. Lee. Domain interaction in rabbit muscle pyruvate-kinase.2. Small-angle neutron-scattering and computer-simulation [J]. Journal of Biological Chemistry,1988,263(6):2794-2801.
    [91]W. Doster, B. Hess. Reversible solvent denaturation of rabbit muscle pyruvate-kinase [J]. Biochemistry,1981,20(4):772-780.
    [92]W. A. Frazier, Hogueang.Ra, R. Sherman, R. A. Bradshaw. Topography of mouse 2.5s nerve growth-factor-reactivity of tyrosine and tryptophan [J]. Biochemistry, 1973,12(17):3281-3293.
    [93]Y. Hachimori, K. Kurihara, K. Shibata, H. Horinishi. States of amino acid residues in proteins.V. Different reactivities with h2o2 of tryptophan residues in lysozyme proteinases+zymogens [J]. Biochimica Et Biophysica Acta,1964,93(2): 346-348.
    [94]S. S. Lehrer. Solute perturbation of protein fluorescence-quenching of tryptophyl fluorescence of model compounds and of lysozyme by iodide ion [J]. Biochemistry,1971,10(17):3254-3258.
    [95]J. R. Lakowicz, G. Weber. Quenching of protein fluorescence by oxygen detection of structural fluctuations in proteins on nanosecond time scale [J]. Biochemistry,1973,12(21):4171-4179.
    [96]M. R. Eftink, C. A. Ghiron. Exposure of tryptophanyl residues in proteins quantitative-determination by fluorescence quenching studies [J]. Biochemistry,1976, 15(3):672-680.
    [97]L. M. Hinman, C. R. Coan, Deranlea.Da. Solution topography of proteins by charge-transfer-model complexes, ribonuclease, and lysozyme [J]. Journal of the American Chemical Society,1974,96(22):7067-7073.
    [98]M. J. Kronman, F. M. Robbins, Andreott.Re. Reaction of n-bromosuccinimide with lysozyme [J]. Biochimica Et Biophysica Acta,1967,147(3):462-468.
    [1]T. M. Larsen, M. M. Benning, G. E. Wesenberg, I. Rayment, G. H. Reed. Ligand-induced domain movement in pyruvate kinase:Structure of the enzyme from rabbit muscle with Mg2+, K+, and 1-phospholactate at 2.7 angstrom resolution [J]. Archives of Biochemistry and Biophysics,1997,345(2):199-206.
    [2]H. Muirhead, D. A. Clayden, D. Barford, C. G. Lorimer, L. A. Fothergillgilmore, E. Schiltz, W. Schmitt. The structure of cat muscle pyruvate-kinase [J]. Embo Journal, 1986,5(3):475-481.
    [3]T. M. Larsen, L. T. Laughlin, H. M. Holden, I. Rayment, G. H. Reed. Structure of rabbit muscle pyruvate-kinase complexed with Mn2+, K+, and pyruvate [J]. Biochemistry,1994,33(20):6301-6309.
    [4]T. G. Consler, J. C. Lee. Domain interaction in rabbit muscle pyruvate-kinase.1. Effects of ligands on protein denaturation induced by guanidine-hydrochloride [J]. Journal of Biological Chemistry,1988,263(6):2787-2793.
    [5]J. Oria-Hernandez, N. Cabrera, R. Perez-Montfort, L. Ramirez-Silva. Pyruvate kinase revisited-the activating effect of K+[J]. Journal of Biological Chemistry,2005, 280(45):37924-37929.
    [6]C. Y. Kwan, R. C. Davis. Ph-dependent amino-acid induced conformational-changes of rabbit muscle pyruvate-kinase [J]. Canadian Journal of Biochemistry,1980,58(3):188-193.
    [7]C. H. Suelter, Singleto.R, F. J. Kayne, Arringto.S, J. Glass, A. S. Mildvan. Studies on interaction of substrate and monovalent and divalent cations with pyruvate kinase [J]. Biochemistry,1966,5(1):131-139.
    [8]A. S. Mildvan, M. Cohn. Kinetic and magnetic resonance studies of pyruvate kinase reaction.I. Divalent metal complexes of pyruvate kinase [J]. Journal of Biological Chemistry,1965,240(1):238-246.
    [9]A. S. Mildvan, M. Cohn. Kinetic and magnetic resonance studies of pyruvate kinase reaction.2. Complexes of enzyme metal and substrates [J]. Journal of Biological Chemistry,1966,241(5):1178-1193.
    [10]G. J. Sorger, R. E. Ford, H. J. Evans. Effects of univalent cations on immunoelectrophoretic behavior of pyruvic kinase [J]. Proceedings of the National Academy of Sciences of the United States of America,1965,54(6):1614-1621.
    [11]F. J. Kayne, N. C. Price. Conformational-changes in allosteric inhibition of muscle pyruvate-kinase by phenylalanine [J]. Biochemistry,1972,11(23):4415-4420.
    [12]F. J. Kayne, C. H. Suelter. Effects of temperature substrate and activating cations on conformations of pyruvate kinase in aqueous solutions [J]. Journal of the American Chemical Society,1965,87(4):897-900.
    [13]Carminat.H, L. J. Deasua, Leiderma.B, Rozengur.E. Allosteric properties of skeletal muscle pyruvate kinase [J]. Journal of Biological Chemistry,1971,246(23): 7284-7288.
    [14]R. W. Oberfelder, L. L. Y. Lee, J. C. Lee. Thermodynamic linkages in rabbit muscle pyruvate-kinase-kinetic, equilibrium, and structural studies [J]. Biochemistry, 1984,23(17):3813-3821.
    [15]T. Bucher, G. Pfleiderer. Pyruvate kinase from muscle [J]. Methods in Enzymology,1955,1(2):435-440.
    [16]C. H. Suelter. Effects of temperature and activating cations on fluorescence of pyruvate kinase [J]. Biochemistry,1967,6(2):418-423.
    [17]R. Williams, T. Holyoak, G. McDonald, C. Gui, A. W. Fenton. Differentiating a ligand's chemical requirements for allosteric interactions from those for protein binding. Phenylalanine inhibition of pyruvate kinase [J]. Biochemistry,2006,45(17): 5421-5429.
    [18]S. N. Yu, L. L. Y. Lee, J. C. Lee. Effects of metabolites on the struc pyruvate tural dynamics of rabbit muscle kinase [J]. Biophysical Chemistry,2003,103(1):1-11.
    [19]W. Doster, B. Hess. Reversible solvent denaturation of rabbit muscle pyruvate-kinase [J]. Biochemistry,1981,20(4):772-780.
    [1]J. F. Kachmar, P. D. Boyer. Kinetic analysis of enzyme reactions.2. The potassium activation and calcium inhibitionof pyruvic phosphoferase [J]. Journal of Biological Chemistry,1953,200(2):669-682.
    [2]T. M. Larsen, L. T. Laughlin, H. M. Holden, I. Rayment, G. H. Reed. Structure of rabbit muscle pyruvate-kinase complexed with Mn2+, K+, and pyruvate [J]. Biochemistry,1994,33(20):6301-6309.
    [3]R. W. Oberfelder, L. L. Y. Lee, J. C. Lee. Thermodynamic linkages in rabbit muscle pyruvate-kinase-kinetic, equilibrium, and structural studies [J]. Biochemistry, 1984,23(17):3813-3821.
    [4]R. W. Oberfelder, B. G. Barisas, J. C. Lee. Thermodynamic linkages in rabbit muscle pyruvate-kinase-analysis of experimental-data by a 2-state model [J]. Biochemistry,1984,23(17):3822-3826.
    [5]T. G. A. Lonhienne, P. E. B. Reilly, D. J. Winzor. Further evidence for the reliance of catalysis by rabbit muscle pyruvate kinase upon isomerization of the ternary complex between enzyme and products [J]. Biophysical Chemistry,2003,104(1): 189-198.
    [1]P. G. Hogan, L. Chen, J. Nardone, A. Rao. Transcriptional regulation by calcium, calcineurin, and nfat [J]. Genes & Development,2003,17(18):2205-2232.
    [2]P. T. Cohen, M. X. Chen, C. G. Armstrong. Novel protein phosphatases that may participate in cell signaling [J]. Adv Pharmacol,1996,36 (36):67-89.
    [3]C. B. Klee, H. Ren, X. T. Wang. Regulation of the calmodulin-stimulated protein phosphatase, calcineurin [J]. Journal of Biological Chemistry,1998,273(22): 13367-13370.
    [4]V. Janssens, J. Goris. Protein phosphatase 2a:A highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling [J]. Biochemical Journal,2001,353(2):417-439.
    [5]A. Rao, C. Luo, P. G. Hogan. Transcription factors of the nfat family:Regulation and function [J]. Annual Review of Immunology,1997,15(3):707-747.
    [6]X. Lin, R. A. Sikkink, F. Rusnak, D. L. Barber. Inhibition of calcineurin phosphatase activity by a calcineurin b homologous protein [J]. Journal of Biological Chemistry,1999,274(51):36125-36131.
    [7]F. Rusnak, P. Mertz. Calcineurin:Form and function [J]. Physiological Reviews, 2000,80(4):1483-1521.
    [8]H. M. Li, L. Zhang, A. Rao, S. C. Harrison, P. G. Hogan. Structure of calcineurin in complex with pvivit peptide:Portrait of a low-affinity signalling interaction [J]. Journal of Molecular Biology,2007,369(5):1296-1306.
    [9]J. P. Griffith, J. L. Kim, E. E. Kim, M. D. Sintchak, J. A. Thomson, M. J. Fitzgibbon, M. A. Fleming, P. R. Caron, K. Hsiao, M. A. Navia. X-ray structure of calcineurin inhibited by the immunophilin immunosuppressant FKBP12-FK506 complex [J]. Cell,1995,82(3):507-522.
    [10]C. R. Kissinger, H. E. Parge, D. R. Knighton, C. T. Lewis, L. A. Pelletier, A. Tempczyk, V. J. Kalish, K. D. Tucker, R. E. Showalter, E. W. Moomaw, L. N. Gastinel, N. Habuka, X. H. Chen, F. Maldonado, J. E. Barker, R. Bacquet, J. E. Villafranca. Crystal-structures of human calcineurin and the human FKBP12-FK506-calcineurin complex [J]. Nature,1995,378(6557):641-644.
    [11]K. Takeuchi, M. H. A. Roehrl, Z. Y. J. Sun, G. Wagner. Structure of the calcineurin-nfat complex:Defining a t cell activation switch using solution nmr and crystal coordinates [J]. Structure,2007,15(5):587-597.
    [12]H. C. Li. Activation of brain calcineurin phosphatase towards nonprotein phosphoesters by Ca2+, calmodulin, and Mg2+[J]. Journal of Biological Chemistry, 1984,259(14):8801-8807.
    [13]C. Yu, L. Yan, Q. Wei. Research proceeding of calcineurin [J]. Chinese Bulletin of Life Sciences,2000,12(2):89-92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700