吹脱—生化组合工艺处理尿素废水的技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国农业的迅速发展以及化肥工业的兴起,化肥工业尿素废水的排放量急剧增加,由此带来的一系列环境问题突显出来,已引起环保领域和全球范围的广泛重视。
     通过筛选、比较,选择合适的工艺处理尿素废水,使尿素废水中的污染物成分含量降到最低,实现达标排放。该工艺由物理处理单元和生物处理单元两部分组成。物理处理单元选择吹脱技术,可去除尿素废水中大部分的NH3-N,降低生物处理的负荷。生物处理单元采用好氧-缺氧-好氧工艺对废水进一步处理,将NH_3-N的含量降到最低。
     通过小试的正交试验,分别得出竖向管束填料和球状填料脱氨塔的最佳工艺参数,均为pH值为11.0、气液比为3500∶1、温度为30℃。在最佳条件下,比较了2种填料对吹脱效率的影响。结果表明,竖向管束填料脱氨塔的NH3-N去除率比球状填料脱氨塔的NH_3-N去除率高出约15%,可达90%左右。然后根据小试的最佳工艺参数进行工程调试,综合考虑去除率和经济运行成本,生产运行脱氨塔的最佳工艺参数为pH值为10.5、气液比为3500∶1、温度为废水温度。运行稳定后废水的NH_3-N平均含量由243mg/L降为85mg/L,其吹脱效率可达到65%左右。
     采用脱氨塔去除尿素废水中的NH_3-N时,脱氨塔产生的废气中NH_3的浓度为37.5mg/m~3、排放量为4.50kg/h,满足恶臭排放标准要求。通过对NH3扩散浓度预测,结果认为,本装置产生的NH_3无论是厂界浓度值还是居住区浓度值均满足相应的标准要求。
     通过对脱氨塔除氮机理的分析,认为竖向管束脱氨塔内为液滴传质,传质的效率高;管束内存在强烈的湍流剪切,可以实现水流的高分散状态,并为实现高传质的工况提供必要条件;而且在竖向管束的气流中充满着高强度的微涡旋,形成了强烈湍动的流态可加速水中的NH_3向空气中的迁移,大幅度增加了传质速率。
     将脱氨塔出水用好氧-缺氧-好氧工艺进一步进行生物处理,最终出水的NH3-N和COD含量平均为17.9mg/L和63.8mg/L,平均再去除率分别为72.3%和57.6%。
     用尿素废水对“吹脱+好氧-缺氧-好氧生物处理”工艺进行性能测试,数据显示除出水中的氰化物未达到设计要求之外,其它各项指标均达标。
With the rapid development of agriculture and fertilizer industry, quantity of urea wastewater rapidly increased in our country. Environmental problems that brings attached more attention in the field of environmental protection even all the world.
     The suitable process treating urea wastewater was confirmed by comparing many ones. Pollutants were removed most efficiently and the effluent can be drained under the standard. The process is consists of physical unit and biological unit.NH_3-N in urea wastewater mostly was removed by air stripping as the physical unit and reduced the load of the biological unit. The wastewater was treated further by aerobic-anoxic-aerobic biological process as the biological unit and the content ofNH_3-N was reduced the most lowness.
     By the orthogonal experiments the optimum parameters of removingNH_3-N in pipe packed stripper and ball packed stripper are obtained that the value of pH, air-liquid ratio and temperature is 11.0, 3500, and 30℃respectively. The influence of the two different fillers to the removal rate is compared under the optimum conditions. The result shows that the removal rate ofNH_3-N in pipe packed stripper is 90%, higher than in ball packed stripper by about 15%. Based on the results we have carried out further study in plant plant. The optimum parameters in plant plant are obtained that the value of pH, air-liquid ratio and temperature is 10.5, 3500, and the same as wastewater respectively. The content ofNH_3-N was reduced from 243mg/L to 85mg/L by air stripping and the removal rate can reach about 65%.
     TheNH_3 concentration of off gas from ammonia stripper is 37.5mg/m3 and the emmission is 4.50kg/h under emission standards for odor pollutants. The results indicate that the concentration of plant boundary or habitation can meet the standard respectively.
     It was found that the high mass-transfer efficiency was due to drop mass transfer through mechanism analysis of the removal ofNH_3 in pipe packed stripper. The strong turbulent shear can bring high dispersion of wastewater current in the pipes and make it possible to transfer efficiently. The strong
引文
1 全武刚, 王继徽, 刘大鹏. 浓度氨氮废水的处理现状与发展. 工业水处理. 2002, 22(9): 9~12
    2 胡孙林, 钟理. 氨氮废水处理技术. 现代化工. 2001, 6(6): 47~52
    3 宁平, 曾凡勇, 胡学伟. 中高浓度氨氮废水综合处理. 有色金属. 2003, 55(增刊): 130~133
    4 邓斌. 利用烟道气处理焦化剩余氨水技术. 环境工程. 2000, 18(3): 17
    5 吴方同, 苏秋霞, 孟了等. 吹脱法去除城市垃圾填埋场渗滤液中的氨氮. 给水排水. 2001, 27(6): 20~24
    6 倪佩兰, 郑学娟, 徐月恩等. 垃圾填埋渗滤液氨氮的吹脱处理工艺技术研究. 环境卫生工程. 2001, 9(3): 133~135
    7 王有乐, 翟钧, 谢刚. 超声波吹脱技术处理高浓度氨氮废水试验研究. 环境污染治理技术与设备. 2001, 2(2): 67~63
    8 陈光明. 超重力技术吹脱焦化氨氮废水的试验研究. 煤化工. 2005, 5: 46~48
    9 孙长顺, 金奇庭, 金炎龙. 吹脱法去除铜氨络合废水中氨氮的试验研究. 给水排水. 2006, 32(1): 60~62
    10 C. Magda, J. Zagorc-Koncan, A. Zgajnar-Gotvajn. The Relationship between Composition and Toxicity of Tannery Wastewater. Water Science and Technology. 2004, 49(1): 39~46
    11 H. M. Janus, H. F. Van der Roest. Don’t Reject the Idea of Treating Reject Water. Water Science and Technology. 1997, 35(10): 27~34
    12 I. Kabdasli, S. Yilmaz, O. Arikan. Ammonia Removal from Young Land.ll Leachate by Magnesium Ammonium Phosphate Precipitation and Air Stripping. Water Science and Technology. 2000, 41(1): 237~240
    13 G. Gonza lez Benito, M. T. Garc a Cubero. Ammonia Elimination from Beet Sugar Factory Condensate Streams by a Stripping Absorption System. Zuckerindustrie. 1996, 121: 721~726
    14 August Bonmat, Xavier Flotats. Air Stripping of Ammonia from Pig Slurry: Characterisation and Feasibility as a Pre- or Post-treatment to Mesophilic Anaerobic Digestion. Waste Management. 2003, 23: 261~272
    15 M. Amblard, R. Burch. Southward a Study of the Mechanism of Selective Conversion of Ammonia to Nitrogen on NilA1203 under Strongly Oxidizing Conditions. Catalysis Today. 2000, 59: 365~371
    16 A. C. M. van den Broek, J. van Grondelle, R. A. van Santen. Determination of Surface Coverage of Catalysts: Temperature Programmed Experiments on Platinum and Iridium Sponge Catalysts after Low Temperature Ammonia Oxidation. Journal of Catalysts. 1999, 185: 297~306
    17 Tung-Li Huang, M. Jordan, R. Keith Ciiffe. Nitrogen Removal from Wastewater by a Catalytic Oxidation Method. Wat. Res. 2001, 35: 2113~2120
    18 Koyuncul, D. Topacck, M. Turan, et al. Application of the Membrane Technology to Control Ammonia in Surface Water. Water Science and Technology in Water Supply. 2001, 1(1): 117~124
    19 袁维芳, 王国生, 汤克敏. 反渗透法处理城市垃圾填埋场渗滤液.水处理技术. 1997, 12(6): 25
    20 潘旗, 陆晓华. 电渗析法处理氯化铵废水的研究. 湖北化工. 2002, 18(6): 15~16
    21 In-Soung Chang, Chang-Mo Chung. Pollution Prevention for Manufacturing of Ammonium Chloride an Experimental Study of Wastewater Recycling. Desalination. 2000, 127: 145~153
    22 N. A. Booker, E. L. Cooney, A. J. Prlestley. Ammonia Removal from Sewage Using Natural Australian Zeolite. Water Science and Technology. 1996, 34(9): 17~24
    23 O. Lahav Regenerated, M. Green. Aonus Removal from Primary and Secondary Effluents Using Able Regenerated Ion-exchange Process. Water Science and Technology. 2000, 142(1&2): 179~185
    24 L. Kuai, W. Verstraete. Autotrophic Denitrification with Elemental Sulphur in Small-scale Wastewater Treatment Facilities. Environ. Tech.. 1999, 20: 201~209
    25 E. V. Munch. Simultaneous Nitrification and Denitrification in Bench-scale Sequencing Batch Reactors. Water Res.. 1996, 30: 277~284
    26 陈凤冈, 李伟光, 潘桂民等. 缺氧-好氧生物膜法脱氮技术的研究. 中国环境科学. 1999, 15(2): 135~138
    27 杨晓奕, 师绍填, 蒋展鹏等. 混凝两相厌氧-缺氧-好氧工艺处理睛纶废水的研究. 给水排水. 2001, 27(6): 40~45
    28 Zhang Min. Cone Plant Wastewater Treatment by Fixed Biofllm System for COD and NH4+-N Removal. Water Science and Technology. 1998, 32(2): 519~527
    29 陆大友. 清镇朱家河污水处理厂工艺设计. 贵州工业大学学报. 2002, 31(1): 98~101
    30 李峰, 吕锡武. 序批式反应器(SBR)处理氨氮废水的初步研究. 江苏环境科技. 1999, 35(2): 14~17
    31 孙剑辉, 魏瑞霞. 缺氧/好氧(SBR)工艺去除亚铰法造纸废水中的氮. 环境科学. 2001, 43(4): 117~119
    32 Z. Boran, Y. Kazuo. Seasonal Change of Microbial Population and Activities in a Building Wastewater Reuse System Using a Membrane Separation Activated Dude Process. Water Science and Technology. 1996, 34: 295~306
    33 曹国民, 赵庆祥, 龚剑丽等. 新型固定化细胞膜反应器脱氮研究. 环境科学学报. 2001, 28(2): 189~193
    34 彭超英, 朱国洪, 尹国等. 人工湿地处理污水的研究. 重庆环境科学. 2000, 33(6): 43~45
    35 W. A. Van Benthum. Nitrogen Removal Using Nitrifying Biofilm Growth and Denitrifying Suspended Growth in a Biofilm Airlift Suspension Reactor Coupled with a Chemostat. Water Res.. 1998, 32(7): 2009~2018
    36 M. S. Jetten. Towards a More Sustainable Municipal Wastewater Treatment System. Water Science and Technology. 1997, 35(9): 171~180
    37 G. Bertanza. Simultaneous Nitrification-denitrification Process in Extended Aeration Plants: Pilot and Real Scale Experiences. Water Science and Technology. 1997, 35(6): 53~61
    38 H. Yoo, K. H. Ahn. Nitrogen Removal from Synthetic Wastewater by Simultaneous Nitrification and Denitrification (SND) via Nitrate in an Intermittently-aerated Reactor. Water Res.. 1999, 33(1): 145~154
    39 H. W. Zhao, D. S. Mavinic. Controlling Factors for Simultaneous Nitrification and Denitrification in a Two-stage Intermittent Aeration Process Treating Domestic Sewage. Water Res.. 1999, 33(4): 961~970.
    40 高廷耀, 周增炎, 朱晓君. 生物脱氮工艺中的同步硝化反硝化现象. 给水排水. 1998, 24(12): 6~9
    41 孟怡, 徐亚同. 制药废水硝化-反硝化除氮研究. 化工环保. 1999, 19(4): 204~207
    42 C. Fux, M. Bochlcr, P. HuScr, et al. Biological Treatment of Ammonium-rich Wastewater by Partial Nitritation and Subsequent Anaerobic Ammonium Oxidation in a Pilot Plant. Bio-technol. 2002, 99: 295~306
    43 V. U. Dongcn, M. S. M. Jcttcn, M. C. M. Van Loosdrccht. The SHARON-ANAMMOX Process for Treatment of Ammonium Rich Wastewater. Water Science and Technology. 2001, 44(1): 153~160
    44 M. Straous. Ammonia Removal from Concentrated Waste Streams with the ANAMMOX Process in Different Reactor Configurations. Water Res.. 1997, 31: 1955~1962
    45 M. S. M. Jetten, M. Strous. The Anaerobic Oxidation of Ammonium. FEMS Microbiol. Rev.. 1999, 22: 421~437
    46 郑平, 冯孝善等. ANAMMOX 流化床反应器性能的研究. 环境科学学报. 1998, 18(4): 367~372
    47 王建龙. 生物脱氮新工艺及其技术原理. 中国给水排水. 2000, 16(2): 25~28
    48 胡勇有, 雒怀庆, 陈柱. 厌氧氨氧化菌的培养与驯化. 华南理工大学学报. 2002, 30(11): 160~163
    49 王鹏, 刘伟藻. 垃圾渗沥液中氨氮的电化学氧化. 中国环境科学. 2000, 20(4): 189~291
    50 杜鸿章, 房廉清, 江义等. 难降解高浓度有机废水催化湿式氧化净化技术.水处理技术. 1997, 23(2): 53~87
    51 Stratful. Conditions Influencing the Precipitation of Magnesium Ammonium Phosphate. Water Research. 2001, 35(17): 4191~4199
    52 国家环境保护总局. 水和废水监测分析方法(第四版). 北京: 中国环境出版社, 2002: 271~312
    53 Izzet Ozturk. Advanced Physico-chemical Treatment Experiences on Young Municipal Landfill Leachates. Waste Management. 2003, 23: 441~446
    54 K. C. Cheung, L. M. Chu, M. H. Wong. Ammonia Stripping as a Pretreatment for Landfill Leachate. Water Air and Soil Pollution. 1997, 94(1~2): 209~221
    55 宋新月, 郭庆丰, 费维扬. 高比表面积金属丝网波纹填料的实验研究. 化学工程. 2006, 34(3): 1~3
    56 兰昭洪. 金属丝网波纹填料及其在化工生产中的应用. 贵州化工. 2005, 30(1): 13~14
    57 P. Sandilya, D. P. Rao, A. Sharma. Gas Phase Mass Transfer in a Centrifugal Contactor. Ind. Eng. Chem. Rrs.. 2001, 40: 384~392
    58 S. K. Marttinen, R. H. Kettunen, K. M. Sormunen, et al. Screening of Physical-chemical Methods for Removal of Organic Material, Nitrogen and Toxicity from Low Strength Landfill Leachates. 2002, 46: 851~858
    59 陈金思, 谢丽. 影响混流脱氨吸收塔工艺参数实验分析. 工业用水与废水. 2005, 36(4): 42~43,67

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700