酪蛋白美拉德产物的制备、性质及在烟草中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
美拉德(Maillard)反应是烟草特征香味形成的重要反应之一,其产物是重要的香气前体物质,反应制备的美拉德产物在烟草燃烧时产生的香气也与烟香非常协调,因此美拉德反应已成为烟草业减害增香的一项关键技术;D-柠檬烯可以抑制烟草中致癌物质的毒性,但由于易氧化和易挥发,限制了其在烟草中应用的有效性,采用美拉德产物包埋可以提高保留率,在卷烟燃吸时释放降低烟气毒害,同时美拉德产物(MRPs)可以增强烟草香气,一定程度上解决了烟草减害增香的问题。
     本论文制备了酪蛋白-葡萄糖美拉德产物,研究了其组成、性质和在烟草中应用的效果,主要内容如下:
     分析了反应参数对产物主要性质(乳化性和抗氧化性)的影响,确定了加热温度、加热时间和起始pH是主要影响因素,采用响应面法优化了制备工艺,在酪蛋白与葡萄糖质量比为0.5,底物浓度20%(w/v),起始pH12.0,102℃下油浴回流加热130分钟时,得到的产物具有较高的抗氧化性和乳化能力;HPLC和SDS-PAGE分析表明:相对分子质量的分布从几万到几百万的组分在产物中占有较高比例,中等分子量组分较少,小分子产物占有一定比例。产物主要是大分子的蛋白黑素(melanoprotein)和蛋白质与糖或糖降解产物反应生成的物质;红外光谱表明大分子的美拉德产物是蛋白质与糖降解产物交联形成的,这些交联产物含有发色团,呈现明显的棕褐色。
     研究了美拉德产物的溶解性、流变性质、与风味物质的相互作用和抗氧化活性,美拉德反应能够提高酪蛋白的溶解性,使酪蛋白的等电点向低pH移动,反应得到的美拉德产物是一种典型的非牛顿型流体,存在剪切变稀性质;美拉德产物与大部分风味化合物存在相互作用,加入食品能够延缓风味的释放;
     氨基酸分析表明美拉德反应主要发生在蛋白质游离的赖氨酸和精氨酸侧链上。反应过程中游离氨基酸和挥发性风味物质的分析结果表明在加热过程中蛋白质会部分降解成氨基酸,生成的氨基酸与糖或糖降解产物反应生成挥发性物质和其他复杂产物,蛋白质能够促进糖降解成为糖片断,片断分子参与了挥发性物质的生成,产生了酸、酮、醛和酯等物质,氨类化合物的strecker降解生成了醛和吡嗪类物质。
     抗氧化结果表明MRPs具有较强的还原能力、金属离子螯合能力、抑制脂质氧化能力和清除自由基能力,在低浓度时具有量效关系。在美拉德产物中分子量大于50kDa的组分是主要MRPs;超滤组分的抗氧化结果表明:分子量大于50kDa的组分具有最强的还原能力和金属离子螯合能力,小分子的产物具有最好的清除DPPH自由基的能力,而抑制脂质氧化能力是通过清除自由基和螯合金属离子的协同作用,分子量5~10kDa和30~50kDa的组分具有较强的抑制脂质氧化能力。
     采用凝胶过滤色谱(Sephadex G-75)分离分子量大于50kDa的组分,得到了两个在220nm、280nm和420nm都有吸收的组分,分子量较大组分具有较强还原能力和金属离子螯合能力;红外光谱(FT-IR)结合酸水解单糖测定结果显示蛋白黑素主要为发色基团(糖降解产物)与蛋白质氨基基团共价结合的产物。蛋白黑素酶解产物仍然具有还原能力和清除自由基能力,胃蛋白酶酶解物比胰蛋白酶酶解物具有较高清除DPPH能力。采用SDS-PAGE和HPLC测定了分子量分布,结果表明蛋白黑素对胰蛋白酶水解有一定抗性。RP-HPLC和UPLC-MALDI-TOF-MS显示蛋白黑素和蛋白黑素酶解产物不能较好分离,产物是一系列的物质,发色团不是单一物质,结合裂解气相色谱-质谱(Pyrolysis-GC-MS)分析,发现蛋白黑素主要是酪蛋白与糖降解产物(如吡咯、呋喃和羰基化合物等)共价结合的产物,产物中存在苯环结构,热裂解生成苯酚和吲哚等苯衍生物。
     采用美拉德产物为壁材对D-柠檬烯进行了微胶囊化,将微胶囊水溶液添加到烟草中能够提高D-柠檬烯的保留率,裂解试验证明燃吸时能够释放进入烟气。D-柠檬烯微胶囊化能够提高稳定性,优化的工艺条件为:芯壁比0.125,壁材浓度20%(w/v),高速分散速度和时间分别为12000rpm和2min,均质压力和次数为45MPa和3次,干燥入口和出口温度分别为185℃和80℃;得到没有明显裂缝和空洞的球形微胶囊,干燥条件下存放具有较好稳定性。
     酪蛋白-葡萄糖MRPs裂解产物与酪蛋白-葡萄糖混合物裂解产物相比,杂环化合物增加了,生成了分子量相对较大的挥发性产物,其中多数产物是烟草香味物质,如呋喃酮具有果香,吲哚增加了烟草的白肋烟香气,邻苯二甲酸二异丁酯具有微香,能够增加烟草香气,苯甲醛具有苦杏仁的特殊香气,增强烟草自然香气,含氮杂环化合物能够增强烟草的烤香和焦甜香。美拉德产物在裂解过程中不仅裂解产生大量碱性香气物质,如吡嗪和吡啶类物质,而且还生成了许多的醇、醛、酮、酯和酸类成分,这些成分与烟草裂解成分相近,都是烟草烟气中的关键致香成分或烟草调香常用的香料。从添加MRPs的烟草热解化学成分来看,加入美拉德产物能够降低醛类物质、增加烟草的白肋烟香气、增强烟草的烤香和焦甜香、提高烟气浓度和烟气中含氮类物质,使烟气中游离烟碱浓度提高,增加烟气劲头,烟气更加丰满和协调,添加的D-柠檬烯能够释放进入卷烟烟气中,一方面缓和了烟气的刺激性,改善了余味,增加了香气,更为重要的是可以起到减害的功效。感官评析结果证明了这一结论,在烟草膨胀梗丝中添加酪蛋白-葡萄糖MRPs,可以明显提高烟草香气,提高膨胀梗丝的使用价值。
Maillard reaction is one of the most important reactions in forming the special aroma of tobacco. The Maillard reaction products (MRPs) are the important fragrant precursors and the prepared MRPs are harmonious to the odour of the cigarette when they are smoked, so Maillard reaction has been known as one critical technique to reduce the harm and enhance the aroma of the cigarettes. D-limonene can inhibit the toxicity of the substance in cigarette smoke, which can induce the cancer of the smoker, but D-limonene is easily to be oxidized and vaporized, and is confined to be used in tobacco. MRPs can enhance the aroma of the tobacco and stabilize the D-limonene when they are encapsulated and added into cigarette, and D-limonene can be released into the main stream smoke, while MRPs improve the flavor of the smoke during the combusting course of the tobacco. The problem of reducing harm and ameliorating aroma of cigarette can be settled to a certain extent.
     In this study, MRPs were prepared from casein-glucose, and the composition, properties and effect on tobacco were analyzed and researched. The main contens are as follows:
     Analyzing the effect of processing parameters on the main properties (emulsifying activity and antioxidant activity) of the MRPs, heating temperature, heating time and initial pH were regarded to be the main factors influcing the MRPs, and response surface methodology (RSM) was applied to optimize the processing parameters of casein-glucose Maillard reaction. Substrate concentration 20%, casein-glucose ratio 1:2, heating time 130min, temperature 102°C and initial pH 12.0 were optimum conditions under refluxing for the improved emulsifying ability and antioxidant activity of the MRPs. The analysis of reverse phase high-performance liquid chromatography (RP-HPLC) and sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS–PAGE) indicated that MRPs with molecular weight (MW) from ten thousand Dalton to several million Dalton were the main fraction, and the products with medium MW were the least and the fraction with low MW was medium. Casein was covalently attached to glucose and glucose degradation products (GDPs), which results in high MW MRPs (melanoproteins). Results obtained from the high MW fraction, analysed by Fourier transform infrared spectroscopy (FT-IR) indicated that the amide I, II and III bands of casein were changed by the Maillard reaction and high molecular weight conjugated proteins were generated from native casein and sugars and sugars degradation products and were casein and carbonyls cross-linking conjugates, which includes multiple chromophores and a markedly browning can be observed.
     Rheological properties and solubility, interaction with flavor and antioxidant activity of MRPs were analyzed, the results showed that Maillard reaction could improve the dissolution property of casein and decrease the isoelectric point of the protein to lower pH. The solution of MRPs was a typical non-Newton fluid at the protein concentration of 200g/l, and MRPs exhibited shear thinning behavior. MRPs interacted with most flavor substances and delayed the release of aroma.
     Amino acid percentage composition of MRPs showed that MR caused a significant loss in lysine and arginine compared to native casein. Analysis indicated that the free amino acids were generated during the partial hydrolysis of casein and took part in the formation of volatile compounds. Hydrocarbons, acids, esters, ketones and furans were the major products and were distinctly formed at the different stages of heating. Strecker aldehydes and their corresponding substituted pyrazines were also identified at low concentrations in Maillard reaction products (MRPs).
     The antioxidant results showed that MRPs own strong reducing power and metal chelating ability, inhibition of lipid oxidation and free radical scavenging ability, and indicated the dose-effect relationship at low concentrations. Ultrafiltration results showed that the fraction of molecular weight (MW) higher than 50kDa was major MRPs, and antioxidant results showd that the molecular weight higher than 50kDa component exhibited the strongest reducing power and metal chelating ability, but the product of small molecules possessed the best DPPH free radical scavenging ability. Inhibition of lipid oxidation is provided by synergy with scavenging free radicals and chelating metal ions. The fractions of MW 5-10kDa and 30-50kDa component possess strong inhibition of lipid oxidation.
     The components of molecular weight greater than 50kDa were separated by gel filtration chromatography (Sephadex G-75), and two components were got with absorbance at 220nm, 280nm and 420nm, and the higher molecular weight component had stronger reducing power and metal ion chelating ability. The analysis of infrared spectroscopy (FT-IR) combined with acid hydrolysis determining monosaccharide showed that covalent bonding between low molecular weight colourants and proteins might, therefore, be involved in melanoidin formation, i.e. upon crosslinking of the N-terminal amino acid or an e-amino function of a lysine residue with carbohydrate-derived intermediates. Melanoprotein hydrolysates still possessed reducing power and scavenging ability and peptic hydrolysates owned higher DPPH radical-scavenging activity than tryptic hydrolysates. The molecular weight distribution with SDS-PAGE and HPLC showed that the melanoprotein had a certain resistance to trypsin hydrolysis. Analysis of RP-HPLC and UPLC-MALDI-TOF-MS showed that melanoprotein and its enzymatic hydrolysis products could not be well separated, and the product is a series of components, meanwhile, chromophore is not a single material, and the results combined with pyrolysis-gas chromatography- mass spectrometry (Pyrolysis-GC-MS) analysis show that the black pigment is mainly casein and sugar degradation products (such as pyrrole, furan and carbonyl compounds, etc.) conjugated products, in which the the benzene ring structure exists, and the derivatives of phenol and benzene, indole, etc.are produced by thermal cracking.
     Maillard products were used as wall material to encapsulate the D-limonene, and the results show that D-limonene encapsulated with MRPs added to tobacco can improve the retention rate and release in burning smoke. On the other hand, the stability of D-limonene can be improved by microencapsulation with MRPs.The optimal wall material concentration and the core-wall ratio were 20% and 0.125, respectively. Other optimum conditions determined were mixing speed of 12,000rpm for 2 minutes, homogenizing pressure 45MPa, inlet and outlet temperature of 185°C and 80°C, respectively. Microcapsules produced by spray drying were stable and had spherical structure with about 90% of d-limonene encapsulation yield. Results showed that MRPs could be used as an encapsulant for the protection of volatile flavors.
     The heterocyclic compounds were more in pyrolysates of MRPs than that of casein-glucose mixture, and the pyrolysis of MRPs generated high molecular weight volatile products, the majority of these products are tobacco flavors, such as furanone with fruit, and indole increases the aroma of burley tobacco, while o-benzene dicarboxylate with sweety flavor, benzaldehyde with bitter almond special aroma, and all these products can enhance the natural aroma of tobacco, at the same time, nitrogen-containing heterocyclic compounds can improve the sweet toast flavor of tobacco. The decomposition of MRPs in the pyrolysis process not only produces a large number of basic aroma substances, such as pyrazine and pyridine-type substances, but also generates a lot of alcohol, aldehydes, ketones, esters and acids, the composition and ingredients of MRPs are similar to tobacco pyrolysates, and they are the key materials to tobacco smoke in the aroma components or tobacco spice commonly used in perfumery. From the point of chemical composition of tobacco pyrolysis a view, adding Maillard products to tobacco can reduce aldehydes and increase burley tobacco aroma, and enhance the sweet roasted flavor of tobacco, meantime, and increase the smoke concentration and components containing nitrogen, and the free nicotine concentration can be improved in smoke, increasing momentum of smoke, and the smoke is more plentiful and harmonious. D-limonene added with MRPs can be released into the cigarette smoke so that to ease the irritation and increase the aroma on one hand, more importantly, the role of harm reduction can be achieved. Sensory assessment results prove the above conclusion, and adding casein-glucose MRPs into the tobacco expansion stem can significantly improve the aroma of tobacco and increase the value of tobacco expanding stem.
引文
1. Jackson S P,Bartek J.The DNA-damage response in human biology and disease [J]. Nature, 2009, 461:22.
    2. Doll R,Peto R. The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today [J]. J. Natl Cancer Inst, 1981,66:1191–1308.
    3. Wogan G N,Hecht S S,Felton J S, et al. Environmental and chemical carcinogenesis [J]. Semin Cancer Biol,2004,14: 473–486.
    4. Deutsch M E. Less-Toxic Cigarette Use May Backfire [J]. Science, 2009,325:944.
    5. Denton T,Zhang X, Cashman J. 5-Substituted, 6-substituted, and unsubstituted
    3-heteroaromatic pyridine analogues of nicotine as selective inhibitors of cytochrome P-450 2A6 [J]. J Med Chem,2005,48:224-239.
    6. Green C R, Rodgman A. The tobacco chemists research conference: a half century forum for advances in analytical methodology of tobacco and its products [J]. Rec Adv Tob Sci, 1996,22:131–304.
    7. Baker R R, Proctor C. Where there is smoke [M]. In: Chemistry in Britain, London, Chemical Education Trust Fund for the Chemical Society and the Royal Institute of Chemistry Royal Society of Chemistry, January, 2001.38–41.
    8. Perfetti T A, Coleman W M, Smith W S. Determination of mainstream and sidestream cigarette smoke components for cigarettes of different tobacco types and a set of reference cigarettes [J]. Beitr Tabakforsch Int, 1998, 18:95–113.
    9. Senneca O, Ciaravolo S, Nunziata A. Composition of the gaseous products of pyrolysis of tobacco under inert and oxidative conditions [J]. J Anal Appl Pyrol, 2007,79:234–243.
    10. Wynder E L, Hoffmann D. Tobacco and tobacco smoke [J]. Seminars in oncology. 1976,3(1):5–15.
    11. Hecht S S. Tobacco Smoke Carcinogens and Lung Cancer. J Natl Canc Inst, 1999,91(14): 1194–1210.
    12. Byrd G D, Davis R A, Caldwell W S, et al. A further study of FTC yield and nicotine absorption in smokers [J]. Psychopharmacology,1998,139:291–299.
    13. Boyle P,Veronesi U, Tubiana M, et al.. European School of Oncology Advisory Report to the European Commission for the“Europe Against Cancer Programme”European Code Against Cancer [C]. Eur J Cancer, 1995,9:1395–1405.
    14. Hammond D, Collishaw N E, Callard C. Secret science: tobacco industry research on smoking behaviour and cigarette toxicity [J]. Lancet, 2006,367:781–787.
    15. Boyle P, Gray N, Henningfield J, et al. Tobacco and Public Health: Science and Policy [M]. Oxford University Press, 2004.
    16. Leffingwell J C. Leaf chemistry: basic chemical constituents of tobacco leaf and differences among tobacco types. In: Davis, D.L.,Nielsen, M.T. (Eds.), Tobacco: Production Chemistry and Technology [M].Blackwell Science, Oxford, 1999: 265–284.
    17. Britt P F, Buchanan A C, Owens C V, et al. Does glucose enhance the formation of nitrogen containing polycyclic aromatic compounds and polycyclic aromatic hydrocarbons in the pyrolysis of proline? [J]. Fuel, 2004,83:1417–1432.
    18.李元实,韩民杰,朱良华.梅拉德反应产物在白肋烟处理中的应用[J].烟草科技, 2001,(4):5–7.
    19.刘立全,王月霞.梅拉德反应在烟草增香中的应用研究进展[J].烟草科技,1994,(6):21–24.
    20. Henningfield J E, London E D, Pogun S. Nicotine Psychopharmacology (Handbook of Experimental Pharmacology) [M]. Springer-Verlag Berlin Heidelberg, 2009. 192.
    21. Rodgman A, Perfetti T A. The Composition of Cigarette Smoke: A Catalogue of the Polycyclic Aromatic Hydrocarbons [C]. Beitr?ge zur Tabakforschung International/Contributions to Tobacco Research, 2006,22(1):13–69.
    22.邢光明.右旋柠烯抗胃癌转移机制实验研究[D]:[博士学位论文].大连:大连医科大学, 2004.
    23.曲明阳.右旋柠烯抗乳腺癌转移机制的研究[D]:[博士学位论文].大连:大连医科大学,2005.
    24.贾书生.右旋柠烯抗癌作用及其分子机制[D]:[博士学位论文].哈尔滨:哈尔滨医科大学,2005.
    25.路晓光.右旋柠烯对人胃癌生长及转移抑制作用的实验研究[D]:[博士学位论文].大连:大连医科大学,2003.
    26. Nakaizumi A, Baba M, Uehara H, et al.d-Limonene inhibits N-nitrosobis (2-oxopropyl) amine induced hamster pancreatic carcinogenesis [J]. Cancer Lett, 1997,117(1):99–103.
    27. Toro-Arreola S D, Flores-Torales E, Torres-Lozano C, et al. Effect of d-limonene on immune response in BALB/c mice with lymphoma [J]. International Immunopharmacology, 2005,5: 829–838.
    28. Djordjevic M V, Fan J, Ferguson S, et al.Self-regulation of smoking intensity, smoke yields of low-nicotine, low "tar" cigarettes [J]. Carcinogenesis, 1995,16(9):2015–2021.
    29. Djordjevic M V, Stellman S D, Zang E. Doses of nicotine and lung carcinogens delivered to cigarette smokers [J]. J Natl Canc Inst,2000, 92(2):106–111.
    30.杨叶昆,李雪梅,唐自文,等.酪蛋白的酸水解及其棕色化反应产物在卷烟加香中的应用[J].烟草科技,2001,1:8–10.
    31.杨叶昆,李雪梅,周瑾,等.酪蛋白的酶促水解及其水解物的美拉德反应[J].食品科学,2003,24:104–107.
    32.张敦铁,殷发强,何佳文.三种Amadori化合物的热解研究[J].中国烟草学报,2006,12(2):13-16.
    33.肜霖.Maillard反应中间体降低卷烟自由基作用的研究[D]:[硕士学位论文].武汉:华中科技大学,2006.
    34. Maillard reaction. The Legacy Tobacco Documents Library. http://www.library.ucsf.edu/.
    35. Rustemeier K, Stabbert R, Haussman H J, et al. Evaluation of the potential effects of ingredients added to cigarettes. Part 2: Chemical composition of mainstream smoke [J]. Food Chem Toxicol, 2002,40:93–104.
    36. Parrish M E, Harward C N. Measurement of formaldehyde in a single puff of cigarette smokeusing tunable diode laser infrared spectroscopy [J]. Appl Spectrosc, 2000,54:1665–1677.
    37. Paschke T, Scherer G, Heller W D. Effects of ingredients on cigarette smoke composition and biological activity: a literature overview [J]. Beitr Tabak Int, 2002,20:107–247.
    38. Baker R R, Pereira da Silva J R, Smith G. The effect of tobacco ingredients on smoke chemistry. Part 1: Flavourings and additives [J]. Food Chem Toxicol, 2004a,42S:3–37.
    39. Baker R R, Pereira da Silva J R, Smith G. The effect of ingredients on smoke chemistry. Part II: Casing ingredients [J]. Food Chem Toxicol, 2004b,42S:39–52.
    40. Baker R R, Massey E D J R, Smith G. An overview of the effects of tobacco ingredients on smoke chemistry and toxicity [J]. Food Chem Toxicol, 2004c, 42S: 53–83.
    41. Baker R R, Coburn S, Liu C, et al. Pyrolysis of saccharide tobacco ingredients: a TGA–FTIR investigation [J]. J Anal Appl Pyrol, 2005,74:171–180.
    42. Torikaiu K, Uwano Y, Nakamori T, et al. Study on tobacco components involved in the pyrolytic generation of selected smoke constituents [J]. Food Chem Toxicol, 2005,43:559–568.
    43. Wu D L,.Swain J W. Philip Morris Inc. Cooked Flavors For Smoking Products[P].Int.CI3.A24b 15/30. U.S. Pat:4379464,1983–04–12.
    44.王月霞.高效液相色谱法定量测定卷烟主流烟气异丙醇萃取物中的酚类物质[J].世界烟草动态,1994,(4): 45.
    45. Imperial Chemical Industries Limited (London, EN) Tobacco composition [P]. United States Patent. 3847326.1974–11–12.
    46. Alaimo L H, Ho C T, Rosen J D. Effect of protein glycation on subsequent volatile formation [J]. J Agric Food Chem,1902,40:280–283.
    47. Mohaparta S C, Johnson W H. Microscopic studies of bright leaf tobacco: Part1 .Conventionally cured vs.freeze dried curing [J].Tob.Sci, 1972,16:1–5.
    48.师建全.低焦油卷烟设计[D]:[硕士学位论文].西安:西安交通大学,2002.
    49. Martins S I F S, Jongen W M F, van Boekel M A. Review of Maillard Reaction in Food and Implications to Kinetic Modelling [J]. Trends Food Sci Technol, 2000, 11:364–373.
    50. Mastrocola D, Munari M, Cioroi M, et al. Interaction Between Maillard Reaction Products and Lipid Oxidation in Starch-Based Model Systems [J]. J Sci Food Agric, 2000, 80: 684–690.
    51. Zhang Y, Zhang Y. Formation and Reduction of Acrylamide in Maillard Reaction: A Review Based on the Current State of Knowledge [J]. Crit Rev in Food Sci Nutri, 2007,47:521–542.
    52. Ledl F, Schleicher E. New aspects of the Maillard reaction in foods and in the human body [J]. Angew Chem Int Ed Engl, 1990,29:565–594.
    53. Anet E F J L, Reynolds T M. Reactions between amino acids,organic acids, and sugars in freeze-dried apricots and peaches [J]. Aust J Chem, 1957, 10:193–197.
    54. Vondenhof T, Glombitza K W, Steiner M. L?sliche Kohlenhydrate in Rohlakritzen (Succus Liquiritiae) [J]. Z. Lebensm. Unters.Forsch, 1973, 152:345–347.
    55. Van den Ouweland G A M, Peer H G, Tjan S B. Occurrence of Amadori and Heyns rearrangement products in processed foods and their role in flavor formation [M]. In: FlaVor of Foods and BeVerages; Charalambous, G., Inglett, G. E., Eds.; Academic Press: New York, 1978, 1:131–143.
    56. Wahl R. Aminozucker in Tabak [J]. Z Lebensm Unters Forsch,1972, 148:94–96.
    57. Krause R, Schlegel K, Schwarzer E, et al. Formation of Peptide-Bound Heyns Compounds [J]. J Agric Food Chem,2008, 56 (7):2522–2527.
    58. Mundt S, Wedzicha B L. Comparative Study of the Composition of Melanoidins from Glucose and Maltose [J]. J Agric Food Chem, 2004, 52:4256–4260.
    59. Smaniotto A, Bertazzo A, Comai S,et al. The role of peptides and proteins in melanoidin Formation [J]. J Mass Spectrom, 2009, 44:410–418.
    60. Birlouez-Aragon I, Tessier F, Mompeyssin V, et al. Lack of effect of copper on advanced Maillard reaction and glucose autoxidation at physiological concentrations of albumin [J]. Redox Rep, 1996, 2:127–132.
    61. Taneda S, Monnier M. ELISA of pentosidine, an advanced glycation end product, in biological specimens [J]. Clin Chem, 1994, 40:1766–1773.
    62. Papanastiou P, Grass L, Rodela H, et al. Immunological quantification of advanced glycosylation end-products in the serum of patients on hemodialysis or CAPD [J]. Kidney Int, 1994, 46:216–222.
    63. Cai J, Hurst H E. Identification and quantification of N-(carboxymethyl) valine adducts in hemoglobin by gas chromatography/mass spectrometry [J]. J Mass Spectrom, 1999, 34:537–543.
    64. Frye E B, Degenhardt T P, Thorpe S R, et al. W.Role of the Maillard reaction in aging of tissue proteins.Advanced glycation end product-dependent increase in imidazolium cross-links in human lens proteins [J]. J Biol Chem, 1998,273:18714–18719.
    65. Bank R A, Beekman B, Verzijl N, et al. Sensitive fluorimetric quantitation of pyridinium and pentosidine cross-links in biological samples in a single high-performance liquid chromatographic run [J]. J Chromatogr B Biomed Sci Appl, 1997, 703:7–44.
    66. Saito M, Marumo K, Fujii K, et al. Single-column highperformance liquid chromatographic-fluorescence detection of immature, mature and senescent cross-links of collagen [J]. Anal Biochem, 1997, 253:26–32.
    67. Okitani A, Cho, R. K.; Kato, H. Polymerization of lysozyme and impairment of its amino acidresidues caused by reaction with glucose [J]. Agric Biol Chem, 1984, 48:1801-1808.
    68. Humeny A, Kislinger T, Becker C, et al. Qualitative Determination of Specific Protein Glycation Products by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Peptide Mapping [J]. J Agric Food Chem,2002, 50:2153–2160
    69. Meltretter J, Seeber S, Humeny A, et al. Site-Specific Formation of Maillard, Oxidation, and Condensation Products from Whey Proteins during Reaction with Lactose [J]. J Agric Food Chem, 2007,55 (15):6096–6103.
    70. Fenaille F, Morgan F, Parisod V, et al. Solid-state glycation of b-lactoglobulin by lactose and galactose: localization of the modified amino acids using mass spectrometric techniques [J]. J Mass Spectrom, 2004; 39:16–28.
    71. Galvani M, Hamdan M, Righetti P G. Two-dimensional gel electrophoresis/matrix-assisted laser desorption/ionisation mass spectrometry of commercial bovine milk [J]. Rapid Commun Mass Spectrom, 2001, 15:258–264.
    72. Fenaille F, Parisod V, Visani P, et al. Modifications of milk constitutents during processing: a preliminary benchmarking study [J]. Int Dairy J, 2006, 16:728–739.
    73. Scaloni A, Perillo V, Franco P, et al. Characterization of heat-induced lactosylation products in caseins by immunoenzymatic and mass spectrometric methodologies [J]. Biochim Biophys Acta, 2002, 1598: 30–39.
    74. Fogliano V, Monti S M, Visconti A, et al. Identification of a a-lactoglobulin lactosylation site [J]. Biochim. Biophys Acta, 1998, 1388:295–304.
    75. Siciliano R, Rega B, Amoresano A, et al. Modern mass spectrometric methodologies in monitoring milk quality [J]. Anal Chem, 2000, 72:408–415.
    76. Kislinger T, Humeny A, Seeber S, et al. Qualitative determination of the early Maillard-products by MALDI-TOF mass spectrometry peptide mapping [J]. Eur Food Res Technol, 2002, 215:65–71.
    77. Henle T, Miyata T. Advanced glycation end products in uremia [J]. AdV Renal Replacement Ther, 2003, 10:321–331.
    78. Reddy V P, Obrenovich M E, Atwood C S, et al. Involvement of Maillard reactions in Alzheimer disease [J]. Neurotoxicol Res, 2002, 4:191–209.
    79. Kim H J, Leszyk J, Taub I A. Direct Observation of Protein Glycosylation by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry [J]. J Agric Food Chem,1997, 45 (6):2158–2165. 80. Schriemer D C, Li L. Detection of high molecular weight narrow polydisperse polymers up to
    1.5 million daltons by MALDI mass spectrometry [J]. Anal Chem, 1996, 68:2721–2725.
    81. Sun Y, Hayakawa S, Ogawa M, et al. Evaluation of the Site Specific Protein Glycation and Antioxidant Capacity of Rare Sugar–Protein/Peptide Conjugates [J]. J Agric Food Chem, 2005, 53:10205–10212.
    82. Meltretter J, Schmidt A, Humeny A, et al. Analysis of the Peptide Profile of Milk and Its Changes during Thermal Treatment and Storage [J]. J Agric Food Chem, 2008, 56 (9):2899–2906.
    83. Brock J W C, Hinton D J S, Cotham W E, et al. Proteomic Analysis of the Site Specificity of Glycation and Carboxymethylation of Ribonuclease [J]. J Proteome Res, 2003, 2:506–513.
    84. Yeboah F K, Alli I, Yaylayan V A, et al. Monitoring Glycation of Lysozyme by Electrospray Ionization Mass Spectrometry [J]. J Agric Food Chem, 2000, 48: 2766–2774.
    85. Czerwenka C, Maier I, Pittner F, et al. Investigation of the Lactosylation of Whey Proteins by Liquid Chromatography-Mass Spectrometry [J]. J Agric Food Chem,2006, 54:8874–8882.
    86. Jones A D, Tier C M, Wilkins J P G. Analysis of the Maillard reaction products ofα-lactoglobulin and lactose in skimmed milk powder by capillary electrophoresis and electrospray mass spectrometry [J]. J Chromatogr A, 1998, 822:147–154.
    87. Morgan F, Bouhallab S, Molle′D, et al. Lactolation of a-lactoglobulin monitored by electrospray ionisation mass spectrometry. Int Dairy J, 1998, 8:95–98.
    88. French S J, Harper W J, Kleinholz N M, et al. Maillard reaction induced lactose attachment to bovineα-lactoglobulin: electrospray ionization and matrix-assisted laser desorption/ionization examination [J]. J Agric Food Chem, 2002, 50:820–823.
    89. Fenaille F, Morgan F, Parisod V, et al. A.Solid-state glycation ofα-lactoglobulin monitored by electrospray ionisation mass spectrometry and gel electrophoresis techniques [J]. Rapid Commun Mass Spectrom, 2003, 17:1483–1492.
    90. Lund M N, Olsen K, S?rensen J, et al. Kinetics and mechanism of lactosylation of R-lactalbumin [J]. J Agric Food Chem, 2005, 53:2095–2102.
    91. Hau J, Bovetto L. Characterisation of modified whey protein in milk ingredients by liquid chromatography coupled to electrospray ionisation mass spectrometry [J]. J Chromatogr A, 2001, 926:105–112.
    92. Marvin L F, Parisod V, Fay L B, et al. Characterization of lactosylated proteins of infant formula powders using twodimensional gel electrophoresis and nanoelectrospray mass spectrometry [J]. Electrophoresis, 2002, 23:2505–2512.
    93. Gerrard J A, Fayle S E, Sutton K H. Covalent Protein Adduct Formation and Protein Cross-Linking Resulting from the Maillard Reaction between Cyclotene and a Model Food Protein [J]. J Agric Food Chem,1999, 47:1183–1188.
    94. Namiki M. Chemistry of the Maillard reactions: recent studies on the browning reaction mechanism and the development of antioxidants and mutagens [J]. Adv Food Res, 1988, 32:115–184.
    95. Ca¨mmerer B, Kroh L W. Investigation of the contribution of radicals to the mechanism of the early stage of the Maillard reaction [J]. Food Chem, 1996, 57:217–221.
    96. Roberts R L, Lloyd R V. Free radical formation from secondary amines in the Maillard reaction [J]. J Agric Food Chem,1997, 45:2413–2418.
    97. Chung S Y, Swaisgood H E, Catignani G L. Effects of alkali treatment and heat treatment in the presence of fructose on digestibility of food proteins as determined by an immobilized digestive enzyme assay (IDEA) [J]. J Agric Food Chem,1986, 34:579–584.
    98. Brands C M J, Wedzicha B L, Van Boekel M A J S. Quantification of Melanoidin Concentration in Sugar-Casein Systems [J]. J Agric Food Chem, 2002, 50, 1178–1183.
    99. Morales F J, Van Boekel M A J S. A study on advanced Maillard reaction in heated casein/sugar solutions: colour formation [J]. Int Dairy J, 1998, 8:907–915.
    100.Frankel E N. Recent advances in lipid oxidation [J]. J Sci Food Agric, 1991, 54:495–511.
    101.Ledl F, Schleicher E. New aspects of the Maillard reaction in foods and in the human body [J]. Angew Chem Int Ed Engl, 2003, 29(6):565–594.
    102.Lingnert H, Eriksson C E. Antioxidative effect of Maillard reaction products [J]. Prog Food Nutr Sci, 1981, 5:453–466.
    103.Alaiz M, Hidalgo F J, Zamora R. Effect of pH and Temperature on Comparative Antioxidant Activity of Nonenzymatically Browned Proteins Produced by Reaction with Oxidized Lipids and Carbohydrates [J]. J Agric Food Chem, 1999, 47 (2):748–752.
    104.Jing H, Kitts D D. Antioxidant activity of sugar-lysine Maillard reaction products in cell free and cell culture systems [J]. Arch Biochem Biophys, 2004, 429:154–163.
    105.Delgado-Andrade C, Seiquer I, Nieto R, et al. Effects of heated glucose-lysine and glucose-methionine model-systems on mineral solubility [J]. Food Chem, 2004, 87:329–337.
    106.Delgado-Andrade C, Seiquer I, Navarro M P. Copper metabolism in rats fed diets containing Maillard reaction products [J]. J Food Sci, 2002, 67:855–860.
    107.Delgado-Andrade C, Seiquer I, Navarro M P. Bioavailability of iron from a heat treated glucose-lysine model food system:Assays in rats and in Caco-2 cells [J]. J Sci Food Agric, 2004, 84:1507–1513.
    108.Wijewickreme A N, Kitts D D, Durance T D. Reaction conditions influence the elementary composition and metal chelating affinity of nondialyzable model Maillard reaction products [J]. J Agric Food Chem, 1997, 45:4577–4583
    109.Ruiz-roca B, Navarro M P, Seiquer I. Antioxidant Properties and Metal Chelating Activity of Glucose-Lysine Heated Mixtures: Relationships with Mineral Absorption Across Caco-2 Cell Monolayers [J]. J Agric Food Chem, 2008, 56:9056–9063.
    110.Morales F J, Jime′nez-Pe′rez S. Peroxyl radical scavengingactivity of melanoidins in aqueos systems [J]. Eur Food Res Technol, 2004, 218:515–520.
    111.Mastrocola D, Munari M. Progress of the Maillard reaction and antioxidant action of Maillard reaction products in preheated model systems during storage [J]. J Agric Food Chem, 2000, 48:3555–3559.
    112.Nakamura S, Kato A, Kobayashi K. Bifunctional lysozyme–galactomannan conjugates having excellent emulsifying properties and bactericidal effect [J]. J Agric Food Chem,1992,40:735–739.
    113.Shepherd R, Robertson A, Ofman D. Dairy glycoconjugate emulsifiers: casein–maltodextrins [J].Food Hydrocolloids,2000,14(4):281–286.
    114.Al-Hakkak J, Kavale S. Improvement of emulsification properties of sodium caseinate by conjugating to pectin through the Maillard reaction [C]. International Congress Series,2002,1245:491–499.
    115.Nakamura S, Kobayashi K, Kato A. Role of positive charge of lysozyme in the excellent emulsifying properties of maillard-type lysozyme-polysaccharide conjugate [J]. J Agric Food Chem,1994,42:2688–2691.
    116.Fechner A, Knoth A, Scherze I, et al. Stability and release properties of double-emulsions stabilised by caseinate–dextran conjugates [J]. Food Hydrocolloids, 2007, 21:943–952.
    117.Takano K, Hattori M, Yoshida T, et al. Porphyran as a Functional Modifier of a Soybean Protein Isolate through Conjugation by the Maillard Reaction [J]. J Agric Food Chem, 2007, 55:5796–5802.
    118.Zhu D, Damodaran S, Lucey J A. Formation of Whey Protein Isolate (WPI)-Dextran Conjugates in Aqueous Solutions [J]. J Agric Food Chem, 2008, 56:7113–7118
    119.Saeki H. Preparation of Neoglycoprotein from Carp Myofibrillar Protein by Maillard Reaction with Glucose: Biochemical Properties and Emulsifying Properties [J]. J Agric Food Chem, 1997, 45:680–684.
    120.Kato A, Minaki K, Kobayashi K. Improvement of emulsifying properties of egg white proteins by the Attachment of polysaccharide through Maillard reaction in dry state [J]. J Agric Food Chem, 1993, 41:540–543.
    121.Kato A, Mifuru R, Matsudomi M, et al. Functional casein-polysaccharide conjugates prepared by controlled dry heating [J]. Biosci Biotechnol Biochem, 1992, 56:567–571.
    122.Kato Y, Aoki T, Kato N, et al.Modification of ovalbumin with glucose 6-phosphate by amino-carbonyl reaction. Improvement of protein heat stability and emulsifying activity [J]. J Agric Food Chem,1995, 43:301–305.
    123.Matsudomi N, Tsujimoto T, Kato A, et al. Emulsifying and bactericidal properties of a protamine-galactomannan conjugate prepared by dry heating [J]. J Food Sci, 1994, 59:428–431.
    124.Sun Y, Hayakawa S, Ogawa M, et al. Influence of a Rare Sugar, d-Psicose, on the Physicochemical and Functional Properties of an Aerated Food System Containing Egg Albumen [J]. J Agric Food Chem, 2008, 56 (12):4789–4796.
    125.胡坤,方少瑛,王秀霞,等.大豆分离蛋白-芽糊精Maillard反应共聚物的乳化特性研究[J].食品工业科技.2005,6:72–78.
    126.齐军茹,杨晓泉,彭志英.利用Maillard反应制备大豆蛋白-葡聚糖共价复合物[J].无锡轻工大学学报,2004,23(5):21–25.
    127.Guan J J, Qiu A Y, Liu X Y,et al. Microwave improvement of soy protein isolate–saccharide graft reactions [J]. Food Chem, 2006,97:577–585.
    128.Rurián-Henares J A, Morales F J. Antimicrobial Activity of Melanoidins against Escherichia coli Is Mediated by a Membrane-Damage Mechanism [J]. J Agric Food Chem,2008, 56:2357–2362.
    129.Einarsson H, Snigg B G, Eriksson C. Inhibition of bacterial growth by Maillard reaction products [J]. J Agric Food Chem,1983, 31:1043–1047.
    130.Lanciotti R, Anese M, Sinigaglia M, et al. Effects of heated glucose-fructose-glutamic acid solutions on the growth of Bacillus stearothermophilus [J]. Lebensm.-Wiss Technol, 1999, 32:223–230.
    131.Mattila T, Sandholm M. Antibacterial effect of the glucose oxidase-glucose system on food-poisoning organisms [J]. Int J Food Microbiol, 1989, 8:165–174.
    132.Wynne A G, Sauter C, Ames J M, et al. Evaluation of the microbial degradation of melanoidins and the implications for human gut health [M]. In Melanoidins in Food and Health, J. M. Ames (ed), European Communities, Luxembourg, 2001,181–186.
    133.Borrelli R C, Esposito F, Napolitano A, et al. Characterization of a new potential functional ingredient:Coffee silverskin [J]. J Agric Food Chem, 2004, 52:1338–1343.
    134.Tuohy K M, Hinton D J, Davies S J.et al. Metabolism of Maillard reaction products by the human gut microbiota– implications for health [J]. Mol Nutr Food Res, 2006, 50:847–857.
    135.Yen G C, Chau C F, Lii D J. Isolationand characterization of most antimutagenic Maillard reaction products derived fromxilose and lysine [J]. J Agric Food Chem, 1993, 41:771–776.
    136.Brownlee M, Vlassara H, Cerami A. Nonenzymatic Glycosylation and the Pathogenesis of
    Diabetic Complications [J]. Ann Intern Med, 1984,101:527–537.
    137.Chevalier F, Chobert J M, Genot C, et al. Scavenging of free radicals, antimicrobial, and cytotoxic activities of the Maillard reaction products of beta-lactoglobulin glycated with several sugars [J]. J Agric Food Chem, 2001,49:5031–5038.
    138.Kato A, Nakamura S, Takasaki H, et al. Novel Functional properties of glycosylated lysozyme constructed by chemical and genetic modifications [M]. In: Macromolecular Interactions in Food Technology; Nicholas, P., Kato, A., Creamer, L. R., Pearce, J., Eds.; American Chemical Society: Washington, DC, 1996,243–256.
    139.Oliver C M, Melton L D, Stanley R A. Glycation of caseinate by fructose and fructo-oligosaccharides during controlled heat treatment in the‘dry’state [J]. J Sci Food Agric, 2006, 86:722–731.
    140.Oliver C M, Melton L D, Stanley R A. Functional properties of caseinate glycoconjugates prepared by controlled heating in the‘dry’state [J]. J Sci Food Agric, 2006, 86:732–740
    141.Eiserich J P, Macku C, Shibamoto T. Volatile Antioxidants Formed from an L-Cysteine/D-Glucose Maillard Model System [J]. J Agric Food Chem, 1882, 40:1982–1988.
    142.Yanagimoto K, Lee K G, Ochi H, et al. Antioxidative activity of heterocyclic compounds found in coffee volatiles produced by Maillard reaction [J]. J. Agric. Food Chem. 2002, 50:5480–5484.
    143.Yanagimoto K, Ochi H, Lee K G,et al. Antioxidative activities of fractions obtained from brewed coffee [J]. J Agric Food Chem, 2004, 52:592–596.
    144.Morales F J, Jime′nez-Pe′rez S. Peroxyl radical scavenging activity of melanoidins in aqueous systems [J]. Eur Food ResTechnol, 2004, 218:515–520.
    145.Delgado-Andrade C, Rufia′n-Henares J A, Morales F J. Assessing the antioxidant activity of melanoidins from coffee brews by different antioxidant methods [J]. J Agric Food Chem,2005, 53:7832–7836.
    146.Rufia′n-Henares J A, Morales F J. Angiotensin-I converting enzyme inhibitory activity of coffee melanoidins [J]. J Agric Food Chem, 2007, 55:1480–1485.
    147.Rufia′n-Henares J A, Morales F J. A new application of a commercial microtiter plate-based assay for assessing the antimicrobial activity of Maillard reaction products [J]. Food Res Int, 2006, 39:33–39.
    148.Morales F J, Fernandez-Fraguas C, Jime′nez-Pe′rez S. Iron binding ability of melanoidins from food and model systems [J]. Food Chem, 2005, 90:821–827.
    149.Gomyo T, Horikoshi M. On the interaction of melanoidin with metallic ions [J]. Agric Biol Chem, 1976, 40:33–40.
    150.Wen X, Enokizo A, Hattori H, et al. Effect of roasting on properties of the zinc-chelating substance in coffee brews [J]. J Agric Food Chem,2005, 53:2684–2689.
    151.Rufia′n-Henares J A, Dela Cueva S P. Antimicrobial Activity of Coffee MelanoidinssA Study of Their Metal-Chelating Properties [J]. J Agric Food Chem, 2009, 57:432–438.
    152.Marko D, Habermeyer M, Keme′ny M, et al. Maillard Reaction Products Modulating the Growth of Human Tumor Cells in Vitro [J]. Chem Res Toxicol, 2003, 16:48–55.
    153.Nakaizumi A, Baba M, Uehara H, et al. D-Limonene inhibits N-nitrosobis (2-oxopropyl) amine induced hamster pancreatic carcinogenesis [J]. Cancer Lett, 1997. Jul 15;117(1):99–103.
    154.邹玉繁,汪小根,黄艳萍.柠檬烯胶囊中柠檬烯的气相色谱测定[J].时珍国医国药.2005,16(1), 7-10.
    155.邹丽.柠檬烯软胶囊工艺、质量标准和稳定性研究[D].[硕士学位论文].四川:四川大学,2003.
    156.Soottitantawat A, Yoshii H, Furuta T, et al. Effect of Water Activity on the Release Characteristics and Oxidative Stability of D-Limonene Encapsulated by Spray Drying [J]. J Agric Food Chem, 2004,52:1269–1276.
    157.Rosenberg M, Kopelman I J, Talmon Y. Factors affecting retention in spray-drying micro-encapsulation of volatile materials [J]. J Agric Food Chem,1990,38:1288–1294.
    1. Martins S I F S, Jongen W M F, van Boekel M A. Review of Maillard Reaction in Food and Implications to Kinetic Modelling [J]. Trends Food Sci Tech, 2000,11:364–373.
    2. Kato A, Kobayashi K. Excellent emulsifying properties of protein-dextran conjugates in Microemulsions and Emulsions in Foods [M]. In: Microemulsions and Emulsions in Foods, Chapter 16, 213–229, ACS Symposium Series, 1991.
    3. Nakamura S, Kato A, Kobayashi K. Enhanced antioxidant effect of ovalbumin due to covalent binding of polysaccharides [J]. J Agric Food Chem,1992, 40:2033–2037.
    4.庄海宁,冯涛.Maillard反应合成蛋白质-多糖复合物及其应用[J].中国食品添加剂,2007,9:136–141.
    5. Kato A, Sasaki Y, Furuta R, et al. Functional Protein-Polysaccharide Conjugate Prepared by Controlled Dry-heating of Ovalbumin-Dextran Mixtures [J]. Agri Biol Chem, 1990, 54(1):107–112.
    6. Kato A, Shimokawa K, Kobayashi K. Improvement of the Functional Properties of Insoluble Gluten by Pronase Digestion Followed by Dextran Conjugation [J]. J Agric Food Chem,1991,39:1053–1058
    7. Chevaliera F, Choberta J, Popineaub Y, et al. Improvement of functional properties of b-lactoglobulin glycated through the Maillard reaction is related to the nature of the sugar [J]. Int Dairy J, 2001,11:145–152.
    8. Jing H, Kitts D D. Chemical and biochemical properties of casein–sugar Maillard reaction products [J]. Food Chem Toxicol, 2002, 40:1007–1015.
    9. Pellegrino L, van Boekel M A J S, Gruppen H, et al. Heat-induced aggregation and covalent linkages in b-casein model systems [J]. Int Dairy J, 1999, 9:255–260.
    10. Brands C M J, van Boekel M A J S. Kinetic modelling of reactions in heated disaccharide–casein systems [J]. Food Chem, 2003, 83(1):13–26.
    11. Nicoli M C, Toniolo R, Anese M. Relationship between redox potential and chain-breaking activity of model systems and foods [J]. Food Chem, 2004,88(1):79–83
    12. Soottitantawat A, Yoshii H, Furuta T, et al. Microencapsulation by spray drying: influence of emulsion size on the retention of volatile compounds [J]. J Food Sci, 2003, 68 (7):2256–2262.
    13. Benjakul S, Lertittikul W, Bauer F. Antioxidant activity of Maillard reaction products from a porcine plasma protein–sugar model system [J]. Food Chem, 2005,93(2):189–196.
    14.大连轻工业学院,华南理工大学等.食品分析[M].北京:中国轻工业出版社,1999.
    15.宁正祥主编.食品成分分析手册[M].北京:中国轻工业出版社,1998.
    16. Brands C M J,Wedzicha B L. Quantification of Melanoidin Concentration in Sugar-Casein Systems [J]. J Agric Food Chem, 2002(52):1178–1183.
    17. Jing H, Kitts D D. Redox-Related Cytotoxic Responses to Different Casein Glycation Products in Caco-2 and Int-407 Cells [J]. J Agric Food Chem, 2004, 52:3577–3582.
    18. Ajandouz E H, Tchiakpe L S, Ore D F, et al. Effect of pH on caramelisation and Maillard reaction kinetics in fructose–lysine model systems [J]. J Food Sci, 2001, 66:926–932.
    19. Pearce K N, Kinsella J E. Emulsifying Properties of Proteins: Evaluation of a Turbidimetric Technique [J]. J Agric Food Chem, 1978, 26(3):718–723.
    20. Oyaizu M. Antioxidant activity of browning products of glucosamine fractionated by organic solvent and thin-layer chromatography [J]. Nippon Shokuhin Kogyo Gakkaishi, 1986,35:771–775.
    21. Lertittikul W, Benjakul S, Tanaka M. Characteristics and antioxidative activity of Maillard reaction products from a porcine plasma protein–glucose model system as influenced by pH [J]. Food Chem, 2007, 100:669–677.
    22.郭尧君.蛋白质电泳实验技术[M].北京:科学出版社,1999.
    23. Fenglin Gu, Jin Moon Kim, Khizar Hayat, Shuqin Xia, Biao Feng, Xiaoming Zhang. Characteristics and antioxidant activity of ultrafiltrated Maillard reaction products from a casein–glucose model system [J]. Food Chem, 2009,117: 48–54
    24. Frister H, Meisel H, Schlimme E. OPA method modified by used of N,N-dimethyl-2-mercaptoethylammoniumchloride as thiol component [J]. Fresenius’Z Anal Chem, 1988, 330:631–633.
    25.管军军.微波合成大豆蛋白-糖接枝物机理、结构及功能性[D]:[博士学位论文].无锡:江南大学.2005.
    26. Drusch S, Berg S, Scampicchio M, et al. Role of glycated caseinate in stabilisation of microencapsulated lipophilic functional ingredients [J]. Food Hydrocolloids, 2009, 23:942–948.
    27. Benjakul S, Visessanguan W, Phongkanpai V, et al. Antioxidative activity of caramelisation products and their preventive effect on lipid oxidation in fish mince [J]. Food Chem, 2005, 90:231–239.
    28. Brands C M J, van Boekel M A J S. Kinetic Modeling of Reactions in Heated Monosaccharide-Casein Systems [J]. J Agric Food Chem, 2002, 50:6725–6739.
    29. Ashoor S H, Zent J B. Maillard browning of common amino acids and sugars [J]. J Food Sci, 1984, 49:1206–1207.
    30. Labuza T P, Baisier W M. The kinetics of nonenzymatic browning [M]. In Physical chemistry of foods; Schwartzberg, H. G., Hartel, R. W., Eds.; Marcel Dekker: New York, 1992: 595-649.
    31. Dworschak E, Oersi F. Study into the Maillard reaction occurring between methionine andtryptophan on the one hand and glucose on the other hand [J]. Acta Aliment, 1977, 6:59–71.
    32. Alaiz M, Hidalgo F J, Zamora R. Effect of pH and Temperature on Comparative Antioxidant Activity of Nonenzymatically Browned Proteins Produced by Reaction with Oxidized Lipids and Carbohydrates [J]. J Agric Food Chem, 1999, 47 (2):748–752.
    33. Kato Y, Matsuda T, Kato N, et al. Maillard reaction of disaccharides with protein: Suppressive effect of non reducing end pyranoside groups on browning and protein polymerization [J]. J Agric Food Chem, 1989, 37:1077–1081.
    34. Namiki M. Chemistry of Maillard reactions: Recent studies on the browning reaction mechanism and the development of antioxidants and mutagens [J]. Adv Food Res,1988, 32:115–184.
    35. Eichner K. Antioxidative effect of Maillard reaction intermediates [J]. Prog Food Nutri Sci, 1981, 5:441–451.
    36. Mcgookin J, Augustin M. Antioxidant activity of casein and Maillard reaction products from casein-sugar mixtures [J]. J dairy Res, 1991,58:313–320.
    37. Morales F J, Romero C, Jimenez-Perez S. Fluorescence associated with Maillard reaction in milk and milk-resembling systems [J]. Food Chem, 1996, 57:423–428.
    38. Rufia′n-Henares J A, Garc?′a-Villanova B, Guerra-Herna′ndez E. Furosine content, loss of o-phthaldiadehyde reactivity, fluorescence and colour in stored enteral formulas [J]. Int J Dairy Technol, 2002, 55:121–126
    39. Smith G A, Friedman, M. Effect of carbohydrates and heat on the aminoacid composition and chemically available lysine content of casein [J]. J Food Sci, 1984,49:817–820.
    40. Ikan R. The Maillard Reaction [M]. John Wiley & Sons Ltd,Baffins Lane, Chichester,West Sussex POI9 IUD, England.1996,11.
    41. Naranjo G B, Malec L S, Vigo M S. Reducing sugars effect on available lysine loss of casein by moderate heat treatment [J]. Food Chem, 1998, 62:309–313.
    42. Couch J R, Thomas M C. A comparison of chemical methods for the determination of available lysine in various proteins [J]. J Agric Food Chem, 1976, 24:943–946.
    43. Hofmann T. Studies on the relationship between molecular weight and the color potency of fractions obtained by thermal treatment of glucose/amino acid and glucose/protein solutions by using the ultracentrifugation and color dilution techniques [J]. J Agric Food Chem, 1998, 46:3891–3895.
    44. Hofmann T. Studies on the influence of the solvent on the contribution of single Maillard reaction products to the total color of browned pentose/alanine solutionssA quantitative correlation using the color activity concept [J]. J Agric Food Chem,1998, 46: 3912–3917.
    45. Drusch S, Berg S, Scampicchio M, et al. Role of glycated caseinate in stabilisation of microencapsulated lipophilic functional ingredients [J]. Food Hydrocolloids, 2009, 23:942–948.
    46. Hofmann T. Studies on melanoidin-type colorants generated from the Maillard reaction of protein-bound lysine and furan- 2-carboxaldehydeschemical characterisation of a red coloured domain [J]. Z Lebensm Unters Forsch, 1998, 206: 251–258.
    1.吴松,秦军.Maillard反应的机理研究[J].贵州工业大学学报(自然科学版).2005, 34(4):17-20.
    2. Hodge J. Chemistry of Browning Reactions in Model Systems [J]. J Agric Food Chem, 1953, 1: 928-934.
    3. Burton H S, McWeeny D J, Biltcliffe D O. Nonenzymic Brown Development of Chromophores in the Glucose-Glycine and Surose-Glycine System [J]. J Food Sci, 1963, 28:631–639.
    4. Namiki M. Chemistry of Maillard Reactions Recent studies on the Browning Reactions Mechanism and the Development of Antioxidants and mutagens [J]. Adv iFood Res, 1988,32:115–184.
    5. Ames J M, Apriyantono A, Amoldi A. Low Molecular Coloured Compounds Formed in xylose Lysine Model Systems [J]. Food Chem, 1993, 46:121–127.
    6. Zhou M X, Robards K, Glennie-Holmes M, Helliwell S. Analysis of Volatile Compounds and Their Contribution to Flavor in Cereals [J]. J Agric Food Chem, 1999, 47(10):3941–3953.
    7. Gu F L Kim J M, Hayat K, et al. Characteristics and antioxidant activity of ultrafiltrated Maillard reaction products from a casein–glucose model system [J]. Food Chem, 2009, 117:48–54.
    8. Jime′nez-Castan? o L, Villamiel M, Lo′pez-Fandin? o R. Glycosylation of individual whey proteins by Maillard reaction using dextran of different molecular mass [J]. Food Hydrocolloids, 2007, 21:433–443.
    9. Yen G C, Tsai L C. Antimutagenicity of a partially fractionated Maillard reaction product [J]. Food Chem, 1993, 47:11-15.
    10.宁正祥主编.食品成分分析手册[M].北京:中国轻工业出版社,1998.
    11. Andriot I, Que′re J L, Guichard E. Interactions between coffee melanoidins and flavour compounds: impact of freeze-drying (method and time) and roasting degree of coffee on melanoidins retention capacity [J]. Food Chem, 2004, 85:289–294.
    12. Rufian-Henares J A, Delgado-Andrade C, Morales F J. Occurrence of acetic acid and formic acid in breakfast cereals [J]. J Sci Food Agri, 2006, 86:1321–1327.
    13. Liu S C, Yang D J, Jin S Y, et al. Kinetics of color development, pH decreasing, and anti-oxidative activity reduction of Maillard reaction in galactose/glycine model systems [J]. Food Chem, 2008, 108:533–541.
    14. Rufian-Henares J A, Garcia-Villanova B, Guerra-Hernandez E. Generation of furosine and colour in infant/enteral formula-resembling systems [J]. J Agric Food Chem, 2004, 52:5354–5358.
    15. Ajandouz E H, Tchiakpe L S, Ore F D, et al. Effects of pH on caramelization and Maillard reaction kinetics in fructose–lysine model systems [J]. J Food Sci, 2001, 66:926–931.
    16. Benjakul S, Visessanguan W, Phongkanpai V, et al. Antioxidative activity of caramelisation products and their preventive effect on lipid oxidation in fish mince [J]. Food Chem, 2005, 90:231–239.
    17. Lertittikul W, Benjakul S, Tanak M. Characteristics and antioxidative activity of Maillard reaction products from a porcine plasma protein–glucose model system as influenced by pH [J]. Food Chem, 2007, 100:669–677.
    18. Hofmann T. Studies on the relationship between molecular weight and the color potency of fractions obtained by thermal treatment of glucose/amino acid and glucose/protein solutions by using the ultracentrifugation and color dilution techniques [J]. J Agric Food Chem, 1998, 46:3891–3895.
    19. Ajandouz E H, Desseaux V, Tazi S, et al. Effects of temperature and pH on the kinetics of caramelisation, protein cross-linking and Maillard reactions in aqueous model systems [J]. Food Chem, 2008, 107:1244–1252.
    20. Kato A, Minaki K, Kobayashi K. Improvement of emulsifying properties of egg white proteins by the Attachment of polysaccharide through Maillard reaction in dry state [J]. J Agric Food Chem, 1993, 41:540–543.
    21. Kato A, Mifuru R, Matsudomi M, et al. Functional casein-polysaccharide conjugates prepared by controlled dry heating [J]. Biosci. Biotechnol. Biochem, 1992, 56:567–571.
    22. Kato Y, Aoki T, Kato N, et al. Modification of ovalbumin with glucose 6-phosphate by amino-carbonyl reaction. Improvement of protein heat stability and emulsifying activity [J]. J Agric Food Chem, 1995, 43:301–305.
    23. Matsudomi N, Tsujimoto T, Kato A, et al. Emulsifying and bactericidal properties of a protamine-galactomannan conjugate prepared by dry heating [J]. J Food Sci, 1994, 59:428–431.
    24. Saeki H. Preparation of Neoglycoprotein from Carp Myofibrillar Protein by Maillard Reaction with Glucose: Biochemical Properties and Emulsifying Properties [J]. J Agric Food Chem,1997,
    45:680–684
    25. Kulmyrzaev A, Sivestre M P C, McClements D J. Rheology and stability of whey protein stabilized emulsions with high CaCl2 concentrations [J]. Food Res Int, 2000, 33:21–25.
    26. Franzen K L, Kinsella J E. Parameters affecting the binding of volatile flavor compounds in model food systems. I.Proteins [J]. J Agric Food Chem, 1974,22:675–678.
    27. Guichard E. Interactions between flavour compounds and food ingredients influencing flavour perception: a review [J]. Food Rev Int, 2002,18(1):49–70.
    28. Guichard E, Langourieux S. Interactions between b-lactoglobulin and flavour compounds [J]. Food Chem, 2000, 71:301–308.
    29. Hofmann T, Czerny M, Calligaris S, et al. Model studies on the influence of coffee melanoidins on flavor volatiles of coffee beverages [J]. J Agric Food Chem, 2001,49:2382–2386.
    30. Hofmann, T. Studies on melanoidin-type colorants generated from the Maillard reaction of protein-bound lysine and furan-2-carboxaldehyde-chemical characterisation of a red coloured domaine [J]. Z Lebensm Unters Forsch A, 1998, 206, 251–258.
    31. Yoshimura Y, Iijima T, Watanabe T, et al. Antioxidative effect of Maillard reaction products using glucose–glycine model system [J]. J Agric Food Chem, 1997, 45:4106–4109.
    32. Wijewickreme A N, Kitts D D, Durance T D. Reaction conditions influence the elementary composition and metal chelating affinity of nondialyzable model Maillard reaction products [J]. J Agric Food Chem, 1997, 45:4577–4583.
    33. Valero E, Villamiel M, Miralles B, et al. Changes in flavour and volatile components during storage of whole and skimmed UHT milk [J]. Food Chem, 2001, 72:51–58.
    34. Contarini G, Povolo M, Leardi R, et al. Influence of heat treatment on the volatile compounds of milk [J]. J Agric Food Chem, 1997, 45:3171–3177
    35. Heyns K, Stute R, Paulsen H. Braunungsreaktionen und fragmentierungen von kohlenhydraten [J]. Carbohyd Res, 1966,2:132–149.
    36. Hodge J E.“Symposium on Foods, Chemistry and Physiology of Flavors,”[M]. H. W. Schultz, E. A. Day, L. M. Libbey, Eds, 1967:465– 491.
    37. Keyhani A, Yaylayan V A. Elucidation of the Mechanism of Pyrazinone Formation in Glycine Model Systems Using Labeled Sugars and Amino Acids [J]. J Agric Food Chem,1996, 44:2511–2516.
    38. Huygues-Despointes A, Yaylayan V, Keyhani A. Pyrolysis/GC/MS analysis of 1-[(2’-carboxyl) pyrrolidinyl]-1-deoxy-D-fructose (Amadori proline) [J]. J Agric Food Chem, 1994, 42:2519–2524.
    39. Ferretti A, Flanagan V P. The Lactose-Casein (Maillard) Browning System: Volatile Components [J]. J Agric Food Chem, 1971, 19: 245–249.
    40. Ramshaw E H, Dunstone E A. Volatile compounds associated with the off-flavor in stored casein [J]. J Dairy Res, 1969, 36:215–223.
    41. Arnold R G., Libbey L M, Day E A. Identification of components in the stale flavor fraction of sterilized concentrated milk [J]. J Food Sci, 1966, 31:566–573.
    42. Scanlan R A, Lindsay R C, Libbey L M, et al. Heat induced volatile compounds in milk [J]. J Dairy Sci, 1968, 51:1001–1007.
    43. Siek T J, Lindsay R C. Semiquantitative Analysis of Fresh Sweet-Cream Butter Volatiles [J]. J Dairy Sci, 1968, 51:700–703.
    44. Limacher A, Kerler J, Davidek T, et al. Formation of Furan and Methylfuran by Maillard-Type Reactions in Model Systems and Food [J]. J Agric Food Chem,2008, 56:3639–3647.
    45. Ferretti A. Inhibition of cooked flavor in heated milk by use of additives [J]. J Agric Food Chem, 1973,21:939–942.
    46. Ferretti A, Flanagan V P. The Lactose-Casein (Maillard) Browning System: Volatile Components [J]. J Agric Food Chem,1971,19:245–249.
    47. Hofmann T, Schieberle P. Evaluation of the key odorants in a thermally treated solution of ribose and cysteine by aroma extract dilution techniques [J]. J Agric Food Chem, 1995, 43:2187–2194
    48. Ledl F, Schleicher E. New aspects of the Maillard reaction in foods and in the human body. Ange [J]. Chem Int Ed Engl,1990, 29:565–706.
    49. Hayashi T, Namiki M. Role of sugar fragmentation in an early stage browning of amino-carbonyl reaction of sugar with amino acids [J]. Agric Biol Chem, 1986,50:1965–1970.
    50. Zhang Y, Dorjpalam B, Ho C T.. Contribution of Peptides to Volatile Formation in the Maillard Reaction of Casein Hydrolysate with Glucose [J]. J Agric Food Chem,1002,40:2467–2471.
    1. Ames J.EU COST action 919 melanoidins in food and health [C].International Congress Series,2002,1245:389–390
    2. Daglia M,Papetti A,Gregotti C, et al.In vitro antioxidant and in vivo protective activities of green and roasted coffee [J].J Agric Food Chem,2000,48:1449–1454
    3. Cioroi M.The Antioxidant Character of Melanoidins[J].Czech J Food Sci,2000,18:103–105
    4. Borrelli R C,Visconti A,Mennella C, et al.Chemical characterization and antioxidant properties of coffee melanoidins [J].J Agric Food Chem,2002,50:6527–6533
    5. Wagner K H,Derkits S,Herr M, et al.Antioxidative potential of melanoidins isolated from aroasted glucose-glycine mode [J].Food Chem,2002,78:375-382
    6. Morales F J,Jimenez-Perez S.Peroxyl radical scavenging activity of melanoidins in aqueous systems [J].Eur Food Res Technol,2004,218:515–520
    7. Del Castillo M D,Ferrigno A,Acampa I, et al.In vitro release of angiotensin-converting enzyme inhibitors,peroxyl-radical scavengers and antibacterialcompounds by enzymatic hydrolysis of glycated gluten [J].J Cereal Sci,2007,45(3):327–334
    8. Rufián-Henares J A,Morales F.A new application of a commercial microtiter plate-based assay for assessing the antimicrobial activity of Maillard reaction products [J].Food Res Int,2006,39:33–39
    9. Rufián-Henares J A,Morales F J.Functional properties of melanoidins:In vitro antioxidant, antimicrobial and antihypertensive activities [J].Food Res Int,2007,40: 995–1002
    10. Daglia M,Tarsi R,Papetti A, et al.Antiadhesive effect of green and roasted coffee on Streptococcus mutans’adhesive properties on saliva-coated hydroxyapatite beads[J].J Agric Food Chem,2002,50:1225–1229
    11. Tan B K,Harris N D.Maillard reaction products inhibit apple polyphenoloxidase [J]. Food Chemi,1995,53:267–273
    12. Borrelli R C,Fogliano V.Bread crust melanoidins as potential prebiotic ingredients [J].Mol Nutr Food Res,2005,49:673–678
    13.吴金鸿.丝胶肽的制备及其生物活性功能和结构的研究[D]:[博士学位论文].无锡:江南大学食品学院,2008.
    14. Eiserich J P, Macku C, Shibamoto T. Volatile Antioxidants Formed from an L-Cysteine/D-Glucose Maillard Model System [J]. J Agric Food chem, 1992,40(10): 1982-1988
    15. Smaniotto A, Bertazzo A, Comai S,et al. The role of peptides and proteins in melanoidin formation [J]. J Mass Spectrom,2009,44:410–418.
    16. Hofmann T.Studies on the relationship between molecular weight and the color potency of fractions obtained by thermal treatment of glucose/amino acid and glucose/protein solutions by using ultracentrifugation and color dilution techniques [J].J Agric Food Chem,1998,46(3):3891-3895
    17.杨荣华,林家莲,周凌霄.酱油、豆酱中褐色色素的生理功能[J].中国调味品,2000,5:21-22
    18. Fryksdale B G.,Jedrzejewski P T, Wong D L, et al.Impact of deglycosylation methods on two-dimensional gel electrophoresis and matrix assisted laser desorption/ionization-time of flight-mass spectrometry for proteomic analysis [J]. Electrophoresis,2002,23(14):2184-2193.
    19. Hardy M R, Townsend R R. Separation of positional isomers of oligosaccharides andglycopeptides by high-performance anion-exchange chromatography with pulsed amperometric detection [J]. PNAS,1988,851(10):3289-3293
    20.代景泉,蔡耘,钱小红.蛋白质糖基化分析方法及其在蛋白质组学中的应用[J].生物技术通讯,2005,16(3):287-292.
    21.曾世通,胡军.Maillard反应的高分子产物的研究进展[J].高分子通报,2007,11:30-40.
    22. Gu F L, Kim J M, Hayat K, et al.Characteristics and antioxidant activity of ultrafiltrated Maillard reaction products from a casein–glucose model system [J]. Food Chem,2009,117:48–54.
    23. Bettina C,Walentina J, Lothar W K. Intact carbohydrate structures as part of the melanoidin skeleton [J]. J Agric Food Chem,2002,50:2083-2087,
    24. Chevalier F,Chobert J M, Genot C,et al.Scavenging of Free Radicals, Antimicrobial, and Cytotoxic Activities of the Maillard Reaction Products ofα-Lactoglobulin Glycated with Several Sugars [J]. J Agric Food Chem,2001,49:5031–5038.
    25. Galvani M,Hamdan M, Righett P G.Two-dimensional gel electrophoresis/matrixassisted laser desorption/ionisation mass spectrometry of a milk powder [J]. Rapid Commun Mass Spectrom, 2000,14,1889–1897.
    26. Eichner K.Antioxidative effect of Maillard reaction intermediates [J]. Prog Food Nutri Sci,1981,5:441–451.
    27. Delgado-Andrade C, Rufian-Henares J A,Morales F J.Assessing the antioxidant activity of melanoidins from coffee brews by different antioxidant methods [J]. J Agric Food Chem, 2005,3:7832–7836.
    28. Yamaguchi N,Koyama Y,Fujimaki M. Fractionation and antioxidative activity of browning reaction products between D-xylose and glycine [J]. Prog Food Nutri Sci,1981,5:429–439.
    29. Jing H,Kitts D D.Chemical and biochemical properties of casein–sugar Maillard reaction products [J]. Food Chem Toxicol,2002,40:1007–1015.
    30. Yoshimura Y, Iijima T, Watanabe T, et al.Antioxidative effect of Maillard reaction products using glucose–glycine model system [J]. J Agric Food Chem,1997,45:4106–4109.
    31. Benjakul S,Visessanguan W,Phongkanpai V, et al.Antioxidative activity of caramelisation products and their preventive effect on lipid oxidation in fish mince [J]. Food Chem,2005,90:231–239.
    32. Hofmann T.Studies on melanoidin-type colorants generated from the Maillard reaction of protein-bound lysine and furan-2-carboxaldehyde-chemical characterization of a red coloured domaine [J].Z Lebensm Unters Forsch A,1998,206:251-258
    33. Cooper E A,Knutson K. Fourier transform infrared spectroscopy investigations of proteinstructure [M]. In: Physical Methods to Characterize Pharmaceutical Proteins, Herron, J.N., Jiskoot, W., Crommelin, D.J.A., Eds., Plenum, New York, 1995,7:101–143.
    34. Farhat I A, Orset S, Moreau P, et al. FTIR study of hydration phenomena in protein-sugar systems [J]. J Colloid Interf Sci,1998,207:200–208.
    35. Turner J A, Sivasundaram L R, Ottenhof M A, et al. Monitoring Chemical and Physical Changes during Thermal Flavor Generation [J]. J Agric Food Chem,2002,50:5406–5411.
    36. Pereda M, Aranguren M I, Marcovich N E. Characterization of chitosan/caseinate films [J]. JAppl Polym Sci,2007,107:1080–1090
    37. Borisova N E,Reshetova M D,Ustynyuk Y A. Metal-Free Methods in the Synthesis of Macrocyclic Schiff Bases [J]. Chemical Rev,2007,107:46–79
    38. Oliver C M, Kher A, McNaughton D,et al.Use of FTIR and mass spectrometry for characterization of glycated caseins [J]. J Dairy Res,2009,76:105–110
    39. Creamer L K, Richardson T, Parry D A D. Secondary structure ofαS1-andβ-caseins in solution [J]. Arch Biochem Biophys, 1981;211:689–96.
    40. Horne D S.Casein structure, self-assembly and gelation [J]. Curr Opin Colloid Interf Sci,2002,7:456–461
    41. Farrell J H M,Wickham E D,Unruh J J,et al.Secondary structural studies of bovine caseins: temperature dependence of casein structure as analyzed by circular dichroism and FTIR spectroscopy and correlation with micellization [J]. Food Hydrocolloids, 2001,15:341–54.
    42. Chevalier F,Chobert J M,Dalgalarrondo M,et al. Maillard glycation ofβ-lactoglobulin induces conformation changes [J]. Nahrung/Food,2002,46:58–63.
    43. Sanz N V,Benavente F,Toro I,et al.Optimization of HPLC conditions for the separation of complex crude mixtures produced in the synthesis of therapeutic peptide hormones [J].Chromatographia,2001,53:167–173
    44. Purcell A W,Zhao G L,Aguilar M I,et al.Comparison between the isocratic and gradient retention behavior of polypeptides in reversed-phase liquid chromatographic environments [J].J Chromatogr,1999,852:43–46
    45. Bailey R G,Ames J M,Monti S M.An analysis of the non-volatile reaction products of aqueous Maillard model systems at pH 5,using reversed-phase HPLC with diode-array detection [J].J Sci Food Agric,1996,72:97–103
    46. Tomlinson A J,Mlotkiewicz J A,Lewis I A S.Application of capillary electrophoresis to the separation of coloured products of Maillard reactions [J].Food Chem,1994,49:219–223
    47. Clark A V, Tannenbaum S R. Isolation and characterization of pigments from protein-carbonyl browning systems [J]. J Agric Food Chem,1970,18:891–894
    48. Smales C M, Pepper D S, James D C. Protein modification during antiviral heat bioprocessing[J]. Biotechnol Bioeng, 2000, 67,177-188.
    49. Lund M N, Olsen K, Srensen J, et al. Kinetics and Mechanism of Lactosylation of r-Lactalbumin[J]. J Agric Food Chem,2005,53:2095–2102
    50. Mattila T, Sandholm M. Antibacterial effect of the glucose oxidase-glucose system on food-poisoning organisms [J]. Int J Food Microbiol,1989,8:165–174.
    51. Yanagimoto K, Lee K G, Ochi H, et al. Antioxidative activity of heterocyclic compounds formed in Maillard reaction products [C]. International Congress Series,2002,1245:335–340.
    52. Klein E, Ledl F, Bergmuller W, et al.Reactivity of Maillard products with a pyrrole structure [J]. Z Lebensm Unters Forsch,1992,194:556–560.
    53. Rufian-Henares J A,Morales F J.Antimicrobial activity of melanoidins against Escherichia coli is mediated by a membrane damage mechanism [J]. J Agric Food Chem,2008,56:2357–2362.
    54. Wijewickreme A N, Kitts D D, Durance T D.Reaction conditions influence the elementary composition and metal chelating affinity of nondialyzable model Maillard reaction products [J]. J Agric Food Chem,1997,45:4577–4583.
    55.卫芳芳,王华,徐阳,侯建新,周禾丰,许并社. 8-羟基喹啉金属配合物的制备与提纯[J].人工晶体学报.2009,38(3),756–760.
    56.杜鼎,方建新.具有生物活性的喹啉类化合物的最新进展[J].有机化学.2007,27,1318–1336.
    57. Wang T T, Zeng G C, Li X C, et al.In Vitro Studies on the Antioxidant and Protective Effect of
    2-Substituted -8-Hydroxyquinoline Derivatives Against H2O2-Induced Oxidative Stress in BMSCs[J]. Chem Biol Drug Des, 2005,75(2):214–222.
    58. Liu Z Q, Han K, Lin Y J, et al.Antioxidative or prooxidative effect of 4-hydroxyquinoline derivatives on free-radical-initiated hemolysis of erythrocytes is due to its distributive status [J]. Biochimica et Biophysica Acta (BBA)/General Subjects, 2002,1570(2):97–103.
    59. Sashidhara K V, Kumar A, Bhatia G, et al.Antidyslipidemic and antioxidative activities of 8-hydroxyquinoline derived novel keto-enamine Schiffs bases [J]. Eur J Med Chem, 2009, 44(4):1813–1818.
    60. Zheng H, Youdim M B H, Weiner L M, et al.Novel potential neuroprotective agents with both iron chelating and amino acid-based derivatives targeting central nervous system neurons[J]. Biochem Pharmacol, 2005,70:1642–1652.
    61. Yen G C,Chau C F. Inhibition by xylose-lysine Maillard reaction products of the formation of MeIQx in a heated creatinine, glycine, and glucose model system [J]. Biosci Biotechnol Biochem,1993,57(4):664–665..
    62. Lee H,Lin M Y,Lin S T.Characterization of the mutagen 2-amino-3-methylimidazo [4,5-f] quinoline prepared from a 2-methylpyridine / creatinine / acetylformaldehyde model system [J].Mutagenesis,1994, 9(2):157–162,
    63. Ames J M,Nursten H E. Recent advances in the chemistry of coloured compounds formed during the Maillard reaction [M]. In trends in Food Science, eds W. S. Lien and C. W. Foo. Singapore Institute of Food Science and Technology, Singapore,1989:8–14.
    64. Ames J M. The Maillard reaction [M]. In Biochemistry of Food Proteins, Chapter 4, Vol. 4, ed. B. J. F. Hudson. Elsevier Applied Science, London, 1992:99–153.
    65. Ames, J. M., Apriyantono, A. and Arnoldi A. (1993) Low molecular weight coloured compounds formed in xylose-lysine model systems [J]. Food Chem,46,121–127.
    66. Homma S, Murata M, Fujii M, et al. Characterization of model melanoidin by lectin a|nity and immunochemistry [M]. In Maillard Reactions in Chemistry, Food, and Health, eds T. P. Labuza, G. A. Reneccius, V. M. Monnier, J. O?Brien and J. W. Baynes. Royal Society of Chemistry, Cambridge, 1994:424.
    67. Motai H. Viscosity of melanoidins formed by oxidative browning. Validity of the equation for a relationship between colour intensity and molecular weight of melanoidin [J]. Agri Biol Chem,1976,40:1–7.
    68. Kato H, Kim S B,Hayase F. Estimation of the partial chemical structures of melanoidins by oxidative degradation and 13C CP-MAS NMR [M]. In Amino-Carbonyl Reactions in Food and Biological Systems, Development in Food Science, Vol. 13, eds M. Fujimaki, M. Namiki and H. Kato. Elsevier, New York,1986:215–223.
    69. Yaylayan V A, Kaminsky E.. Isolation and structural analysis of maillard polymers: caramel and melanoidin formation in glycine/glucose model system [J]. Food Chem, 1998,63(1):25–31.
    1. Shahidi F,Han X. Encapsulation of food ingredients [J]. Crit Rev Food SciNutri,1993:33:501–547.
    2. Soottitantawat A,Yoshii H, Furuta T, et al. Microencapsulation by Spray Drying: Influence of Emulsion Size on the Retention of Volatile Compounds [J]. J Food Sci,2003,68:2256–2262.
    3. Buffo R A,Reineccius G A.Optimization of gum acacia/modified starch/maltodextrin blends for the spray drying of flavors [J]. Perf & Flav, 2000,25:45–54.
    4. Chevaliera F, Chobert J M.Improvement of functional properties ofβ-lactoglobulin glycated through the Maillard reaction is related to the nature of the sugar [J]. Int Dairy J.2001,11:145–152
    5. Augustin M A, Sanguanstri L, Margetts C,et al. Microencapsulation of food ingredients [J]. Food Australia, 2001, 53: 220–223
    6. Toro-Arreola S D, Flores-Torales E, Torres-Lozano C, et al. Effect of d-limonene on immune response in BALB/c mice with lymphoma [J]. Int Immunopharmacol,2005,5: 829–838
    7. Shu B, Yu W L, Zhao Y P, et al. Study on microencapsulation of lycopene by spray-drying [J]. J Food Eng, 2006,76:664–669.
    8. Kalichevsky M T, Blanshard. J. M. V; Tokarczuk.P. F. (1993). Effect of water content and sugars on the glass transition of casein and sodium caseinate [J]. Int J Food Sci Technol, 1993,28(2):139–151.
    9. Venskutonis P R, Bylaite E, Narkeviius R.Optimisation of Encapsulation Conditions of Caraway (Carum Carvi) Essential Oil [C]. (pp.98–104.) Process Optimisation and Minimal Processing of Foods Proceedings of the second main meeting European Commission COPERNICUS PROGRAMME Concerted action CIPA-CT94–0195,2002.
    10. Baranauskien R, Venskutonis P R, Dewettinck K, et al.Properties of oregano (Origanum vulgare L.), citronella (Cymbopogon nardus G.) and marjoram (Majorana hortensis L.) flavors encapsulated into milk protein-based matrices [J]. Food Res Int, 2006,39:413–425.
    11. Thijssen H A C, Rulkens W H. Retention of aromas in drying food liquids [J]. De Ingenieur, 1968,47:45–56.
    12. Dong Z J, Tour A, Jia C S,et al. Effect of processing parameters on the formation of spherical multinuclear microcapsules encapsulating peppermint oil by coacervation [J]. J Microencapsul, 2007,24:634–646.
    13. Drusch S, Berg S, Scampicchio M, et al. Role of glycated caseinate in stabilisation of microencapsulated lipophilic functional ingredients [J]. Food Hydrocolloids, 2009,23:942–948.
    14. Rampon V, Riaublanc A, Anton M, et al. Evidence that Homogenization of BSA-Stabilized Hexadecane-in-Water Emulsions Induces Structure Modification of the Nonadsorbed Protein [J]. J Agri Food Chem, 2003,51:5900–5905.
    15. Zakarian A, King C J. Volatile loss in the nozzle zone during spray drying of emulsions [J].Industrial & Engineering Chemistry Process Design and Development, 1982,21:107–113.
    16. Soottitantawat A, Yoshii H, Furuta T, et al. Effect of Water Activity on the Release Characteristics and Oxidative Stability of D-Limonene Encapsulated by Spray Drying [J]. J Agri Food Chem, 2004,52:1269–1276.
    17. Beristain C I, Azuara E, Vernon-Carter E J. Effect of Water Activity on the Stability to Oxidation of Spray-Dried Encapsulated Orange Peel Oil Using Mesquite Gum (Prosopis Juliflora) as Wall Material [J]. J Food Sci, 2002,67:206–211.
    18. Kalichevsky M T, Blanshard J M V; Tokarczuk P F. Effect of water content and sugars on the glass transition of casein and sodium caseinate [J]. Int J Food Sci Technol,1993,28(2)1:39–151
    19. Fennema O R.著.食品化学(第三版)[M].王璋,许时婴,江波等译.北京:中国轻工业出版社, 2003,312
    1. Elsayed N M, Bendich A. Dietary antioxidants:potential effects on oxidative products in cigarette smoke [J]. Nutr Res, 2001,21:551–567.
    2. Sung Y J, Seo Y B. Thermogravimetric study on stem biomass of Nicotiana tabacum [J]. Thermochimica Acta,2009,486:1–4
    3. Paschke T, Scherer G, Heller W D. Effects of ingredients on cigarette smoke composition andbiological activity: a literature overview [J]. Beitr Tabak Int,2002,20:107–247.
    4. Baker R R, Pereira da Silva J R, Smith G. The effect of tobacco ingredients on smoke chemistry. Part 1: Flavourings and additives [J].Food Chem Toxicol,2004,42:3–37.
    5.李炎强.卷烟顶空挥发性成分的快速分析[J].烟草科技,2000,(10):26–27.
    6.李炎强,冼可法.直接进样法分析烟草挥发性和半挥发性酸性成分[J].烟草科技,1998,(6):22–2.
    7.邹小波,方如明,蔡健荣.人工嗅觉系统及其在卷烟烟气中的研究[J].江苏理工大学学报(自然科学版),2005,5(3):1–4.
    8.黄骏雄,蒋弘江,阎哲.应用电子鼻检测香烟质量的研究[J].化学通报,2000,(1):5–54.
    9.黄祖刚,李建平,何秀丽,等.用电子鼻鉴别卷烟的方法[J].传感器技术,2004,23(6):62–65.
    10. Baker R R, Bishop L J. The pyrolysis of non-volatile tobacco ingredients using a system that simulates cigarette combustion conditions [J]. J Anal Appl Pyrol,2005,74:145–170.
    11. Baker R R, Bishop L J. The pyrolysis of tobacco ingredients [J]. J Anal Appl Pyrol, 2004, 71:223–311.
    12. Senneca O, Chirone R, Salatino P, et al. Patterns and kinetics of pyrolysis of tobacco under inert and oxidative conditions [J]. J Anal Appl Pyrol,2007,79:227–233.
    13. Shu C,Brian L,Joyce D,et a1.Tobacco treatment process[P].US:5370l39.1994–12–06.
    14.重松仁,河本正彦,土田宏信.卷烟香味改良法[P].日本昭53—9040l.1978–08–09.
    15.张悠金,金闻博.烟用香精香料[M].合肥:中国科学技术大学出版社,1996:193–205.
    16. Bates C, Jarvis M, Connolly G.Tobacco additives:Cigarette engineering and nicotine addiction [M].London:Action on Smoking and Health,1999.
    17.李鹏,宗永立,卢斌斌,等.脱氧果糖嗪在卷烟中的增香作用[J].烟草科技,2008,11:30–35.
    18.王月霞.用高效液相色谱法定量测定卷烟主流烟气异丙醇萃取物中的酚类物质[J].世界烟草动态,1994,4:45–47.
    19. Talhout R, Opperhuizen A, van Amsterdam J G C. Sugars as tobacco ingredient: Effects on mainstream smoke composition [J]. Food Chem Toxicol, 2006,44:1789–1798.
    20. Maga J A. Smoke in food processing [M]. Boca Raton, F L: CRC Press, 1988.
    21. Seeman J I, Dixon M, Haussmann H J. Acetaldehyde in mainstream tobacco smoke: formation and occurrence in smoke and bioavailability in the smoker [J]. Chem Res Toxicol,2002,15(11):1331–1350.
    22.郭俊成,张悠金,舒俊生,等.烟用Maillard反应香料研究[J].安徽农业大学学报,2002,29:95–99.
    23. Wynder E L, Hoffmann D. Tobacco and tobacco smoke [M]. Seminars in oncology, 1976,3(1):5–15.
    24. Schlotzhauer W S, Chortyk O T. 1987. Recent advances in studies on the pyrosynthesis of cigarette smoke constituents [J]. J Anal Appl Pyrol,1987,12:193–222.
    25. Schlotzhauer W S, Severson R F, Chortyk O T, et al. Pyrolytic formation of polynuclear aromatic hydrocarbons from petroleum ether extractable constituents of flue-cured tobacco leaf [J]. J Agric Food Chem, 1976,24:992–997.
    26. Borisova N E, Reshetova M D, Ustynyuk Y A. Metal-Free Methods in the Synthesis of Macrocyclic Schiff Bases [J]. Chem Rev, 2007,107:46–79.
    27. Nissenbaum A, Kenyon D H, Oro J. On the Possible Role of Organic Melanoidin Polymers as Matrices for Prebiotic Activity [J]. J Mol Evol, 1975,6:253–270.
    28. Fennema O.R.著.食品化学(第三版)[M].王璋,许时婴,江波等译.北京:中国轻工业出版社, 2003.312
    29.杨伟祖,谢刚,王保兴,等.烟烟叶和烟梗的热裂解产物的研究[J].色谱,2006,24(6):606–610.
    30. Sanders E B, Goldsmith A I, Seeman J I. A model that distinguishes the pyrolysis of Dglucose, D-fructose, and sucrose from that of cellulose. Application to the understanding of cigarette smoke formation [J]. J Anal Appl Pyrol,2003,66:29–50
    31. Gardner J. A brief history of electronic noses [J]. Sensors and actuators B,1994(18-19):211–220.
    32. Baby R, Cabezas M. Electronic nose: a useful tool for monitor-ing environmental contamination [J]. Sensor Actuat B,2000,69:214–218.
    33. Nicolas J, Romain A, Ledent C. The electronic nose as a warn-ing device of the odour emergence in a compost hall [J].Sensor Actuat B,2006,116:95–99
    34. Julian W, Gardner J, Hyun W. An electronic nose systemto di-agnose illness [J]. Sensor Actuat B,2000,70:19–24.
    35.李东云,梁建平,陆秋天.电子鼻咽喉镜在阻塞性睡眠呼吸暂停综合征上呼吸道狭窄定位诊断中的应用[J].中国内镜杂志,2005,9:918–921
    36. Saevels S, Lammertyn J, Amalia Z. An electronic nose and a mass spectrometry-based electronic nose for assessing apple qual-ity during shelf life [J]. Postharvest Biol Tec,2004,31:9–19.
    37. Taurino A M, Monaco D, Capone S. Analysis of dry salami by means of an electronic nose and correlation with microbiological methods [J]. Sensor Actuat B, 2003,95:123–131.
    38. Jannie S V, Martens M, Turkki P. Application of an electronic nose system for prediction of sensory quality changes of a meat product (pizza topping) during storage [J]. LWT- Food Sci Technol, 2007,40:1095–1101.
    39.朱先约,宗永立,殷延齐,李炎强,谢剑平.利用电子鼻区分不同产地、不同品种的烤烟[J].中国烟草学报,2009,15(3):22–25
    40. Hai Z, Wang J. Detection of adulteration in camellia seed oil and sesame oil using an electronic nose [J].Eur J Lipid Sci Technol, 2006,108:116–124
    41.李敏健,沈光林,伍锦鸣,等.电子鼻技术在卷烟内在品质分析中的应用[J].烟草科技,2009,1:9–14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700