玉米抗丝黑穗病的全基因组关联分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米丝黑穗病是由丝轴黑粉菌sporisorium reilianum引起的真菌性病害,严重影响玉米的产量性状,是制约玉米发展的重要病害之一。利用分子育种提高玉米品种抗病性,是减少病害造成产量损失的有效途径,而抗病基因的挖掘和抗病功能标记的开发是抗病分子育种的理论前提。
     近年来,随着高通量基因型分型技术的发展和关联分析理论的不断完善,植物中全基因组关联分析的研究越来越多,但目前对玉米丝黑穗病的遗传研究仍为鲜见,本研究旨在通过高密度的基因分型技术结合全基因组的关联分析,定位玉米抗丝黑穗病相关的基因,并探讨可能存在的抗病机制,主要研究结果如下:
     1.以0.1kb,0.2kb,0.5kb, lkb,2kb,5kb,10kb,30kb,50kb,100kb,300kb,500kb,1Mb,3Mb,5Mb,40Mb,50Mb和100Mb为步长,研究144份玉米自交系的连锁不平衡(linkage disequilibrium,LD)的衰减距离。结果表明:不同染色体及全基因组染色体上,随着步长距离的增加,LD急剧下降。并在不同染色体上衰减速率不同,第一染色体衰减较快,第十染色体衰减较慢。当LD衰减cutoff值设定为0.1时,144份玉米自交系的LD平均衰减距离约为200kb;
     2.选取PCA+K, Q+K和K三种混合线性模型,只有Q的模型一般线性模型,只有PCA的模型的一般线性模型,没有Q也没有PCA的模型一般线性模型,总共六种模型,进行关联分析。通过模型的比较分析,选取Q+K模型为最适合的抗丝黑穗病的关联模型;
     3.对两年两地144份自交系人工接种条件下的抗性表型和MaizeSNP50芯片分析的SNP基因型进行全基因组关联分析,检测到19个SNPs与玉米抗丝黑穗病关联,这些SNPs位点分布于玉米十条染色体上,其中第一、第三、第四和第十染色体只检测到1个抗病位点,19个位点中有8个抗性位点与前人利用连锁作图得到的定位信息一致。大多数SNPs位于基因附近。这些基因可分为三类,一类为抗病基因,如第八染色体上与NBS-LRR类型抗病基因同源的基因;一类为抗病相关基因,如第四染色体上与编码tubby-like蛋白类似基因;一类为可能在抗病反应中发挥作用的基因,如2.04bin的Antifreeze基因。以上结果从一定程度上反应了玉米抗丝黑穗病机制的复杂性;
     4.对其中2.09bin位点进行了候选区段的丝黑穗病抗性基因的关联分析。在144份玉米自交系材料的目标区域内获得1.6Mb长度的序列结果,其中包括231个SNPs和82个Indels标记。候选区段关联分析表明基因GRMZM2G166566的9个位点SNPs对抗丝黑穗病起关键作用;
     5.对玉米全基因组关联分析中发现的NBS类型抗病基因,利用已经测序公共数据库,以玉米自交系B73基因组为参考序列,对NBS结构的候选抗病基因进行了基因总数、类型、系统进化关系等分析。
Maize head smut, caused by Sporisorium reilianum f. sp. Zea, is a kind of fungal diseases, which has seriously limited the maize production and development. Molecular breeding for improving disease resistance against various pathogens is an effective approach to increase the quality and quantity of maize, and mine disease resistance genes and functional marker associated with resistance are the theoretical premises of disease resistance in molecular breeding.
     In recent years, with the development of high-throughput genotyping technology and the theory of association analysis, genome-wide association studies (GWAS) are performed in more and more plants. At present, little information is available about the genetic study against S. reilianum in maize. The present study aims at localization of genes involved in head smut resistance and exploration the possible mechanism of resistance against S. reilianum in maize, via combination high density analysis techniques in whole genome with genome-wide association analysis. The main results are as follows:
     1. When assessing linkage disequilibrium (LD), a serial spacing between two loci on the same chromosome of0.1kb,0.2kb,0.5kb,1kb,2kb,5kb,10kb,30kb,50kb,100kb,300kb,500kb,1Mb,3Mb,5Mb,40Mb,50Mb, and100Mb respectively, were considered. A sharp decline in the r2value was observed as the physical distance increased among each chromosome and all the chromosomes. Linkage disequilibrium decay for each chromosome is also different. The level of LD decay was faster in chr.10than in chr.l. The average r2for all chromosomes was estimated at-200kb, when the value of the cut off for r2was set to0.1.
     2. To correct for false positives, six models were selected, which referred to the population structure (Q, PCA) and kinship (K). The general linear model (GLM) included the Q model controlling for Q, the PCA model controlling for PCA, and a model that did not control for Q and PCA. The mixed linear model (MLM) comprised the K model controlling for K, the Q+K model controlling for both Q and K, and the PCA+K model controlling for both PCA and K. The results were better from the Q+k model than those from other models.
     3. In the present study,19association loci were found to be distributed over10chromosomes. One loci in chrl, chr3, chr4and chr10. Eight loci overlapped with previous studies. Most of SNP locations were adjacent to genes. These genes were classified into three groups including R genes such as NBS-LRR homologous gene in chr8, disease response genes such as encoding tubby-like protein gene in chr4, and other genes possibly functioning in plant disease resistance such as Antifreeze gene in2.04bin. These could reflect a complicated molecular mechanism of maize resistance to head smut.
     4. Candidate gene association in a region expanding SNP4to400kb from both ends was performed to ascertain whether a true association signal exists in2.09bin.1.6Mb of sequence from a panel of144maize inbred lines was obtained, including231SNPs and82Indels. Nine loci showed significant associations with resistance to head smut. These nine loci all belonged to the gene GRMZM2G166566.
     5. In the analysis of genome-wide association results, NBS type disease resistance genes were found. Therefore, in maize inbred line B73genome, gene number, type and phylogenetic relationship for NBS candidate disease resistance gene were analyzed, and these findings provided useful information on the understanding of the maize genome structure, genome expansion and new genes generation.
引文
1.曹士亮.玉米抗丝黑穗病遗传育种研究进展.黑龙江农业科学,2009,6:157-159.
    2.陈军,王东峰.玉米丝黑穗病及玉米瘤黑粉病发生规律及防治研究.农业科技通讯,2007,6:24-25.
    3.陈永胜.玉米丝黑穗病抗性基因的定位与相关分子标记的发展.[硕士学位论文]北京:中国农业大学图书馆,2006.
    4.储昭晖.水稻白叶枯病隐性抗病基因xa13的分离与鉴定.[博士学位论文].武汉:华中农业大学,2005.
    5.董良利,赵威军.高梁丝黑穗病研究进展.山西农业科学,2006,34(2):82-85.
    6.董玲,金益,王振华.玉米资源抗丝黑穗病快速鉴定方法的初步研究.西北农业学报,2005,18(5):653-657.
    7.甘琴华,王明,张绍鹏,王凤格,赵久然,郑用琏,肖炎农.北方玉米丝轴黑粉菌遗传多样性与遗传分化研究.中国生物化学与分子生物学报,2008,24(9):846-853
    8.高洁,祁新,蔚荣海,王玉兰.玉米种质资源对丝黑穗病的抗性鉴定.吉林农业大学学报,2006,28:142-151.
    9.高树仁.玉米抗丝黑穗病遗传分析及数量性状基因定位.[博士学位论文].长春:吉林大学图书馆,2005.
    10.郭满库,刘永刚,王晓鸣.玉米自交系及群体材料抗丝黑穗病鉴定与评价.2007,15:30-33.
    11.贺字典,陈捷,高增贵,庄敬华,高玉峰.玉米丝黑穗病菌RAPD分析的引物筛选.河南农科学,2007,4:53-56.
    12.华致甫,白宝璋.玉米丝黑穗菌生理分化的研究.吉林农业大学学报,1995,17(2):32-37.
    13.贾菊生,张前.玉米丝黑穗病菌冬孢子萌发条件的研究.植物保护学报,1990,17(2):109-111.
    14.姜钰,徐秀德,刘志恒,董怀玉,赵妹华.玉米丝黑穗病菌种群遗传多样性研究.沈阳农业大学学报,2007,38(4):522-526.
    15.晋齐鸣,李建平,张秀文,王广祥,宋淑云,刘煜才,王立新.松辽平原玉米主要病虫害综合治理体系的研究.玉米科学,2000,8:84-88.
    16.李宝英,郑铁军,郭玉莲.玉米丝黑穗病发病条件的研究.玉米科学,2005,13:121-123.
    17.李林.结合连锁与关联分析剖析高油玉米遗传机理.[博士学位论文].北京:中国 农业大学,2010.
    18.李兴红,康绍兰,李金云,张国保,马跃辉,韩福才,陈柏柱.玉米丝黑穗病菌(Sphacelotheca reiliana)冬孢子生物学特性的研究Ⅱ.河北农业大学学报,1995,18(1):57-61.
    19.刘聪莉.鉴定玉米对丝黑穗病抗性的简易方法.莱阳农学院学报,1997,14(4):259-260.
    20.刘锡若,薛国典.玉米品种对丝黑穗病的抗病性和幼苗诊断的研究.植物保护学报,1983,10(4):274-275.
    21.倪深.玉米抗丝黑穗病相关基因的筛选及抗病机理初探.[硕士学位论文].武汉:华中农业大学图书馆,2006.
    22.任鄄胜,肖培村,陈勇,吕启明,王玉平,赵慧霞,李仕贵.水稻全基因组编码抗病基因同源序列分析.生物信息学,2010,2:91-98.
    23.石红良,姜艳喜,王振华,李新海,李明顺,张世煌.玉米抗丝黑穗病QTL分析.作物学报,2005,31(11):1449-1454.
    24.石红良.玉米抗丝黑穗病分子标记开发与主效抗病基因定位.[博士学位论文]雅安:四川农业大学,2009.
    25.宋淑云,孙秀华,郭文广,刘继荣.玉米种质资源抗丝黑穗病鉴定.吉林农业科学,2000,25:32-33.
    26.孙志超,刘文国,杨维国,邢跃先.吉林省玉米丝黑穗病研究进展及抗病品种选育.玉米科学,2007,15:130-132.
    27.谭明谱.水稻白叶枯病抗性基因Xa22(t)的克隆.[博士学位论文].武汉:华中农业大学,2004.
    28.王振华,姜艳喜,王立丰,金益,李新海,石宏良.玉米丝黑穗病的研究进展.玉米科学,2002,10:61-64.
    29.王振华,李新海,鄂文弟,于天江,张林,董玲,姜艳喜,金益.玉米抗丝黑穗病种质鉴定及遗传研究.东北农业大学学报,2004,35:261-267.
    30.魏健,李莉云,曹英豪,刘雨萌,巩校东,刘丽娟,张园园,刘国振.水稻类Tubby蛋白质在叶片生长和白叶枯病抗性反应中的表达.植物学报,2011,46:525-533.
    31.曾兴.144份玉米自交系纹枯病抗性相关性状的关联分析.[博士学位论文].雅安:四川农业大学,2011.
    32.赵羹梅,王淑芳,刘聪莉.玉米丝黑穗病原菌侵染的一些细胞学研究.植物病理学报,1991,21(4):267-270.
    33.赵晶.玉米抗丝黑穗病主效QTL的精细定位及其效应分析.[硕士学位论文].北 京:中国农业大学图书馆,2008.
    34.朱有缸.玉米不同抗性品种对丝黑穗菌在感病年龄上的差异.植物病理学报,1984,14(8):135-139.
    35. Anderson PA, Lawrence GJ, Morrish BC, Ayliffe MA, Finnegan EJ, Ellis JG. Inactivation of the flax rust resistance gene M associated with loss of a repeated unit within the leucine-rich repeat coding region. Plant cell,1997,9:641-651.
    36. Atwell S, Huang YS, Vilhjalmsson BJ, Willems Q Horton M, Li Y, Meng D, Platt A, Tarone AM, Hu TT, Jiang R, Muliyati NW, Zhang X, Amer MA, Baxter I, Brachi B, Chory J, Dean C, Debieu M, de Meaux J, et al. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature,2010,465:627-631.
    37. Audenaert K, De Meyer GB, Hofte MM. Abscisic acid determines basal susceptibility of tomato to B. cinerea and suppresses salicylic acid dependent signaling mechanisms. Plant Physiol,2002,28:491-501.
    38. Axtell MJ, Staskawicz BJ. Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4. Cell,2003,112: 369-377.
    39. Barrett JC, Fry B, Maller J, Daly MJ. Haploview:analysis and visualization of LD and haplotype maps. Bioinformatics.2005,21:263-265
    40. Belkhadir Y, Subramaniam R, Dangl JL. Plant disease resistance protein signaling: NBS-LRR proteins and their partners. Curr Opin Plant Biol,2004,7:391-399.
    41. Belo A, Zheng P, Luck S, Shen B, Meyer DJ, Li B, Tingey S, Rafalski A. Whole genome scan detects an allelic variant of fad2 associated with increased oleic acid levels in maize. Mol Genet Genomics,2007,279:1-10.
    42. Benjamins R, Scheres B. Auxin:the looping star in plant development. Annu Rev Plant Biol,2008,59:443-465.
    43. Bent AF, Kunkel BN, Dahlbeck D, Brown KL, Schmidt R, Giraudat J, Leung J, StaskawiczBJ. RPS2 of Arabidopsis thaliana:a leucine-rich repeat class of plant disease resistance genes. Science,1994,265:1856-1860.
    44. Bey M, Stuber K, Fellenberg K, Schwarz-Sommer Z, Sommer H, Saedler H, Zachgo S. Characterization of antirrhinum petal development and identification of target genes of the class B MADS box gene DEFICIENS. Plant Cell,2004,16:3197-3215.
    45. Bogerd HP, Fridell RA, Benson RE, Hua J, Cullen BR. Protein sequence requirements for function of the human T-cell leukemia virus type 1 Rex nuclear export signal delineated by a novel in vivo randomization-selection assay. Mol Cell Biol,1996,16:4207-4214.
    46. Bozkurt O, Hakki EE, Akkaya MS. Isolation and sequence analysis of wheat NBS-LRR type disease resistance gene analogs using degenerate PCR primers. Biochem Genet,2007,45:469-486.
    47. Breseghello F, Sorrells ME.Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics,2006,172:1165-1177.
    48. Brueggeman R, Rostoks N, Kudrna D, Kilian A, Han F, Chen J, Druka A, Steffenson B, Kleinhofs A. Barley stem rust-resistance gene Rpgl is a novel disease-resistance gene with homology to receptor kinases. Proc Natl Acad Sci, USA,2002,99:9328-9333.
    49. Brugmans B, Wouters D, van Os H, Hutten R, van der Linden G, Visser RG, van Eck HJ, van der Vossen EA. Genetic mapping and transcription analyses of resistance gene loci in potato using NBS profiling. Theor Appl Genet,2008,117:1379-1388.
    50. Bryan GT, Wu KS, Farrall L, Jia Y, Faulk KN, Donaldson GK, Tarchini R, Valent B. tA single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell,2000,12:2033-2046.
    51. Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz JC, Goodman MM, Harjes C, Guill K, Kroon DE, Larsson S, Lepark NK, Li H, Mitchell SE, Pressoir G, Peiffer JA, et al., The genetic architecture of maize flowering time. Science,2009,325:714-718.
    52. Bueschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, van Daelen R, van der Lee T, Diergaarde P, Groenendijk J, Topsch S, Vos P, Salamini F, Schulze-lefert P. The barley Mlo gene:A novel control element of plant pathogen resistance. Cell,1997,88:695-705.
    53. Cai D, Kleine M, Kifle S, Joachim HJ, Sandal NN, Marcker KA, Klein-Lankhorst RM, Salentijn EMJ, Lange W, Stiekema WJ, Wyss U, Grundler FMW, Jung C. Positional cloning of a gene for nematode resistance in sugar beet. Science,1997,275: 832-834.
    54. Camus-Kulandaivelu L, Veyricras JB, Madur D, Combes V, Fourmann M, Barraud S, Dubreuil P, Gouesnard B, Manicacci D, Charcosset A. Maize adaptation to temperate climate:relationship with population structure and polymorphism in the Dwarf8 gene. Genetics,2006,172:2449-2463.
    55. Chen YS, Chao Q, Tan G, Zhao J, Zhang M, Ji Q, Xu M. Identification and fine-mapping of a major QTL conferring resistance against head smut in maize. Theor Appl Genet,2008,117:1241-1252.
    56. Cokol M, Nair R, Rost B:Finding nuclear localization signals. EMBO Rep,2000,1: 411-415.
    57. Collins N, Drake J, Ayliffe M, Sun Q, Ellis J, Hulbert S, Pryor T. Cular characterization of the maize Rpl-D rust resistance haplotype and its mutants. Plant Cell,1999,11:1365-1376.
    58. Comadran J, Ramsay L, MacKenzie K, Hayes P, Close TJ, Muehlbauer G, Stein N, Waugh R. Patterns of polymorphism and linkage disequilibrium in cultivated barley. Theor Appl Genet,2011,122:523-31.
    59. Crossa J, Burgueno J, Dreisigacker S, Vargas M, Herrera-Foessel SA, Lillemo M, Singh RP, Trethowan R, Warburton M, Franco J, Reynolds M, Crouch JH, Ortiz R. Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics,2007,177:1889-1913.
    60. Dangl JL, Jones JD. Plant pathogens and integrated defence responses to infection. Nature,2001,411:826-833.
    61. De Young BJ, Innes RW. Plant NBS-LRR proteins in pathogen sensing and host defense. Nat Immunol,2006,7:1243-1249.
    62. Deslandes L, Olivier J, Peeters N, Feng DX, Khounlotham M, Boucher C, Somssich I, Genin S, Marco Y. Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proc Natl Acad Sci USA,2003,100:8024-8029.
    63. Despres C, DeLong C, Glaze S, Liu E, Fobert PR. The Arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors. Plant Cell,2000,12:279-290.
    64. Dinesh-Kumar SP, Tham W-H, Baker BJ. Structure-function analysis of the tobacco mosaic virus resistance gene N. Proc Natl Acad Sci, USA,2000,97:14789-14794.
    65. Dixon MS, Jones DA, Keddie JS, Thomas CM, Harrision K, Jones JDG. The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat proteins. Cell,1996,84:451-459.
    66. Dodds PN, Lawrence GJ, Ellis JG Six amino acid changes confined to the leucine-rich repeat beta-strand/beta-turn motif determine the difference between the P and P2 rust resistance specificities in flax. Plant Cell,2001,13:163-178.
    67. Dong X. Genetic dissection o f sstemic acquired resistance. Curr Opin Plant Biol, 2001,4:309-314.
    68. Dornelas MC, Patreze CM, Angenent GC, Immink RG MADS:the missing link between identity and growth? Trends Plant Sci,2011,16:89-97.
    69. Eddy SR. Profile hidden Markov models. Bioinformatics,1998,14:755-763.
    70. Edgar RC. Muscle:multiple sequence alignment with high accuracy and high throughput. Nucl Acid Res,2004,32:1792-1797.
    71. Ellis JG, Lawrence GL, Luck JE, Dodds PN. Identification of regions in alleles of the flax rust resistance gene L that determine differences in gene-for-gene specificity. Plant Cell,1999,11:495-506.
    72. Fan JB, Gunderson KL, Bibikova M,Yeakley JM, Chen J, Wickham GE, Lebruska LL, Laurent M, Shen R, Barker D. Illumina universal bead arrays. Methods Enzymol, 2006:401:57-73.
    73. Fernie AR, Schauer N. Metabolomics-assisted breeding:a viable option for crop improvement. Trends Genet,2009,25:39-48.
    74. Finkel E. With 'phenomics' plant scientists hope to shift breeding into overdrive. Science,2009,325:380-381.
    75. Finkelstein RR, Lynch TJ. The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell,2000,12:599-609.
    76. Flint-Garcia SA, Thuillet AC, Yu J, Presssoir G, Romero SM, Mitchell SE, Doebley J, Kresovich S, Goodman MM, Buckler ES. Maize association population:a high-resolution platform for quantitative trait locus dissection. Plant J,2005, 44:1054-1064
    77. Flors V, Ton J, Jakab G, Mauch-Mani B. Abscisic acid and callose:Team players in defense against pathogens. J Phytopathol,2005,153:7-8.
    78. Frederiksen RA, Reyes L. The head smut program at Taxas A &M University. Proceedings of the international workshop on sorghum diseases. ICRISAT, Hyderabad, India,1980,367-372.
    79. Frowd JA. A world review of sorghum smut. Proceeding s of the international workshop o n sorghum discases. ICRISAT, Hyderabad, India,1980,331-338.
    80. Gaut BS, Long AD. The lowdown of linkage disequilibrium. Plant Cell,2003,15: 1502-1506.
    81. Gebhardt C, Ballvora A, Walkemeier B, Oberhagemann P, Schuler K. Assessing genetic potential in germplasm collections of crop plants by marker-trait association: a case study for potatoes with quantitative variation of resistance to late blight and maturity type. Molecular Breeding,2004,13:93-102.
    82. Ghareeb H, Becker A, Iven T, Feussner I, Schirawski J. Sporisorium reilianum infection changes inflorescence and branching architectures of maize. Plant Physiol, 2011,156:2037-2052.
    83. Gilad Y, Pritchard JK, Thornton K. Characterizing natural variation using next-generation sequencing technologies. Trends Genet,2009,25:463-471.
    84. Gomez-Gomez L, Boller T. FLS2:an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell,2000,5: 1003-1011.
    85. Gordon D, Finch SJ. Factors affecting statistical power in the detection of genetic association. J Clin Invest,2005,115:1408-1418.
    86. Grant MR, Godiard L, Sattler A. Ashfield T, Lewald J, Sattler A, Innes RW, Dangl JL. Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science,1995,269:843-846.
    87. Halisky PM. Head smut of sorghum, sudan grass, and corn caused by Sphacelotheca reiliana (Kuhn) Clint. Hilgardia,1963,34:287-304.
    88. Hamblin MT, Warburton ML, Buckler ES. Empirical comparison of simple sequence repeats and single nucleotide polymorphisms in assessment of maize diversity and relatedness. PLoS ONE,2007,12:e1367.
    89. Hammond-Kosack K, Parker J E. Deciphering plant-pathogen communication:fresh per-spectives for molecular resistance breeding. Curr Opin Biotech,2003,4: 177-193.
    90. Hasegawa PM, Bressan RA. Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol,2000,51:463-499.
    91. He Z, Wang Z Y, Li J, Zhu Q, Lamb C, Ronald P, Chory J. Perception of brassinosteroids by the extracellar domain of the receptor kinase BRI1. Science,2000, 288:2360-2363.
    92. He ZH, Dong HT, Dong JX, Li DB, Ronald PC. The rice Rim2 transcript accumulates in response to Magnaporthe grisea and its predicted protein product shares similarity with TNP2-like proteins encoded by CACTA transposons. Mol Gen Genet,2000,264:2-10.
    93. Heinekamp T, Kuhlmann M, Lenk A, Strathmann A, Droge-Laser W. The tobacco bZIP transcription f act or BZIP1 binds t o G-box element s in the promoters of pheny lpropanoid pathway genes in vitro, but it is not involved in their regulation in vivo. Mol Genet Genomics,2002,267:16-26.
    94. Hendre PS, Bhat PR, Krishnakumar V, Aggarwal RK. Isolation and characterization of resistance gene analogues from Psilanthus species that represent wild relatives of cultivated coffee endemic to India. Genome,2011,54:377-390.
    95. Holub EB, The arms race is ancient history in Arabidopsis, the wildflower. Nat Rev Genet,2001,2:516-527.
    96. Hong WC, Griffith M, Mlynarz A, Kwok YC, Yang DS. Antifreeze proteins in winter rye are similar to pathogenesis-related proteins. Plant Physiol,1995,109:879-889.
    97. Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 2009 5(6):e1000529.
    98. Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z, Li M, Fan D, Guo Y, Wang A, Wang L, Deng L, Li W, Lu Y, Weng Q, Liu K, et al. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet, 2010,42:961-967.
    99. Hulbert SH, Webb CA, Smith SM, Sun Q. Resistance gene complexes:evolution and utilization. Annu Rev Phytopathol,2001,39:285-312.
    100.Hulbert SH, Webb CA, Smith SM, Sun Q. Resistance gene complexes:evolution and utilization. Annu Rev Phytopathol.2001,39:285-312.
    101.Hwang CF, Williamson VM. Leucine-rich repeat-mediated intramolecular interactions in nematode recognition and cell death signaling by the tomato resistance protein Mi. Plant J,2003,34:585-593.
    102.Hyten DL, Choi IY, Song Q, Shoemaker RC, Nelson RL, Costa JM, Specht JE, Cregan PB. Highly variable patterns of linkage disequilibrium in multiple soybean populations. Genetics,2007,175:1937-1944.
    103.Imelfort M, Edwards D. De novo sequencing of plant genomes using second-generation technologies. Brief Bioinform,2009,10:609-618.
    104. Iyer AS, McCouch SR. The rice bacterial blight resistance gene xa5 encodes a novel form of disease resistance. Mol Plant Microbe Interact,2004,17:1348-1354.
    105. Jackson GM, Njuguna. Combating head smut of maize caused by Sphacelotheca reiliana through resistance breeding. In:CIMMYT and KARI, eds. proceedings of seventh eastern and southern Africa regional maize conference. Nairobi, Keny,2001, 110-112.
    106. Jain M, Nijhawan A, Arora R, Agarwal P, Ray S, Sharma P, Kapoor S, Tyagi AK, Khurana JP. F-box proteins in rice. Genome-wide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress. Plant Physiol,2007,143:1467-1483.
    107. Jang J, Leon P, Zhou L, Sheen J. Hexokinase as a sugar sensor in higher plants. Plant Cell,1997,9:5-19.
    108. Jia Y, McAdams SA, Bryan GT, Hershey HP, Valent B. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J, 2000,19:4004-4014.
    109. Jia Y, McAdams SA, Bryan GT, Hershey HP, Valent B. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J, 2000,19:4004-1014.
    110. Johal GS, Briggs SP. Reductase activity encoded by the Hml disease resistance gene in maize. Science,1992,258:985-987.
    111. Johnson C, Boden E, Arias J. Salicylic acid and NPR1 induce the recruitment of trans-activating TGA factors to a defense gene promoter in Arabidopsis. Plant Cell, 2003,15:1846-1858.
    112. Jones G, Machado Jr. J, Tolnay M, Merlo A. PTEN-independent induction of caspase-mediated cell death and reduced invasion by the focal adhesion targeting domain (FAT) in human astrocytic brain tumors which highly express focal adhesion kinase (FAK). Cancer Research,2001,61:5688-5691.
    113. Jones JD, Dangl JL. The plant immune system. Nature,2006,444:321-329.
    114. Kazan K, Manners JM. Linking development to defense:auxin in plant-pathogen interactions. Trends Plant Sci.2009,14:373-382.
    115. Kim S, Plagnol V, Hu TT, Toomajian C, Clark RM, Ossowski S, Ecker JR, Weigel D, Nordborg M. Recombination and linkage disequilibrium in Arabidopsis thaliana. Nat Genet,2007,39:1151-1155.
    116. Kleyn PW, Fan W, Kovats SG, lee JJ, Pulido JC, Wu Y, Berkemeier LR, Misumi DJ, Holmgren L, Charlat O, Woolf EA, Tayber O, Brody T, Shu P, Hawkins F, Kennedy B, Baldini L, Ebeling C, Alperin GD, Deeds J, et al. Identification and characterization of the mouse obesity gene tubby:a member of a novel gene family. Cell,1996,85:281-290.
    117. Knapp SJ, Stroup WW, Ross WM. Exact confidence intervals for heritability on a progeny mean basis, Crop. Sci.25:192-195.
    118. Koga H, Dohi K, Moil M. Abscisic acid and low temperatures suppress the whole plant-specific resistance reaction of rice plants to the infection with Magnaporthe grisea. Physiol Mol Plant P,2004,65:3-9.
    119. Kohany O, Gentles AJ, Hankus L, Jurka J. Annotation, submission and screening of repetitive elements in Repbase:RepbaseSubmitter and Censor. BMC Bioinformatics,2006,25:474.
    120. Kou Y, Qiu D, Wang L, Li X, Wang S. Molecular analyses of the rice tubby-like protein gene family and their response to bacterial infection. Plant Cell Rep,2009,28: 113-121.
    121. Kraakman AT, Niks RE, van den Berg PM, Stam P, van Eeuwijk FA. Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics,2004,168:435-446.
    122. Kump KL, Bradbury PJ, Wisser RJ, Buckler ES, Belcher AR, Oropeza-Rosas MA, Zwonitzer JC, Kresovich S, McMullen MD, Ware D, Balint-Kurti PJ, Holland JB. Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nat Genet,2011,43:163-168.
    123. La Cour T, Kiemer L, Molgaard A, Gupta R, Skriver K, Brunak S:Analysis and prediction of leucine-rich nuclear export signals. Protein Eng Des Sel,2004,17: 527-536.
    124. Lai CP, Lee CL, Chen PH, Wu SH, Yang CC, Shaw JF. Molecular analyses of the Arabidopsis TUBBY-like protein gene family. Plant Physiol,2004,134:1586-1597.
    125. Laurie CC, Chasalow SD, LeDeaux JR, McCarroll R, Bush D, Hauge B, Lai C, Clark D, Rocheford TR, Dudley JW. The genetic architecture of response to long-term artificial selection for oil concentration in the maize kernel. Genetics,2004, 168:2141-2155.
    126. Lee SC, Choi HW, Hwang IS, Choi du S, Hwang BK. Functional roles of the pepper pathogen-induced bZIP transcription factor, CAbZIPl, in enhanced resistance to pathogen infection and environmental stresses. Planta,2006,224:1209-1225.
    127. Leister D. Tandem and segmental gene duplication and recombination in the evolution of plant disease resistance gene. Trends Genet,2004,20:116-122.
    128. Lewontin RC. The interaction of selection and linkage. I. General considerations; heterotic models. Genetics,1964,49:49-67.
    129. Li C, Zhou A, Sang T. Rice domestication by reducing shattering. Science,2006, 311:1936-1939.
    130. Li D, Roberts R. WD-repeat proteins:structure characteristics, biological function, and their involvement in human diseases. Cell Mol Life Sci,2001,58:2085-2097
    131. Liu J, Liu X, Dai L, Wang G. Recent Progress in Elucidating the Structure, Function andEvolution of Disease Resistance Genes in Plants. Journal of Genetics and Genomics,2007,34:765-776
    132. Liu K, Goodman M, Muse S, Smith JS, Buckler E, Doebley J. Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites. Genetics,2003,165:2117-2128.
    133. Long AD, Langley CH. The power of association studies to detect the contribution of candidate genetic loci to variation in complex traits. Genome Res,1999,9: 720-731.
    134. Lu XW, Brewbaker JL. Molecular mapping of QTLs conferring resistance to Sphacelotheca reiliana (Kuhn) Clint. Maize Genetics Cooperation Newsletter,1999, 73:36.
    135. Lubberstedt T, Xia XC, Tan G, Liu X, Melchinger AE. QTL mapping of resistance to Sporisorium reiliana in maize. Theor Appl Genet,1999,99:593-598
    136. Lubberstedt T, Zein I, Andersen JR, Wenzel G, Kriitzfeldt B, Eder J, OuzunovM a, Chun S. Development and application of functional markers in maize. Euphytica, 2005,146:101-108.
    137. Malamy J, Carr JP, Klessig DF, Raskin I. Salicylic Acid:a likely endogenous signal in the resistance response of tobacco to viral infection. Science、1990,250: 1002-1004.
    138. Maleck K, Levine A, Eulgem T, Morgan A, Schmid J, Lawton KA, Dangl JL, Dietrich RA. The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat Genet,2000,26:403-410.
    139. Manicacci D, Camus-Kulandaivelu L, Fourmann M, Arar C, Barrault S, Rousselet A, Feminias N, Consoli L, Frances L, Mechin V, Murigneux A, Prioul JL, Charcosset A, Damerval C. Epistatic interactions between opaque2 transcriptional activator and its target gene CyPPDKl control kernel trait variation in maize. Plant Physiol,2009, 150:506-520.
    140. Marchini J, Howie B. Genotype imputation for genome-wide association studies. Nat Rev Genet,2010,11:499-511.
    141. Marchler-Bauer A, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, He S, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Liebert CA, Liu C, Lu F, Lu S,Marchler GH, et al. CDD: specific functional annotation with the Conserved Domain Database. Nucleic Acids Res,2009,37:205-210.
    142. Martin GB, Bogdanove AJ, Sessa AJ. Understanding the functions of plant disease resistance proteins. Annu Rev Plant Biol,2003,54:23-61.
    143. Martin GB, Frary A, Wu T, Brommonschenkel S, Chunwongse J, Earle ED, Tanksley SD. A Member of the Tomato Pto Gene Family Confers Sensitivity to Fenthion Resulting in Rapid Cell Death. Plant Cell,1994,6:1543-1552.
    144. Martinez C, Roux C, Jauneau A, B'ecard G, Dargent R. Effect of water potential on the development of an haploid strain of Sporisorium reilianum f. sp.Zeae. Plant and Soil,2003,251:65-71.
    145. Mather KA, Caicedo AL, Polato NR, Olsen KM, McCouch S, Purugganan MD. The extent of linkage disequilibrium in rice (Oryza sativa L.). Genetics,2007,177: 2223-2232.
    146. Matyac CA. Histological development of Phacelotheca reiliana on Zea mays. Phytopathology,1985,75:924-929.
    147. Mauch-Mani B, Mauch F. The role of abseisic acid in plant-pathogen interactions. Curr Opin Plant Biol,2005,8:409-414.
    148. McFadden HG, Lehmensiek A, Lagudah ES. Resistance gene analogues of wheat: molecular genetic analysis of ESTs. Theor Appl Genet,2006,113:987-1002.
    149. McMullen MD, Jones MW, Simcox KD, Louie R. Three genetic loci control resistance to wheat streak mosaic virus in the maize inbred Pa405. Mol Plant Microbe In,1994,7:708-712.
    150. Meier I, Somers DE. Regulation of nucleocytoplasmic trafficking in plants. Curr Opin Plant Biol,2011,14:538-546.
    151. Melchinger AE, Kuntze L, Gumber RK, Lu"bberstedt T, Fuchs E. Genetic basis of resistance to sugarcane mosaic virus in European maize germplasm. Theor Appl Genet,1998,96:1151-1161.
    152. Meng XB, Zhao WS, Lin RM, Wang M, Peng YL. Identification of a novel rice bZIP-type transcription factor gene, OsbZIPl, involved in response to infection of Magnaporthe grisea. Plant Mol Biol Rep,2005,23:301-313.
    153. Messmer R, Fracheboud Y, Banziger M, Vargas M, Stamp P, Ribaut JM. Drought stress and tropical maize:QTL-by-environment interactions and stability of QTLs across environments for yield components and secondary traits. Theor Appl Genet. 2009,119:913-930.
    154. Meyer K, Keil M, Naldrett MJA. Leucine-rich repeat protein of carrot that exhibits antifreeze activity. FEBS Lett,1999,447:171-178.
    155. Meyers BC, Dickerman AW, Michelmore RW, Sivaramakrishnan S, Sobral BW, Young ND. Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J,1999,20:317-332.
    156. Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW. Genome-Wide Analysis of NBS-LRR-Encoding Genes in Arabidopsis. Plant Cell,2003,15: 809-834.
    157. Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW.Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell,2003,15:809-834.
    158. Ming R, Brewbaker JL, Pratt RC, Musket TA, McMullen MD. Molecular mapping of a major gene conferring resistance to maize mosaic virus. Theor Appl Genet,1997, 95:271-275.
    159. Mockaitis K, Howell SH. Auxin induces mitogenic activated protein kinase (MAPK) activation in roots of Arabidopsis seedlings. Plant J,2000,24:785-796.
    160. Monosi B, Wisser RJ, Pennill L, Hulbert SH. Full-genome analysis, of resistance gene homologues in rice. Thero Appl Genet,2004,109:1434-1447.
    161. Montes JM, Melchinger AE, Reif JC. Novel throughput phenotyping platforms in plant genetic studies. Trends Plant Sci,2007,12:433-436.
    162. Moore JH, Asselbergs FW, Williams SM. Bioinformatics challenges for genome-wide association studies. Bioinformatics,2010,26:445-455.
    163. Mou Z, Fan W, Dong X. Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell,2003,113:935-944.
    164. Mucyn TS, Clemente A, Andriotis VM, Balmuth AL, Oldroyd GE, Staskawicz BJ, Rathjen JP. The tomato NBARC-LRR protein Prf interacts with Pto kinase in vivo to regulate specific plant immunity. Plant Cell,2006,18:2792-2806.
    165. Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang Z, Costich DE, Buckler ES. Association mapping:Critical considerations shift from genotyping to experimental design. Plant Cell,2009,21:2194-2202.
    166. Noben-Trauth K, Nagger JK, North MA, Nishima PM. A candidate gene for the mouse mutation tubby. Nature,1996,380:534-538.
    167. Nordborg M, Borevitz JO, Bergelson J, Berry CC, Chory J, Hagenblad J, Kreitman M, maloof JN, Noyes T, Oefner PJ, Stahl EA, Weigel D. The extent of linkage disequilibrium in Arabidopsis thaliana. Nat Genet,2002,30:190-193.
    168. Nordborg M, Weigel D. Next-generation genetics in plants. Nature,2008,456: 720-723.
    169. Ossowski S, Schneeberger K, Clark RM, Lanz C, Warthmann N, Weigel D. Sequencing of natural strains of Arabidopsis thaliana with short reads. Genome Res, 2008,18:2024-2033.
    170. Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, et al. The Sorghum bicolor genome and the diversiWcation of grasses. Nature,2009,457: 551-556.
    171. Patterson N, Price AL, Reich D. Population structure and eigenanalysis. PLoS Genet,2007,2:e90.
    172. Pe ME, Gianfranceschi L, Taramino G, Tarchini R, Angelini P, Dani M, Binelli G. Mapping quantitative trait loci (QTL) for resistance to Gibberella zeae infection in maize. Mol Gen Genet,1993,241:11-16.
    173. Pouteau S, Grandbastien AM, Boccara B. Microbial elicitors of plant defence responses activate transcription of a retrotransposon. Plant J,1994,5:535-542.
    174. Rafalski A, Morgante M. Corn and humans:recombination and linkage disequilibrium in two genomes of similar size. Trends Genet,2004,20:103-111.
    175. Rafalski A. Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol,2002,5:94-100.
    176. Rafalski JA. Association genetics in crop improvement. Curr Opin Plant Biol,2010, 13:1-7.
    177. Rathjen J P, Moffett P. Early signal transduction events in specific plant disease resistance. Curr Opin Plant Biol,2003,6:300-306.
    178. Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR, Doebley J, Kresovich S, Goodman MM, Buckler ES. Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci USA,2001,98: 11479-11484.
    179. Robert H S, Friml J. Auxin and other signals on the move in plants. Nature Chemical Biology,2009,5:325-332
    180. Rostoks N, Ramsay L, MacKenzie K, Cardie L, Bhat PR, Roose ML, Svensson JT, Stein N, Varshney RK, Marshall DF, Graner A, Close TJ, Waugh R. Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties. Proc Natl Acad Sci U S A.2006,103:18656-18661.
    181. Salamov AA, Solovyev VV. Ab initio gene finding in Drosophila genomic DNA. Genome Res,2000,10:516-522.
    182. Sanz-Alferez S, Richter TE, Hulbert SH, Bennettzen, JL. The Rp3 disease resistance gene of maize:mapping and characterization of introgressed alleles. Theor Appl Genet,1995,91:25-32.
    183. Schaad MC, Anderberg RJ, Carrington JC. Strain-specific interaction of the tobacco etch virus Nla protein with the translation initiation factor eIF4E in the yeast teo-hybrid system. Virology,2000,273:300-306.
    184. Schlogl PS, Nogueira FT, Drummond R, Felix JM, De Rosa VE, Jr Vicentini R, Leite A, Ulian EC, Menossi M. Identification of new ABA-and MEJA-activated sugarcane bZIP genes by data mining in the SUCEST database. Plant Cell Rep,2008, 27:335-345.
    185. Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, et al. The B73 maize genome:complexity, diversity, and dynamics. Science,2009,326:1112-1115.
    186. Schon CC, Lee M, Melchinger AE, Guthrie WD, Woodman WL. Mapping and characterization of quantitative trait loci affecting resistance against second-generation European corn borer in maize with the aid of RFLPs. Heredity, 1993,70:648-659.
    187. Setter TL, Yan J, Warburton M, Ribaut JM, Xu Y, Sawkins M, Buckler ES, Zhang Z, Gore MA. Genetic association mapping identifies single nucleotide polymorphisms in genes that affect abscisic acid levels in maize floral tissues during drought. J Exp Bot,2011,62:701-716.
    188. Shi HL, Jiang YX, Wang ZH, Li XH, Li MS, Zhang SH. QTL identification of resistance to head smut in maize. Acta Agron Sin,2005,31:1449-1454.
    189. Shi J, An HL, Zhang L, Gao Z, Guo XQ. GhMPK7, a novel multiple stress-responsive cotton group C MAPK gene, has a role in broad spectrum disease resistance and plant development. Plant Mol Biol,2010,74:1-17.
    190. Simon SA, Zhai J, Nandety RS, McCormick KP, Zeng J, Mejia D, Meyers BC. Short-read sequencing technologies for transcriptional analyses. Annu Rev Plant Biol, 2009,60:305-333.
    191. Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holston LY, Gardner T, Wang B, Zhai WX, Zhu LH, Fauguet C, Ronald P. A receptor kinase-like protein encoded by the rice disease resistance gene Xa21. Science,1995,270:1772-1804.
    192. Sreenivasulu N, Sopory SK, Kavi Kishor PB. Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches, Gene,2007, 388:1-13.
    193. Strathmann A, Kuhlmann M, Heinekamp T, Droge-Laser W. BZI-1 specifically heterodimerises with the tobacco bZIP transcription factors BZI-2, BZI-3/TBZF and BZI-4, and is functionally involved in flower development. Plant J,2001,28:397-408.
    194. Subramaniam R, Desveaux D, Spickler C, Michnick SW, Brisson N. Direct visualization of protein interactions in plant cells. Nat Biotechnol,2001,19:769-772.
    195. Sun X, Cao Y, Yang Z, Xu C, Li X, Wang S, Zhang Q. Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-like protein. Plant J,2004,37:517-527.
    196. Swiderski M R, Innes R.W. The Arabidopsis PBS1 resistance gene encodes a member of a novel protein kinase subfamily. Plant J,2001,26:101-112.
    197. Tameling WIL, Elzinga SDJ, Darmin PS, Vossen JH, Takken FLW, Haring MA, Cornelissen BJC. The Tomato R Gene Products 1-2 and Mi-1 Are Functional ATP Binding Proteins with ATPase Activity. Plant Cell,2002,14:2929-2939.
    198. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol,2011,28:2731-2739.
    199. Tenaillon M, Sawkins MC, Long AD, Anderson LK, Gaut RL, Doebley JF, Gaut BS. Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.). Proc Natl Acad Sci USA,2001,98:9661-9166.
    200. Thornsberry JM, Goodman MM, Docbley J, Stephen Kresovich S, Nielsen D and Buckler ES. Dwarf8 polymorphisms associate with variation in flowering time. Nature Genetics,2001,28:286-289.
    201. Tian F, Bradbury PJ, Brown PJ, Hung H, Sun Q, Flint-Garcia S, Rocheford TR, McMullen MD, Holland JB, Buckler ES. Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet,2011,43: 159-162.
    202. Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci USA,2000,97:11632-1167.
    203. Van der Biezen EA, Jones JD. Plant disease-resistance proteins and the gene-for-gene concept. Trends Biochem Sci,1998,23:454-456.
    204. Van der Hoorn RA, Wulff BB, Rivas S, Durrant MC, van der Ploeg A, de Wit PJ, Jones JD. Structure-function analysis of cf-9, a receptor-like protein with extracytoplasmic leucine-rich repeats. Plant Cell,2005,17:1000-1015.
    205. Van Inghelandt D, Melchinger AE, Lebreton C, Stich B. Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers. Theor Appl Genet,2010,120:1289-1299.
    206. Varshney RK, Nayak SN, May GD, Jackson SA. Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends in Biotechnology,2009,27,522-530.
    207. Volko SM, Boller T, Ausubel FM. Isolation of Arabidopsis mutants with enhanced disease susceptibility by direct screening. Genetics,1998,149:537-548.
    208. Wang M, Zhang XB, Zhao JR, Song W, Zheng YL. Evaluation of the genetic diversity and genome-wide linkage disequilibrium of Chinese maize inbred lines. AJCS,2011,5:1790-1795.
    209. Wang RH, Yu YT, Zhao JR, Shi YS, Song YC, Wang TY, Li Y. Population structure and linkage disequilibrium of a mini core set of maize inbred lines in China. Theor Appl Genet,2008,117:1141-1153.
    210. Wang ZX, Yano M, Yamanouchi U, Iwamoto M, Monna L, Haysaka H, Katayose Y, Sasaki T. The Pib gene for rice blast resistance belongs to the nucleotide binding and leucinerich-repeat class of plant disease resistance genes. The Plant Journal,1999,19: 55-64.
    211. Weber A, Clark RM, Vaughn L, Sanchez-Gonzalez JJ, Yu J, Yandell BS, Bradbury P, Doebley J. Major regulatory genes in maize contribute to standing variation in Teosinte (Zea mays ssp. parviglumis). Genetics,2008,177:2349-2359.
    212. Weigel D, Mott R. The 1001 genomes project for Arabidopsis thaliana. Genome Biol,2009,10:107.
    213. Wisser RJ, Kolkman JM, Patzoldt ME, Holland JB, Yu J, Kxakowsky M, Nelson RJ, Balint-Kurti PJ. Multivariate analysis of maize disease resistances suggests a pleiotropic genetic basis and implicates a GST gene. Proc Natl Acad Sci USA,2011, 108:7339-7344.
    214. Wright SI, Bi IV, Schroeder SG, Yamasaki M, Doebley JF, McMullen MD, Gaut BS. The effects of artifical selection on the maize genome. Science,2005,308: 1310-1314.
    215. Xiao S, Ellwood S, Calis O, Patrick E, Li T, Coleman M, Turner JG. Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8. Science, 2001,291:118-120.
    216. Xiao W, Xu M, Zhao J, Wang F, Li J, Dai J. Genome-wide isolation of resistance gene analogs in maize (Zea mays L.). Theor Appl Genet,2006,113:63-72.
    217. Xie CX, Warburton M, Li MS, Li XH, Xiao MJ, Hao ZF, Zhao Q, Zhang SH. An analysis of population structure and linkage disequilibrium using multilocus data in 187 maize inbred lines. Mol Breed,2008,21:407-418.
    218. Xu M L. Species-specific detection of maize pathogens Sporisorium reiliana and ustilago maydis by Dot Blot Hybridiation and PCR-based assays. Plant Disease,1999, 83(4):390-395.
    219. Xu Q, Wen X, Deng X. Isolation of TIR and non-TIR NBS-LRR resistance gene analogues and identification of molecular markers linked to a powdery mildew resistance locus in chestnut rose (Rosa roxburghii Tratt). Theor Appl Gene,2006,111: 819-830.
    220. Xu YB, Beachell H, McCouch SR. A marker-based approach to broadening the genetic base of rice (Oryza sativa L.) in the US. Crop Sci,2004,44:1947-1959.
    221. Yan JB, Kandianis CB, Harjes CE, Bai L, Kim EH, Yang XH, Skinner DJ, Fu Z, Mitchell S, Li Q, Fernandez MG, Zaharieva M, Babu R, Fu Y, Palacios N, Li J, Dellapenna D, Brutnell T, Buckler ES, Warburton ML, Rocheford T. Rare genetic variation at Zea mays crtRBl increases beta-carotene in mainze grain. Nat Genet, 2010a,42:322-327.
    222. Yan JB, Shah T, Warburton ML, Buckler ES, McMullen MD, Crouch J. Genetic characterization and linkage disequilibrium estimation of a global maize collection using SNP markers. PLoS ONE,2009a,4:e8451.
    223. Yan JB, Shah T, Warburton ML, Buckler ES, McMullen MD, Crouch J. Genetic characterization and linkage disequilibrium estimation of a global maize collection using SNP markers. PLoS One,2009b,4:e8451.
    224. Yan JB, Yang XH, Shah T, Sanchez-Villeda H, Li J, Warburton M, Zhou Y, Crouch JH, Xu Y. High-throughput SNP genotyping with the GoldenGate assay in maize. Mol Breeding,2010b,25:441-451.
    225. Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, Madden PA, Heath AC, Martin NG, Montgomery GW, Goddard ME, Visscher PM. Common SNPs explain a large proportion of heritability for human height. Nat Genet,2010,42: 565-529.
    226. Yang X, Gao S, Xu S, Zhang Z, Prasanna BM, Lin L, Li J, Yan J. Characterization of a global germplasm collection and its potential utilization for analysis of complex quantitative traits in maize. Mol Breeding,2011,28:511-526.
    227. Yeh S, Moffatt BA, Griffith M, Xiong F, Yang DSC. Chitinase genes responsive to cold encode antifreeze proteins in winter cereals. Plant Physiol,2000,124: 1251-1264.
    228. Yu J, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley J, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet,2005,38:203-208
    229. Yu J, Zhang Z, Tabanao D, Gail P, Kresovich S, Todhunter R. Simulation of appraisal of the adequacy of number of background makers for relationship estimation in association mapping. The Plant Genome,2009,2:63-77.
    230. Yue JX, Meyers BC, Chen JQ, Tian DC, Yang SH. Tracing the origin and evolutionary history of plant nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes. New Phytol,2012,193:1049-1063.
    231. Zamora A, Sun Q, Hamblin MT, Aquadro CF, Kresovich S. Positively selected disease response orthologous gene sets in the cereals identified using Sorghum bicolor L. Moench expression profiles and comparative genomics. Mol Biol Evol, 2009,26:2015-2030.
    232. Zhang N, Xu Y, Akash M, McCouch S, Oard J H. Identification of candidate markers associated with agronomic traits in rice using discriminant analysis. Theor Appl Genet,2005,110:721-729.
    233. Zhang SH, Wan Y, Pan HY. Transgenic rice plants expressing a novel antifreeze glycopeptide possess resistance to cold and disease. Z Naturforsch C,2007,62: 583-591.
    234. Zhao K, Aranzana MJ, Kim S, Lister C, Shindo C, Tang C, Toomajian C, Zheng H, Dean C, Marjoram P, Nordborg M. An Arabidopsis example of association mapping in structured samples. PLoS Genet,2007,3:e4.
    235. Zhu C, Gore M, Buckler ES, Yu J. Status and prospects of association mapping in plants. The Plant Genome,2008,1:5-20.
    236. Zhu C, Yu J. Nonmetric multidimensional scaling corrects for population structure in association mapping with different sample types. Genetics,2009,182:875-888.
    237. Zou M, Guan Y, Ren H, Zhang F, Chen F. A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance. Plant Mol Biol,2008,66:675-683.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700