新萘酰亚胺类荧光分子探针的合成及对金属离子的识别
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属离子是化学、生命科学、环境科学和医学等许多科学领域研究的重要对象,对溶液中金属离子的识别和检测是分析化学的主要任务之一。荧光分子探针检测法不仅简便,而且在高灵敏度、选择性、时间分辨、实时原位检测方面均有突出优点。因此在传统的受体分子上按照荧光分子传感器设计原理连接荧光团构造的超分子荧光传感器用于识别金属离子的研究受到越来越广泛的关注。
     设计并合成了3个仅连接一个氮原子受体作为识别基的简单结构的萘酰亚胺荧光分子探针,通过对其在不同溶剂体系中与金属离子作用时的荧光光谱变化的研究,提出了结构简单的“荧光发色团-连接基-受体”类型的荧光分子探针(如带有氨乙基受体)在有机溶剂中对过渡金属离子的开关作用,可能不是过渡金属离子与荧光分子探针直接作用的结果,是由于有机溶剂中存在的微量水或加入的过渡金属水合盐等带入的水使过渡金属离子水解,水解产生的氢质子与荧光分子探针的受体结合,阻断了光诱导电子转移(PET)过程,导致荧光增强。
     基于PET原理,设计并合成了新型荧光分子开关4,5-二[2-(N’,N’-二甲氨基)乙氨基]-1,8-萘酰亚胺(H1)、4,5-二[3-(N’,N’-二甲氨基)丙氨基]-1,8-萘酰亚胺(H2)及4-氯-5-(N-甲基哌嗪基)-1,8-萘酰亚胺(H3)。在tris-HC1中性缓冲溶液中,H1与Ag~+结合后,体系颜色由黄绿色变为红色,H1为Ag~+的专一选择性变色识别探针;而且H1通过荧光淬灭选择性地识别金属离子Cu~(2+)、Ag~+,H1分别与Cu~(2+)、Ag~+形成了1:2和1:1的络合物。
     设计并合成了新型类冠醚荧光分子开关4,5-二[2-(2-羟乙氨基)乙氨
    
     大连理工大学博士学位论文
    基卜1,8一蔡酞亚胺(Cl)、4,5一二【2一(2一轻乙氧基)乙氨基卜1,8一蔡酸亚胺(C2)及4,5-
    二(2一轻乙氨基卜1,8一蔡酞亚胺(C3)。在tris-HCI中性缓冲溶液中,cl选择性地
    识别金属离子cu2+、co2+,在金属离子浓度为。一1 x 10一5 mol/l范围内,其荧光
    强度及吸光度分别与Cu2+、Co2+的浓度呈线性关系。设计并合成了冠醚类荧光
    分子开关C4一cs,在甲醇一四甲基氢氧化钱体系中cs选择性识别金属离子zn2+,
    Zn2+使CS荧光明显增强。
     合成了蔡酞亚胺衍生物季钱盐阳离子表面活性剂一碘化4一(N’,N’一二甲基
    呱嚓基卜N-烷基一1,8一蔡酞亚胺(sl、52、53和54),该类化合物有明显的临界
    胶束浓度。利用共振光散射技术研究了51与DNA的相互作用,建立了利用
    51为光散射探针,测定纳克级核酸的新方法。在一定pH值的条件下,51能
    与小牛胸腺DNA相互作用,光散射强度较单一的51体系和DNA体系明显增
    强,无需加入表面活性剂和无机盐。对ct一DNA的检出限达到9 .5 ng/ml,线性
    范围为0一4林g/ml。
     研究了卤代蔡醉的室温磷光性质。卤代蔡配在以NaZSO3作化学除氧剂
    环己烷作为起空间调节和空间匹配作用的第三组分,p一CD作为保护性介质
    在无外重原子存在的条件下,可以发射强而稳定的室温磷光。
The analysis and detection of the transition metal ions is currently of significant importance for chemistry, as they are closed with biology, environment and clinic. The method of fluorescence is not only simple but also can realize real space, real time, high sensitive and selective. So the fluorescence supramolecular sensors, which are composed of traditional receptors connecting fluorophores, to metal ions are attracting many people's attentions.
    Three naphthalimide fluorescent probes were designed based on PET principle and synthesized for studying the recognition mechanism of the fluorescent probes to transition metal ions in organic solvents, and the spectra of the probes in the absence or presence of metal ions in different solvents were studied. The results showed that the fluorescence enhancement corresponding to transition metal ions of the probes in fluorophore-spacer-receptor format in organic solvent, might be induced by protons, which originated from the hydrolysis of transition metal ions in the presence of trace water in solvents or in metal ions hydrate salts, the fluorescence enhancement might not be from the direct interaction between probes and metal ions in organic solvents.
    The novel fluorosensors of 4,5-disubstituted-N-alkyl-l,8-naphthalimides derivatives(Hl, H2, H3) with double ethylenediamino receptors, double propylenediamino receptors or one methylpiperazine receptor were designed and synthesized, respectively, their fluorescence and absorption spectra in the presence or absence of metal ions in tris-HCl buffer aqueous solution were studied. In the presence of Ag+, the H1's absorption displayed color change from yellow-green to red, its quenching and red shift in fluorescence were also remarkable. Similarly, H1's fluorescence was also strongly quenched in the presence of Cu2+.
    The novel fluorosensors of 4,5-di(2-hydroxylethyleneamino) ethyleneamino -N-dodycyl-1, 8-naphthalimides and its analogues(Cl, C2, C3), which can formed
    
    
    crown ether-like receptors through the intramolecular hydrogen-bonding of hydroxyl groups at the end, were designed and synthesized. Their fluorescent spectra in tris-HCl buffer aqueous solution were recorded in the presence or absence of transition metal ions. Cl showed a strong quenching and a considerable blue shift response to Cu2+ and Co2+, and both of the fluorescence intensity and absorption of Cl were proportional to the concentration of Cu2+ or Co2+ in the range of 0-1 xl0"5 mol/l. The crown fluorosensors C4-C8 was designed and synthesized. And the fluorescence intensity of C8 was enhanced when zinc ions was added to its methanol-tetramethylhydroxylammonium solution.
    The naphthalimide cationic surfactants with piperazine were synthesized (SI, S2, S3, S4), and the cmc values of this kind of compounds were determined. The interaction of S1 with DNA was studied by resonance light scatting (RLS) in common fluorescent spectrameter, and the assay of determined DNA using S1 as RLS probe was built. In the absence of salt and surfactants, the RLS intensity of SI in DNA system was enhanced obviously compared with S1 or DNA single system with pH at 2.28. The increasing of RLS intensity is proportional to the concentration of DNA in the range of 0-4 u?ml for ct-DNA when the concentration of SI is l.0xl0-5 mol/l, and the detection limit (S/N = 5) is 9.5 ng/ml.
    Phosphorescence (RTP) of halogen naphthalic anhydride at room temperature was studied. The results showed that halogen naphthalic anhydride could emit strong and stable room temperature phosphorous when Na2SO3 as a chemical deoxygenator, P-CD as a protective medium and without heavy atom perturber, which imply that halogen naphthalic anhydride may be used as phosphor.
引文
1. Pederson C. J. Cyclic Polyethers and Their Complexes with Metal Ions. J. Am. Chem. Soc. 1967, 89, 2495-2496
    2. Cram D. J., Cram J. M. Host-Guest chemistry. Science. 1974, 183, 803-809
    3. Lehn J. M., Sauvage J. P. [2]-cryptates: stability and selectivity of alkali and alkalineearth macrobicyclic complexes. J. Am. Chem. Soc. 1975, 97, 6700-6707
    4. Atwood J. L., Davies J.E.D., MacNicol D. D., Vgtle F. Comprehensive Supramolecular Chemistry, Elsevier, Oxford, UK, 1996
    5. Balzani V. Supermolecular photochemistry-Foreword. New J. Chem. 1996, 20, 723-724
    6. Ramamurthy V., Schanze Kirk S. Optical Sensors and Switches, Molecular and Supramolecular Photochemistry, 7, New York, Marcel Dekker, Inc., 2001
    7.吴世康.分子荧光信号器件和光控分子开关研究的现状及进展.化学进展.1994,6,301-313
    8. He H., Mortellaro M. A., Leiner M. J. P., Young S. T., Fraatz R. J., Tusa J. K. A Fluorescent Chemosensor for Sodium Based on Photoinduced Electron Transfer. Anal. Chem. 2003, 75,549-555
    9. Prodi L., Bargossi C., Montalti M., Zaccheroni N., Su N., Bradshaw J. S., Izatt R. M., Savage P. B. An effective fluorescent chemosensor for mercury ions. J. Am. Chem. Soc. 2000, 122, 6769-6770
    10. Tong H., Wang L., Jing X., Wang F. Highly Selective Fluorescent Chemosensor for Silver(Ⅰ) Ion Based on Amplified Fluorescence Quenching of Conjugated Polyquinoline. Macromolecules. 2002, 35, 7169-7171
    11. Irie M., Fu kaminato T., Sasaki T., Tamai N., Kawai T. A digital fluorescent molecular photoswitch. Nature. 2002, 420, 759-760
    12. Trautwein A. X. Bioionorganic chemistry, Wiley-VCH, Weinheim, 1997
    13. Merian E. Metals and their compounds in the environment, Wiley-VCH, Weinheim, 1991
    14. de Silva A. P., Gunatatne H. Q. N., Gunnlauggson T., Huxley A. J. M., McCoy C. P., Radmancher J. T., Rice T. E. Signaling Recognition events with fluorescent sensors and switches. Chem. Rev. 1997, 97, 1515~1566
    15. de Silva A. P., de Silva S. A. Fluorescent signaling crown ethers; 'switching on' of fluorescence by alkali metal ion recognition and binding in situ. J. Chem. Soc. Chem. Comm.
    
    1986, 1709-1710
    16. Qian X., Zhu Z., Chen K. The synthesis, application and prediction of stocks shift in fluorescent dyes derived from 1,8-naphthalic anhydride. Dyes and Pigm. 1989, 11, 13-20
    17. de Silva A. P., Gunaratne H. Q. N., Maguire G. E. M. Luminescence and charge transfer. Part 3. The use of chromophores with ICT(internal charge transfer)excited states in the construction of fluorescent PET(photoinduced electron transfer)pH sensors and related absorption pH sensors with aminoalkyl side chains, J. Chem. Soc. Chem. Comm. 1994, 1213-1214
    18. De Santis G., Fabbrizzi L., Lichelli M., Mangano C., Sacchi D., Sardone N. A fluorescent chemosensor for the copper(Ⅱ)ion. Inorg. Chim. Acta. 1997, 257, 69-76
    19. Cosnard F., Wintgens V. A new fluoroionophore derived from 4-amino-N-methyl-1,8-naphthalimide. Tetrahedron Lett. 1998, 39: 2751-2754
    20. Delmond S., Létard J. F., Lapouyade R., Mathevet R., Jonusauskas G., Rullière C. Cation-triggering intramolecular charge transfer and fluorescence red-shift in intrinsic fluorescence probes. New J. Chem. 1996, 20, 861-869.
    21. Haugland R. P. Handbook of fluorescent Probes and Research Chemicals, Molecular Probes, Inc, Eugene, OR, USA.
    22. Kolimannsberger M., Rurack K., Resch-Genger U., Daub J. Ultrafast charge transfer in amino-substituted boron dipyrromethene dyes and its inhibition by cation complexation: a new design concept for highly sensitive fluorescent probes. J. Phys. Chem. A. 1998, 102, 10211-10220
    23. Grabowski Z. R., Dobkowski J. Twisted intramolecular charge transfer(TICT)excited states: energy and molecular structure. Pure Appl. Chem. 1983, 55(2): 245-252
    24. Rettig W. Charge seperation in excited states of decoupled system-TICT compounds and implications regarding the development of new laser dyes and the primary processes of vision and photosynthesis. Angew. Chem. Int. Ed. Engl. 1986, 25: 971-988
    25. Létard J. F., Lapouyade S. P., Rettig W. Synthesis and Photophysical Study of 4-(N-monoaza-15-crown-5)Stilbenes forming TICT states and their complexation with cations. Pure Appl. Chem. 1993, 65, 1705-1709
    26. Létard J. F., Delmond S., Lapoyyade S. P., Braun D., Rettig W., Kreissler M. New Intrinsic Fluoroionophores with Dual Fluorescence: DMABN-Crown-4 and DMABN-Crown-5. Rec. Tray. Chim. Pays-Bas. 1995, 114, 517-521
    27. Collins G. E., Choi L. -S., Callahan J. H. Effect of Solvent Polarity, pH, and Metal
    
    Complexation on the Triple Fluorescence of 4-(N-1, 4, 8, 11-tetraazacyclotetradecyl) benzonitrile. J. Am. Chem. Soc. 1998, 120, 1474-1475
    28. Parker D., Willams J. A. G.. Luminescence behaviour of cadmium, lead, zinc, copper, nickel and lanthanide complexes of octadentate macrocyclic ligands bearing naphthyl chromophores. J. Chem. Soc. Perkin. Trans. 1995, 1305-1314
    29. Kubo K., Kato N., Sakurai T. Synthesis and Complexation Behavior of Diaza-18-crown-6 Carrying Two Pyrenylmethyl Groups. Bull. Chem. Soc. Jpn. 1997, 70, 3041-3046
    30. Kawakami J., Komai Y., Ito S. Fluorescence Spectrophotometric Determination of Ca 2+ and Ba~(2+) Based on 1, n-Bis(1-naphthylcarboxy)oxaalkanes. Chem. Lett. 1996, 617-618
    31. Speiser S. Photophysics and mechanisms of intramolecular electron energy transfer in bichromophoric molecular systems: solution and supersonic jet studies. Chem. Rev. 1996, 96, 1953-1976
    32. de Silva A. P., Gunaratne H. Q. N., Gunnlaugsson T., Lynch L. M. Molecular photoionic switches with an internal reference channel for fluorcsent pH sensing applications. New J. Chem. 1996, 20, 871-880
    33. Valeur B., Pouget J., Bourson J., Kaschke M., Ernsting N. P. Tuning of photoinduced energy transfer in bichromophoric coumarin superamolecule by cation binding. J. Phys. Chem. 1992, 96, 6545-6549
    34. Johnson D. A., Leathers V. L., Martine A. -M.z, Walsh D. A., Fletcher W. H.. Fluorescence resonance energy transfer within a heterochromoatie cAMP-dependent protein kinase holoenzyme under equilibrium conditions: new insight into the conformational changes that result in cAMP activation. Biochem. 1993, 93,587-614
    35. Krauss R., Weinig H.-G., Seydack M., Bendig J., Koert U. Molecular Signal Transduction through Conformational Transmission of a Perhydroanthracene Transducer, Angew. Chem. Int. Ed. 2000, 39, 1835-1837
    36. Hirano T., Kikuchi K., Urano Y., Higuchi T., Nagano T. Novel zinc fluorescent probes excitable with visible light for biological applications. Angew. Chem. Int. Ed. 2000, 39, 1052-1054
    37. Walkup G. K., Burdette S. C., Lippard S. J., Tsien R.. Y. A new cell-permeable fluorescent probe for Zn~(2+). J. Am. Chem. Soc. 2000, 122, 5644-5645
    38. Amaresh M. Cyanines during the 1990s: A review. Chem. Rev. 2000, 100, 1998-2011
    39. Treibs A., Kreuzer F.-H. Difluorboryl-Komplexe von Di-und Tripyrrylmethen. Liebigs Ann. Chem. 1968, 718:208-223
    40. Kolimannsberger M., Rurack K., Resch-Genger U., Daub J.. Ultrafast charge transfer in
    
    amino-substituted boron dipyromethene dyes and its inhibition by cation complexation: a new design concept for highly sensitive fluorescent probes. J. Phys. Chem. A. 1998, 102: 10211-10220
    41. Chang S.-C., Utecht R. E., Lewis D. E. Synthesis and bromination of 4-alkylamino-N-alkyl-1,8-naphthalimides. Dyes and Pigm. 1998, 43, 83-94
    42. Tao Z.-F., Qian X. Naphthalimide hydroperoxides as photonucleases: substituent effects and structural basis. Dyes and Pigm. 1999, 43(2), 139-145
    43. Cao Y., He X., Gao Z. , Peng L., Fluorescence energy transfer between Acridine Orange and Safranine T and its application in the determination of DNA. Talanta. 1999, 49(2), 377-383
    44. Vgtle F., Gestermann S., Kauffmann C., Ceroni P., Vicinelli V., Balzani V. Coordination of Co~(2+) Ions by poly(propylene amine)-dendrimers containing fluorescent dansyl units at the periphery. J. Am. Chem. Soc. 2000, 122, 10398-10404
    45. Lytton S. D., Mester B., Libman J., Shanzer A., Cabantchik Z.I. Monitoring of iron(Ⅲ) removal from biological sources using a fluorescent siderophore. Anal. Bioche. 1992, 205, 326-333
    46. Jiwan J.-L. H., Branger C., Souumillion J. P., Valeur B. Ion-responsive fluorescent compounds V. Photophysical and complexing properties of eoumarin 343 liked to monoaza-15-crown-5. J. Photochemistry and Photobiology Chemistry. 1998, 116, 127-133
    47.吴寿昌.冠醚化学,科学出版社,北京,1992
    48. Yapar G., Erk C. A study of the metal complexing of naphthalene-2,3-crown ethers using fluorescence spectroscopy: part Ⅲ. Dyes and Pigm. 2001, 48, 173-177
    49. Perez-Inestrosa E., Desvergne J.-P., Bouas-Lauent H., Rayez J.-C., Rayez M.-T., Cotrait M., Mrsau P. Barium cation complexation by flexible mono-and ditopic receptors, studied by UV absorption and fluoecence spectroscopy. Eur. J. Org. Chem. 2002, 331-344
    50. Kubo K, Sakaguchi S, Sakurai T. Synthesis, Complexation, and Fluorescence Behavior of Armed Crown Ethers Carrying Naphthyl Group. Talanta. 1999, 49(4): 735-744
    51. de Silver A. P., Gunaratne H. Q. N., Gunnlaugsson T., Huxley A. J. M., McCoy C. P., Rademacher J. T., Rice T. E. Signalling recognition events with fluorescent sensors and switches. Chem. Rev. 1997,97, 1515-1565
    52. Chen C.-T., Huang W.-P. A highly Selective fluorescent chemosensor for lead ions. J. Am. Chem. Soc. 2002, 124, 6246-6247
    53. de Silva A. P., Gunaratne H. Q. N., Gnnlaugsson T., Nieuwenhuizen M. Fluorescent
    
    switches with high selectivity towards sodium ions: correlation of ion-induced conformation switching with fluorescence function. J. Chem. Soc. Chem. Comm. 1996, (16): 1967-1968
    54. Akkaya E. U., Huston M., Czarnik A. W. Chelation-enhanced fluorescence of anthrylazamacrocycle conjugate probes in aqueous solution. J. Am. Chem. Soc. 1990, 112(9): 3590-3593
    55. Xu X., Xu H., Ji H.-F. New fluorescent probes for the detection of mixed sodium and potassium metal ions. J. Chem. Soc. Chem. Comm. 2001, 2092-2093
    56. Mizukami S., Nagano T., Urano Y., Odani A., Kikuchi K. Afluorescent anion sensor that works in neutral aqueous solution for bioanalytical application. J. Am. Chem. Soc. 2002, 124, 3920-3925
    57. de Silva A. P., Gunaratne H. Q. N., Sandanayake K. R. A. S. Fluorescent PET (photoinduced electron transfer)sensors for alkali metal ions with improved selectivity against protons and with predictable binding constants. Tetrahedron Lett. 1990, 31(36): 5193-5196
    58. Golchini K., Mackovic-Basic M., Gharib S. A., Masilamani D., Lucas M. E., Kurtz I. Synthesis and characterization of a new fluorescent probe for measuring potassium. Am J Physiol Renal Physiol. 1990, 258, F438-F443
    59. Ishikawa J., Sakamoto H., Wada H. Synthesis and silver ion complexation behavior of fluoroionophores containing a benzothiazolyl group linked to an N-phenylpolythiazaalkane moiety. J. Chem. Soc. Perkin Trans. 1. 1999, 2, 1273-1279
    60. Descalzo A. B., Martínez-Máez M., Radeglia R., Rurack K., Soto J. Coupling selectivity with sensitivity in an integrated chemosensor framework:design of a Hg2+-responsive probe, operating above 500nm. J. Am. Chem. Soc. 2003, 125, 3418-3419
    61. Rurack K., Kollmannsberger M., Resch-Genger U., Daub J. A selective and sensitive fluoroionophore for Hg~(2+) Ag~+ and Cu~(2+) with virtually decoupled fluorophore and receptor units. J. Am. Chem. Soc. 2000, 122, 968-969
    62.小田良平,庄野利之,田伏盐夫.王冠醚化学,原子能出版社,1985
    63. Jiang H., Xu H. J., Synthesis and Cation-Mediated Electron Transfer in Fluorescence Quenching of Donor-Acceptor Podands. Chinese Chem. Lett. 2000, 11,767-770
    64. Iwata S., Matsuoka H., Tanaka K., Alkaline earth metal-sensing anthracene fluorophore-hosts. J. Chem. Soc. Perkin Trans. 2. 1997, 1357-1360
    65. Kawakami J, Fukushi A, Ito S. Complexing Behavior of New Naphthalene Derivatives Having Amide Groups as Fluorescent Chemosensors for Alkali and Alkaline Earth Metal
    
    Ions. Chem. Lett. 1999, (9): 955-956
    66. Fabbrizzi L., Lichelli M., Pallavicini P., Taglietti A., A Zinc(Ⅱ)-Driven Intramolecular Photoinduced Electron Transfer. Inorg. Chem. 1996, 35, 1733-1736
    67. Fabbrizzi L., Lichelli M., Pallavicini P., Perotti A., Sacchi D. A fluorescence sensor for transition metal ions based on anthracene. Angew. Chem. Int. Ed. Engl. 1994, 33, 1975-1977
    68. Konkowski A. M., Kledzik K., Ostaszewski R., Jezierska J. Fluorosensor action of bis-9-anthryl derivatives immobilised in silica xerogel. Applied Surface Science. 2002, 196, 383-391
    69. Ueno A. Review: fluorescent cyclodextrins for molecule sensing. Supramolecular Science. 1996, 3(1-3): 31-36
    70. Matsui Y., Suemitsu D., The stereoselective retardation of the alkaline hydrolysis of organic esters by binuclear copper(Ⅱ)complexes with cyclodextrins. Bull. Chem. Soc. Jpn. 1985, 58, 1658-1662
    71.马会民,马泉莉.杯芳烃光学识别试剂.分析化学.2002,9,1137-1142
    72. Cha N. R., Kim M. Y., Kim Y. H., Choe J. I., Chang S.-K. New Hg~(2+)-selective fluoroionnphores derived from p-tert-butylcalix[4]arene-azacrown ethers. J. Chem. Soc. Perkin Trans. 2. 2002, 1193-1196
    73. Ji H. F., Dabistani R., Brown G. M. A supramolecular fluorescent probe, activated by protons to detect cesium and potassium ions, mimics the function of a logic gate. J. Am. Chem. Soc. 2000, 122(38): 9306-9307
    74.赵同丰,赵德丰,于华云,程稆柏.1,8-萘酰亚胺荧光材料的进展.染料工业.1997,34(1):8-15
    75. Stewart W. W. Lucifer dyes-fluorescent dyes for biological tracing. Nature. 1981, 292(2): 17-21
    76. Qian X., Zhu Z., Chen K. The synthesis, application and prediction of stocks shift in fluorescent dyes derived from 1,8-naphthalic anhydride. Dyes and Pigm. 1989, 11, 13-20
    77. Peters A. T., Bide M. J. Amino derivatives of 1,8-naphthalic anhydride and derived dyes for synthetic-polymer fibers. Dyes and Pigm. 1985, 6, 349-375
    78. Poteau X., Brown A. I., Brown R. G., Holmes C., Matthew D. Fluorescence switching in 4-amino-1,8-naphthalimides: "on-off-on" operation controlled by solvent and cations. Dyes and Pigm. 2000, 47, 91-105
    79. Tian H., Xu T., Zhao Y., Chen K. Two-path photo-induced electron transfer in naphthalimide-based model compound. J. Chem. Soc. Perking 2. 1999, 545-549

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700