Ag纳米粒子与溶致液晶构建无机/有机杂合体的分子模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米结构材料由于自身尺寸大小而具有独特的物理化学性质,成为当前材料研究最活跃的领域之一,其中采用溶致液晶(LLC)做物理模板组装纳米粒子对于新型功能纳米结构材料设计、发展器件用复合材料、生物催化和分析及药物纳米控释等方面有重要意义。
     在计算机科学与技术飞速发展的今天,对于这种纳米结构材料的研究仅仅采用传统的经验指导的实验方法已不能满足需要。近年来理论计算的分子模拟方法已越来越受到青睐,广泛的应用于各个领域。分子模拟是从原子-分子水平的相互作用出发,借助计算机数值模拟的方法得到体系的结构与性能方面的信息。
     根据时间和长度尺度的不同,本论文主要选择了分子模拟方法中的分子力学(MM)、分子动力学(MD)和耗散颗粒动力学(DPD)方法,具体研究了纳米粒子、溶致液晶及其无机/有机杂合体等体系的微观结构和行为。分子模拟为我们提供了直观的图像和有价值的结构信息,这些结果对于纳米结构材料的组装和实验设计具有重要的指导意义。研究内容主要包括以下三个方面:
     1、纳米粒子体系的分子模拟。包括两种银纳米粒子(荷负电和荷正电)微观结构的模拟。我们分别以油酸盐(Oleate)阴离子、十六烷基三甲基溴化铵(CTAB)阳离子作包覆剂构建荷负电和荷正电的银纳米粒子。对于荷负电银纳米粒子的模拟,主要研究亲水性和疏水性(也称油溶性)银纳米粒子的结构及两者之间的相转移过程。首先采用分子力学方法确定了包覆剂油酸盐阴离子在银核表面的吸附状态,进而采用分子动力学方法模拟纳米粒子的微观结构,最后对相转移过程进行耗散颗粒动力学模拟,考察乳化剂浓度、无机盐及剪切应力对相转移的影响。对于荷正电银纳米粒子的模拟,主要采用分子动力学方法模拟CTA~+双层包覆的荷正电银纳米粒子的微观结构,在原子水平上为实验提供有价值的理论支持和微观信息。
     2、溶致液晶体系的分子模拟。主要研究不同类型的表面活性剂:阴离子型、阳离子型、非离子型分子的相行为。结合实验相图,得到两元或三元体系不同浓度时的聚集结构。针对具体的表面活性剂、离子液体分子的化学结构,结合相图做相行为的研究,考察温度、剪切等因素的影响,直观地得到各种分子不同浓度时的介观结构,弥补了实验上的不足,为解释实验现象提供了一种新方法和途径。
     3、掺杂体系的模拟。掺杂的物质为亲水性银纳米粒子,溶致液晶相主要选择表面活性剂的层状相,考察掺杂物质在液晶中的分布、对液晶相的影响和体系的稳定机制等。从分子水平上研究掺杂体系结构与性质之间的关系,探讨体系的稳定机制,为实验提供了一个新的思路。
     在实验的基础上,我们根据研究目的和体系的不同,建立了合理的分子结构模型,选择合适的模拟方法,经过一系列计算和分析,得到了有关体系结构和性能方面的一些创新性结果,从而深入探讨了体系原子、分子及介观层次上的物理化学性质。
     1.用油酸盐作包覆剂的荷负电银纳米粒子在相转移(水相到有机相)前后,油酸盐将以不同的方式吸附于银纳米粒子表面。分子力学的计算结果表明:水相中,油酸盐阴离子靠双键吸附在银表面;而有机相中则为羧基吸附。依据实验和耗散颗粒动力学计算结果,提出了一种可能的相转移机理:无机盐降低了油酸钠在水相的临界胶束浓度和溶解度,表面活性剂趋向于在油水界面吸附,水相中通过双键吸附在纳米粒子表面的油酸钠分子也有脱附的趋势,纳米颗粒在界面发生聚集。富集在油水界面的油酸钠分子中羧酸根与水相接触,疏水的碳氢链朝向油相。高速搅拌条件下羧酸根在纳米粒子表面吸附,当相界面上油酸钠分子数目足够多时,纳米粒子被转移到异辛烷中。
     2.采用分子动力学方法模拟了CTA~+双层包覆的荷正电银纳米粒子的微观结构,我们构建的Ag纳米粒子非常稳定,在5A范围内有类晶形局部序列。内层CTA~+分子以头基弱吸附在Ag簇表面,所有吸附的CTA~+分子发生了严重的弯曲,致密的CTA~+双层有利于粒子的稳定性。N原子到银簇重心的距离分布结果与实验推论模型基本吻合,从而补充了实验,在原子水平上提供了有意义的微观结构信息。
     3.采用简单的介观模型,通过耗散颗粒动力学计算得到了AOT/水、C_(12)EO_4/水二元体系的不同浓度时的相行为,计算的结果与实验相图吻合得很好。而水扩散率的结果有助于说明AOT/水体系层状相反常相行为,我们提出在40%AOT浓度时形成了一个缺陷结构-准反六角相,明显的降低了水扩散率,这个结构可能会导致介观相性质的改变,如降低液晶长程有序性。三个层状相体系的水扩散率随温度变化曲线说明,这个准反六角相结构升温后能够部分转变成正常的层状相结构,增加体系层状有序性。DPD模拟结果给我们提供了一个更好理解AOT/水体系相行为的视窗。
     4.从分子的结构出发,采用DPD方法,预测了烷基咪唑氯化物或六氟磷酸盐/癸醇/水三元体系的聚集结构及其相图,尽管存在一定误差,但采用分子模拟预测相图仍不失为一种有意义的尝试,起到了一定的指导性作用。
     5.亲水Ag纳米粒子/层状溶致液晶杂合体的DPD计算结果表明,AOT和C_(12)EO_4双层模板对于掺入的Ag纳米粒子的影响并不大,Ag纳米粒子仍然保持球形结构,只是在模板剂浓度较低时,水层空间较大,对于Ag纳米粒子的限制作用小,会发生一定程度聚集,粒径略有所增大。而掺入的Ag纳米粒子对模板结构有很大的影响,几乎在所有我们建立的体系中,模板的结构都发生了弯曲和形变,甚至其双层结构被破坏,使体系的有序性大大降低。通过Ag纳米粒子大小与模板层间距的空间匹配性分析发现,用于掺杂的Ag纳米粒子的粒径应该尽可能的小于水层厚度,才能进入液晶模板的水通道,形成稳定的杂合体;当两者不匹配时,Ag纳米粒子将“打碎”甚至“穿过”液晶双层,体系结构表现出混乱的排列,粒子粒径与模板介观空间的匹配性是这种无机/有机杂合体稳定和有序的基本要素。
     分子模拟技术为纳米结构材料体系的研究提供了新的方法和思路,能够从原子、分子和介观水平上获得一些信息,弥补了实验表征手段的不足,分子模拟技术已逐渐成为一种强有力的理论工具,为研究新型功能纳米材料提供有价值的参考依据,必将推动纳米技术在各个领域里的研究和应用。
The study of nanostructure materials has been one of the most active areas, owing to their unique size-dependent chemical and physical properties. Thereinto, lyotropic liquid crystal (LLC) can be used as a physical template to assemble nanoparticles, which has important significance in novel functional nanostructure materials design, device hybrid materials development, biocatalysis and analysis, drug nano-controlled release etc.
     Now, with the rapid development of computer science and technology, it obviously can't only depend on traditional experiment, and ignore molecular simulation method for the research of nanostructure materials. Molecular simulation can be used to obtain the system information about structures and properties at an atomic and molecular level with the help of computer numerical simulation.
     According to the time and length scale, we choose three computation methods: Molecular Mechanics (MM), Molecular Dynamics (MD) and Dissipative Particle Dynamics (DPD) to study the microstructures and behaviors of nanoparticles, LLC and their inorganic/organic hybrid systems. Molecular simulations provide us intuitionistic images and structures information, which have important guiding significance for the nanostructure materials assembly and experiments design. There are three main studies included in this dissertation.
     1. Molecular simulation studies of nanoparticles systems. In this part, two types of silver nanoparticles (negative and positive charged) are considered. Oleate anions and cetyltrimethyl ammonium bromide cations (CTA~+) are respectively used as capping agents to fabricate negatively or positively charged nanoparticles. In the simulations of negative charged silver nanoparticles, our studies focus on the structures of hydrophilic and hydrophobic nanoparticles and the phase transfer process between them. First, molecular mechanics method is used to confirm the adsorption modes of oleate anions on the silver surface, then the silver nanoparticles microstructures are simulated by molecular dynamics method, at last dissipative particle dynamics is carried out to model the phase transfer process, the following effects are studied in detail, including the concentration of emulsifier, inorganic salts and shear. As for the simulations of positive charged silver nanoparticles, molecular dynamics method is mainly used to study the microstructures of silver nanoparticles capped by CTA~+ double layers. These simulation results provide valuable theory support and micro-information to experiments.
     2. Molecular simulation studies of LLC systems. The phase behaviors of different surfactants, including anion, cation and non-ion amphiphilic molecules are studied by DPD simulations. Combine with experiment phase graph, we can obtain the variety aggregation structures of binary or ternary systems. In the phase behaviors studies for the surfactants and ionic liquid molecules, several effects such as temperature, shear are considered. As a supplement to the experiment, DPD results intuitively show us the mesostructures of these molecules in different concentration range, which provide a new approach to explain experiment phenomena.
     3. Molecular simulation studies of hybrid systems. The hydrophilic silver naoparticles capped by oleate molecules are doped into surfactant lamellar LLC. The distribution of nanoparticles in LLC, interaction between nanoparticles and LLC, and the stability of the hybrid systems are discussed from the DPD simulation results. Molecular simulation is used to study the relationship between structure and property at a molecular level, which provide a new idea for experiment.
     Based on the experiments, we set up reasonable molecule's structure model, choose suitable simulation method according to different study purpose and systems. We have obtained some innovative results about system's structures and properties after a serial of computations and analysis, which deep probe into system's physical and chemistry properties from atomic, molecular and mesoscale level.
     1. In the negative charged silver nanoparticles, oleate molecules' adsorption mode on the silver surface is changed with the solvent polarity. Molecular mechanics results show that the favorable adsorption mode of oleate is transformed from the double bond anchoring in the water to the carboxylate group anchoring in the isooctane solvent. A possible phase transfer mechanism is proposed based on the experiment and DPD results. It is analyzed that the addition of inorganic salts will decrease the critical micelle concentration and solubility of oleate in water, facilitating the adsorption of oleate molecules at the water/oil interface, there is also desorption of oleate molecules from silver nanoparticles surface. At the same time, there is some aggregation between nanoparticles at the interface. The adsorption of carboxylate group of sodium oleate molecules distributed at the interface makes the nanoparticles hydrophobic, and under high speed stirring, the silver particles can be transferred into isooctane eventually with a little increased diameter.
     2. Molecular dynamics simulations are carried out to investigate the microstructure of a positively charged silver nanoparticle capped by CTA~+ bilayer on atomic scale. Three nanoparticle systems are constructed and calculated for structural comparison. The simulations show that in all three nanosystems CTA~+ dense shell is coated on the surface of silver cluster to form a stable nanoparticle with a crystal-like local order within 5 A. The configurations of CTA~+ molecular chains are also analyzed and it is found that the molecules are significantly curved. The distribution results of distance from N atoms to Ag cluster gravity center are in good agreement with the experiment deductive model.
     3. With a simple mesoscopic model, the different phase structures of AOT/water and C_(12)EO_4/water system are reproduced by the DPD simulations. The calculation results are in very good agreement with the experimental phase diagram. Water diffusivity results are used to illuminate the anomalous phase behavior in the AOT/water lamellar phase. It is proposed that in the Intermediate-Concentration Regime (ICR) at about 40% concentration, a defective structure, pseudo-reversed hexagonal phase, is formed to evidently decrease the water diffusivity, which might produce some mesophase property changes, such as reduction of the liquid crystalline long-range order. Water diffusivity curves of three lamellar systems as a function of temperature indicate that the pseudo-reversed hexagonal structure in ICR will be partly transformed to a normal lamellar phase structure and enhanced system lamellar ordering after increasing temperature. Therefore, the DPD simulation results could provide us a new insight for better understanding of AOT/water phase behaviors.
     4. DPD simulations are carried out to predict the aggregation structures and phase graphs of alkylimidazolium chloride or hexafluorophosphate/decanol/water ternary systems. Although there are some errors, it is a significative try for us to predict phase behaviors using DPD methods.
     5. The DPD results of hydrophilic silver nanoparticles/LLC hybrids show that there is little influence of AOT and C12EO4 bilayers template on doped silver nanoparticles, which could keep spheral shape. There are also some aggregations of silver nanoparticles when the surfactants concentration is low. However, the doped silver nanoparticles bring much influence on the template structures. Almost in all hybrid systems, the template is curved and deformed, even the bilayer is destroyed, and the system order great decreased. It is found that the doped nanoparticles should be small as possible as can be to enter the water layer of LLC to form stable hybrids. When their sizes are not matched between nanoparticles and water layer, the silver nanoparticles would break or traverse through the surfactant bilayers. Therefore, the match between nanoparticles size and template mesoscale space is the basic factor for this inorganic/organic hybrids' order and stability.
     Molecular simulation provides us a new method to study nanostructure materials systems, which can obtain some information at atomic, molecular and mesoscale level. As a supplement to experiment, molecular simulation is becoming a new theoretical tool to give much valuable reference information for the study of novel functional nanomaterials. We believe that molecular simulation could accelerate the research and application of nanotechnique in various fields.
引文
[1] 柯扬船,皮特·斯壮。聚合物-无机纳米复合材料[M]。北京:化学工业出版社,2003:1-8。
    [2] 张立德,牟季美。纳米材料和纳米结构[M]。北京:科学出版社,2001:1-10。
    [3] 许并社。纳米材料及应用技术[M]。化学工业出版社,2004:1-10。
    [4] Merica R D., Waltenberg R. G., Scott H. Heat Treatment of Duralumin [J]. Bull. Am. Inst. Min. Metall. Eng., 1919, 150:913-949.
    [5] Feynman R. R There's Plenty of Room at the Bottom [J]. Eng. Sci., 1960, 23:22-36.
    [6] Simon U., Franke M. E. Electrical properties of nanoscaled host/guest compounds [J]. Microp. Mesop. Mater., 2000, 41(1-2): 1-36.
    [7] Wang Z. L., Gao R. R, Poncharal R Mechanical and electrostatic properties of carbon nanotubes and nanowires [J]. Mater. Sci. Eng. C, 2001, 16(1-2):3-10.
    [8] Sebastian R J. Nanomaterials for solar energy conversion [J]. Solar Energy Materials &Solar Cells, 2001, 70(3):243-244.
    [9] Cain M., Morrell R. Nanostructured Ceramics: A Review of their Potential [J]. Appl. Organometal. Chem., 2001, 15(5):321-330.
    [10] Barry C. R., Jacobs H. O. Fringing Field Directed Assembly of Nanomaterials [J]. Nano Lett., 2006, 6(12):2790-2796.
    [11] Hsu C. L., Yang S. S., Tseng Y. K., Chen I. C., Lin Y. R., Chang S. J., Wu S. T. A New and Simple Means for Self-Assembled Nanostructure: Facilitated by Buffer Layer [J]. J. Phys. Chem. B., 2004, 108(49):18799-18803.
    [12] Javey A., Dai H. Regular Arrays of 2 nm Metal Nanoparticles for Deterministic Synthesis of Nanomaterials [J]. J. Am. Chem. Soc., 2005, 127(34): 11942-11943.
    [13] Solomatin S. V., Bronich T. K., Eisenberg A., Kabanov V. A., Kabanov A. V. Nanomaterials from Ionic Block Copolymers and Single-, Double-, and Triple-Tail Surfactants [J]. Langmuir, 2007, 23(5):2838-2842.
    [14] Frenkel, Smit,汪文川(译)。分子模拟-从算法到应用Understanding Molecular Simulation From Algorithms to Applications [M]。北京:化学工业出版社,2002。
    [15] Mijovic J., Shen M. Z., Sy J. W., Mondragon I. Dynamics and morphology in nanostructured thermoset network/block copolymer blends during network formation [J]. Macromolecules, 2000, 33:5235-5244.
    [16] Hackett E., Manias E., Giannelis E. P. Computer simulation studies of PEO/layer silicate nanocomposites [J]. Chem. Mater., 2000, 12:2161-2167.
    [17] Lamas E. J., Balbuena P. B. Adsorbate effects on structure and shape of supported nanoclusters: A molecular dynamics study [J]. J. Phys. Chem. B, 2003, 107:11682-11689.
    [18] Zhang Z. L., Horsch M. A., Lamm M. H., Glotzer S. C. Tethered nano building blocks:. Toward a conceptual framework for nanoparticle self-assembly [J]. Nano Lett., 2003, 10:1341-1346.
    [19] Workum K. V., Pablo J. J. D. Computer Simulation of the Mechanical Properties of Amorphous Polymer Nanostructures [J]. Nano Lett., 2003, 10:1405-1410.
    [20] Chan E. R., Ho L. C., Glotzer S. C. Computer simulations of block copolymer tethered nanoparticle self-assembly [J]. J. Chem. Phys., 2006, 125(6):064905.
    [21] Liu D. H., Zhong C. L. Cooperative self-assembly of nanoparticle mixtures in lamellar diblock copolymers: A dissipative particle dynamics study [J]. Macromol. Rapid Commun., 2006, 27(6):458-462.
    [22] Odegard G. M., Clancy T. C., Gates T. S. Modeling of the mechanical properties of nanoparticle/polymer composites [J]. Polymer, 2005, 46(2):553-562.
    [23] Maria K. T., Meredith J. C. Nanoscale colloids in a freely adsorbing polymer solution: A Monte Carlo simulation study [J]. Langmuir, 2004, 20(4):1501-1510.
    [24] Yin K. L., Xia Q., Xia H. T., Xu D. J., Sun X. Q., Chen C. L. Molecular simulation of inner structure of a self assembled gold cluster passivated with thiol-terminated asymmetric hydroquinonyl oligoethers [J]. J. Molecular Structure-Theoehem, 2004, 674(1-3): 159-165.
    [25] Hamley I. W. Nanotechnology with Soft Materials [J]. Angew. Chem. Int. Ed., 2003, 42:1692-1712.
    [26] Quake S. R., Scherer A. From Micro- to Nanofavrication with Soft Materials [J]. Science, 2000, 290:1536-1540.
    [27] Shimomura M., Sawadaishi T. Bottom-up Strategy of Materials Fabrication: A New Trend in Nanotechnology of Soft Materials [J]. Curr. Opin. Colloid Interface Sci., 2001, 6:11-16.
    [28] Spontak R. J., Alexandridis P. Advances in Self-ordering Macro- molecules and Nanostructure Design [J]. Curr. Opin. Colloid Interface Sci., 1999, 4:140-146.
    [29] Gelbart W. M., Ben-Shaul A. The "New" Science of "Complex Fluids" [J]. J. Phys. Chem., 1996, 100:13169-13189.
    [30] Alivisatos A. P., Barbara P. F., Castleman A. W., Chang J., Dixon D. A., Klein M. L., Mclendon G. L., Miller J. S., Ratner M. A., Rossky P. J., Stupp S. I., Thompson T. E. From Molecules to Materials: Current Trends and Future Directions [J]. Adv. Mater., 1998, 10(16): 1297-1336.
    [31] 徐国财,张立德。纳米复合材料[M]。北京:化学工业出版社,2002,32-35。
    [32] 王中林。纳米材料表征[M]。北京:化学工业出版社,2005:1-5。
    [33] 李玲,向航。功能材料与纳米技术[M]。北京:化学工业出版社,2002,105-105。
    [34] Hulteen J. C., Martin C. R. A General Template-based Method for the Prepartion of Nanomaterials [J]. J. Mater. Chem., 1997, 7(7): 1075-1087.
    [35] Huczko A. Template-based Synthesis of Nanomaterials [J]. Appl. Phys. A, 2000, 70:365-376.
    [36] Antonietti M. Surfactants for Novel Templating Applications [J]. Curr. Opin. Colloid Interface Sci., 2001, 6:244-248.
    [37] Zhou Y. K., Huang J., Shen C. M., Li H. Synthesis of Highly Ordered LiNiO2 Nanowire Arrays in AAO Templates and Their Structural Properties [J]. Mater. Sci. Eng. A, 2002, 335(1-2):260-267.
    [38] Gao F., Lu Q. Y., Liu X. Y., Zhao D. Controlled Synthesis of Semiconductor PbS Nanocrystals and Nanowires Inside Mesoporous Silica SBA-15 Phase [J]. Nano Lett., 2001, 1(12):743-748.
    [39] Ravaine S., Fanucci G. E., Seip C. T., Adair J. H., Talham D. R. Photochemical Generation of Gold Nanoparticles in Langmuir-Blodgett Films [J]. Langmuir, 1998, 14(3):708-713.
    [40] Bague R. P., Khilar K. C. Effects of intermicellar exchange rate on the formation of silver nanoparticles in reverse microemulsions of AOT [J]. Langmuir, 2000, 16(3):905-910.
    [41] Cason J. P., Miller M. E., Thompson J. B., Roberts C. B. Solvent Effects on Copper Nanoparticle Growth Behavior in AOT Reverse Micelle Systems [J]. J. Phys. Chem. B, 2001, 105(12):2297-2302.
    [42] Jiang X. C., Xie Y., Lu J., Zhu L., He W., Qian Y. Oleate Vesicle Template Route to Silver Nanowires [J]. J. Mater. Chem., 2001, 11 (7):1775-1777.
    [43] Attard G. S., Goltner C. G., Corker J. M., Henke S., Templer H. Liquid-Crystal Templates for Nanostructured Metals [J]. Angew. Chem. Int. Ed. Engl., 1997, 36(12):1315-1317.
    [44] Attard G. S., Bartlett P. N., Coleman N. R. B., Elliott J. M., Owen J. R., Wang J. H. Mesoporous Platinum Films from Lyotropic Liquid Crystalline Phases [J]. Science, 1997, 278:838-840.
    [45] Coleman N. R. B., Attard G. S. Ordered Mesoporous Silicas Prepared from Both Micellar Solutions and Liquid Crystal Phases [J]. Microp. Mesop. Mater., 2001, 44-45:73-80.
    [46] Mertig M., Kirsch R., Pompe W., Engelhardt H. Fabrication of Highly Oriented Nanocluster Arrays by Biomolecular Templating [J]. Eur. Phys. J. D, 1999, 9(1-4):45-48.
    [47] Niemeyer C. M. Nanoparticles, Proteins, and Nucleic Acids: Biotechnology Meets Materials Science [J]. Angew. Chem. Int. Ed., 2001, 40(22):4128-4158.
    [48] 王良御,廖松生。液晶化学[M]。北京:科学出版社, 1988, 138-149。
    [49] Gulik-Krzywicki T., Dedieu J. C., Roux D., Degert C., Laversanne R. Freeze-Fracture Electron Microscopy of Sheared Lamellar Phase [J]. Langmuir, 1996, 12(20):4668-4671.
    [50] Lin Z., Davis H.T., Scriven L. E. Cryogenic Electron Microscopy of Micelles and Lyotropic Liquid Crystals in Some Polar Solvents [J]. Langmuir, 1996, 12(22):5489-5493.
    [51] Ponsinet V., Talmon Y. Direct Imaging of Lamellar Phases by Cryo-Transmission Electron Microscopy [J]. Langmuir, 1997, 13(26):7287-7292.
    [52] Kresge C. T., Leonowicz M. E., Roth W. J., Vartuli J. C., Beck J. S. Ordered Mesoporous Molecular Sieves Synthesized by a Liquid Crystal Template Mechanism [J]. Nature, 1992, 359:710-712.
    [53] Jiang X. C., Xie Y., Lu J., Zhu L., He W., Qian Y. Simultaneous In Situ Formation of ZnS Nanowires in a Liquid Crystal Template by -Irradiation [J]. Chem. Mater., 2001, 13(4):1213-1218.
    [54] Braun P. V., Osenar P., Tohver V., Kennedy S. B., Stupp S. I. Nanostructure Templating in Inorganic Solids with Organic Lyotropic Liquid Crystals [J]. J. Am. Chem. Soc., 1999, 121(32):7302-7309.
    [55] Fabre P., Casafrande C., Veyssie M. Ferrosmectics: A New Magnetic and Mesomorphic Phase [J]. Phys. Rev. Lett., 1990, 64(5):539-542.
    [56] Quillier C., Fabre P., Cabuil V. Doping of Lyotropic Smectics with Nonmagnetic Particles: Comparison with Ferrosmectics [J]. J. Phys. Chem., 1993, 97(2):287-289.
    [57] Ponsinet V., Fabre P., Veyssie M., Auvray L. A Small-Angle Neutron Scattering Study of the Ferrosmectic [J]. J. Phys. Ⅱ France, 1993, 3:1021-1039.
    [58] Ramos L., Fabre E, Dubois E. Compatibiliy between Sokid Particles and a Lamellar Phase: AcRUCIAL role of the Membrane Interactions [J]. J. Phys. Chem., 1996, 100:4533-4537.
    [59] Ramos L., Fabre P., Ober R. Existence, stability and structure of a hexagonal phase doped with nanoparticles [J]. Eur. Phys. J. B, 1998, 1:319-326.
    [60] Firestone M. A., Williams D. E., Seifert S., Csencsits R. Nanoparticle Arrays Formed by Spatial Compartmentalization in a Complex Fluid [J]. Nano Lett., 2001, 1(3):129-135.
    [61] Wang W., Efrima S., Regev O. Directing Oleate Stabilized Nanosized Silver Colloids into Organic Phases [J]. Langmuir, 1998, 14(3):602-610.
    [62] Wang W., Efrima S., Regev O. Directiong Silver Nanoparticles into Colloid-Surfactant Lamellar Systems [J]. J. Phys. Chem. B, 1999, 103(27):5613-5621.
    [63] Wang W., Chen X., Efrima S. Silver nanoparticles capped by long-chain unsaturated carboxylates [J]. J. Phys. Chem. B, 1999, 103:7238-7246.
    [64] Chen X., Efrima S., Regev O., Wang W., Niu L., Sui Z. M., Zhu B. L., Yuan X. B., Yang K. Z. Doping Silver Nanoparticles in AOT Lyotropic Lamellar Phases [J]. Sci. China (Ser. B), 2001, 44(5):492-499.
    [65] 杨小震。分子模拟与高分子材料[M]。北京:科学出版社, 2002。
    [66] Ju S. P.A molecular dynamics simulation of the adsorption of water molecules surrounding an Au nanoparticle [J]. J. Chem. Phys., 2005, 122(9)
    [67] Shim J. H., Lee B. J., Cho Y. W. Thermal stability of unsupported gold nanoparticle: a molecular dynamics study [J]. Surf. Sci., 2002, 512(3):262-268.
    [68] Gu Z. H., Balbuena P. B. Structural characterization of Pt nanoclusters deposited on graphite: Effects of substrate and surrounding medium [J]. Catalysis Today, 2005, 105(1):152-161.
    [69] Dalis A., Friedlander S. K. Molecular dynamics simulations of the straining of nanoparticle chain aggregates: the case of copper [J]. Nanotechnology, 2005, 16(7):S626-S631.
    [70] Alavi S., Mintmire J. W., Thompson D. L. Molecular dynamics simulations of the oxidation of aluminum nanoparticles [J]. J. Phys. Chem. B, 2005, 109(1):209-214.
    [71] Espagnol P., Warren P. B. Statistical mechanics of dissipative particle dynamics [J]. Europhys. Lett., 1995, 30:191-196.
    [72] Zhang H., Banfield J. F. Aggregation, coarsening, and phase transformation in ZnS nanoparticles studied by molecular dynamics simulation [J]. Nano Lett., 2004, 4(4):713-718.
    [73] Shim J. H., Lee S. C., Lee B. J., Suh J. Y., Cho Y. W. Molecular dynamics simulation of the crystallization of a liquid gold nanoparticle [J]. J. Cryst. Growth, 2003, 250(3-4):558-564.
    [74] Baletto F., Mottet C., Ferrando R. Freezing of silver nanodroplets [J]. Chem. Phys. Lett., 2002, 354:82-87.
    [75] Juan S. C. C., Hua C. Y., Chen C. L., Sun X. Q., Xi H. T. Dissipative particle dynamics simulation of a gold nanoparticle system [J]. Molecular Simulation, 2005, 31 (4):277-282.
    [76] Jury S., Bladon P., Cates M., Krishna S., Hagen M., Ruddock N., Warren P. Simulation of amphiphilic mesophases using dissipative particle dynamics [J]. Phys. Chem. Chem. Phys., 1999, 1 (9):2051-2056.
    [77] Nekovee M., Coveney E V. Lattice-Boltzmann simulations of self-assembly of a binary water-surfactant system into ordered bicontinous cubic and lamellar phases [J]. J. Am. Chem. Soc., 2001, 123:12380-12382.
    [78] Rekvig L., Kranenburg M., Vreede J., Hafskjold B., Smit B. Investigation of Surfactant Efficiency Using Dissipative Particle Dynamics [J]. Langmuir, 2003, 19:8195-8205.
    [79] Kuo M. Y., Yang H. C., Hua C. Y., Cheng C. L., Mao S. Z., Deng F., Wang H. H., Du Y. R. Computer Simulation of Ionic and Nonionic Mixed Surfactants in Aqueous Solution [J]. ChemPhysChem, 2004, 5:575-580.
    [80] Pastor R. W., Venable R. M., Feller S. E. Lipid bilayers, NMR relaxation, and. computer simulations [J]. Acc. Chem. Res., 2002, 35:438-446.
    [81] Marrink S. J., Tieleman D. P. Molecular dynamics simulation of a lipid diamond cubic phase [J]. J. Am. Chem. Soc., 2001, 123:12383-12391.
    [82] Kranenburg M., Venturoli M., Smit B. Phase behavior and induced interdigitation in bilayers studied with dissipative particle dynamics [J]. J. Phys. Chem. B, 2003, 107:11491-11501.
    [83] Shillcock J. C., Lipowsky R. Equilibrium structure and lateral stress distribution of amphiphilic bilayers from dissipative particle dynamics simulations [J]. J. Chem. Phys., 1997, 117(10):5048-5061.
    [84] Bladon P., Frenkel D. Simulating polymer liquid crystals [J]. J. Phys.: Condens. Matter, 1996, 8:9445-9449.
    [85] Huh J., Ginzburg V. V., Balazs A. C. Thermodynamic Behavior of Particle/Diblock Copolymer Mixtures: Simulation and Theory [J]. Macromolecules, 2000, 33:8085-8096.
    [86] Li Y. Y., Hou T. J., Guo S. L., Wang K. X., Xu X. J. The Mesodyn simulation of pluronic water mixtures using the equivalent chain method [J]. Phys. Chem. Chem. Phys., 2000, 2(2749):2753
    [87] Groot R. D., Madden T. J. Dynamic simulation of diblock copolymer microphase separation [J]. J. Chem. Phys., 1998, 108:8713-8724.
    [88] Wang Q., Nealey P. F., Pablo J. J. D. Lamellar structures of symmetric diblock copolymers: Comparisons between lattice Monte Carlo simulations and self-consistent mean-field calculations [J]. Macromolecules, 2002, 35(25):9563-9573.
    [89] Wijmans C. M., Smit B. Simulating thethered polymer layers in shear flow with dissipative particle dynamics [J]. Macromolecules, 2002, 35(18):7138-7148.
    [90] Wijmans C. M., Smit B., Groot R. D. Phase behavior of monomeric mixtures and polymer solutions with soft interaction potentials [J]. J. Chem. Phys., 2001, 114(17):7644-7654.
    [91] Ryjkina E., Kuhn H., Rehage H., Muller F., Peggau J. Molecular Dynamic Computer Simulations of Phase Behavior of Non-Ionic Surfactants [J]. Angew. Chem. Int. Ed., 2002, 41:983-986.
    [92] Yuan S. L., Cai Z. T., Xu G. Y., Jiang Y. S. Mesoscopic simulation study on phase diagram of the system oil/water/aerosol OT [J]. Chem. Phys. Lett., 2002, 365(3-4):347-353.
    [93] Kranenburg M., Laforge C., Smit B. Molecular structure of the lecithin ripple phase [J]. Phys. Chem. Chem. Phys., 2004, 6:4531-4534.
    [94] Bandyopadhyay S., Tarek M., Lynch M. L., klein M. L. Molecular Dynamics Study of the Poly(oxyethylene) Surfactant C12E2 and Water [J]. Langmuir, 2000, 16:942-946.
    [95] Firestone M. A., Tiede D. M., Seifert S. Magnetic field-induced ordering of a polymer-grafted biomembrane-mimetic hydrogel [J]. J Phys. Chem. B, 2000, 104:2433-2438.
    [96] Koltover I., Salditt T., Rigand J. L., Safinya C. R. Stacked 2D crystalline sheets of the membrane-protein bacteriorhodopsin: A specular and diffuse reflectivity study [J]. Phys. Rev. Lett., 1998, 81(12):2494-2497.
    [97] Warriner H. E., Keller S. L., Idziak S. H. J., Slack N. L., Davidson P., Zasadzinski J. A., Safinya C. R. The Influence of Polymer Molecular Weight in Lamellar Gels Based on PEG-Lipids [J]. Biophysical J., 1998, 75(1):272-293.
    [98] Patnaik S. S., Pachter R. Anchoring characteristics and interracial interactions in a polymer dispersed liquid crystal: a molecular dynamics study [J]. Polymer, 1999, 40:6507-6519.
    [99] Schneider M. J., Feller S. E. Molecular Dynamics Simulations of a Phospholipid Detergent Mixture [J]. J. Phys. Chem. B, 2001, 105:1331-1337.
    [100] Soderhall J. A., Laaksonen A. Molecular dynamics simulations of ubiquinone inside a lipid bilayer [J]. J. Phys. Chem. B, 2001, 105:9308-9315.
    [101] Ginzburg V. V., Gibbons C., Qiu F., Peng G., Balazs A. C. Modeling the Dynamic Behavior of Diblock Copolymer/Particle Composites [J]. Macromolecules, 2000, 33:6140-6147.
    [102] Bandyopadhyay S., Shelley J. C., Klein M. L. Molecular dynamics study of the effect, of surfactant on a biomembrane [J]. J. Phys. Chem. B, 2001, 105:5979-5986.
    [103] Groot R. D. Mesoscopic simulation of polymer-surfactant aggregation [J]. Langmuir, 2000, 16:7493-7502.
    [104] Yuan S. L., Xu G. Y., Cai Z. T. A Dynamic Simulation on the Interaction between Polymer and Surfactant in Aqueous Solution [J]. Acta Chim. Sin., 2002, 60(4):585-589.
    [1] Leach A. R. Molecular modelling principles and applications 2nd ed [M]. Beijing:Pearson Education Limited, 2003.
    [2] 罗道明,严肖慈,欧阳礼。量子化学原理及其应用[M]。武汉:武汉大学出版社,1999。
    [3] 杨小震。分子模拟与高分子材料[M]。北京:科学出版社,2002。
    [4] 余庆森,朱龙观。分子模拟导论[M]。北京:高等教育出版社,2000。
    [5] Rappe A. K., Casewit C. J., Colwell K. S., Goddard W. A., Skiff W. M. UFF, a full periodic table field for molecular mechanics and molecular dynamics simulations [J]. J. Am. Chem. Soc., 1992, 114:10024-10035.
    [6] Mayo S. L., Olafson B. D., Goddard W. A. DREIDING: a generic force field for molecular simulations [J]. J. Phys. Chem., 1990, 94:8897-8909.
    [7] Dauber-Osguthorpe R, Roberts V. A., Osguthorpe D. J., Wolff J., Genest M., Hagler A. T. Structure and energetics of ligand binding to proteins: E. coli dihydrofolate reductase-trimethoprim, a drug-receptor system [J]. Proteins: Structure, Function and Genetics, 1988, 4:31-47.
    [8] Lifson S., Warshel A. A Consistent Force Field for Calculation of Conformations Vibrational Spectra and Enthalpies of Cycloalkane and n-Alkane Molecules [J]. J. Chem. Phys., 1968, 49:5116-5129.
    [9] Allinger N. L., Yuh Y. H., Lii J. H. Molecular Mechanics. The MM3 Force Field for Hydrocarbons [J]. J. Am. Chem. Soc., 1989, 111:8551-8566.
    [10] Weiner S. J., Collman P. A., Case D. A., Singh U. C., Ghio C., Alagona G., Profetar J. S., Weiner P. A new force field for molecular mechanical simulation of nucleic acids and proteins [J]. J. Am. Chem. Soc., 1984, 106:765-784.
    [11] Brooks B. R. Charmm: a program for macromolecular energy, minimization, and dynamics calculations [J]. J. Comp. Chem., 1983, 4:187-217.
    [12] Sun H., Mumby S. J., Maple J. R., Hagler A. T. An ab initio CFF93 all-atom forcefield for polycarbonates [J]. J. Am. Chem. Soc., 1994, 116:2978-2987.
    [13] Sun H. Ab initio calculations and forcefield development for computer simulation of polysilanes [J]. Macromolecules, 1995, 28:701-712.
    [14] Sun H., Ren P., Fried J. R. The COMPASS force field: parameterization and validation for phosphazenes [J]. Comput. Theoret. Polym. Sci., 1998, 8:229
    [15] Sun H. COMPASS: An ab Initio Forcefield Optimized for Condensed-Phase Applications-Overview with Details on Alkane and Benzene Compounds [J]. J. Phys. Chem. B, 1998, 102:7338-7364.
    [16] 陈正隆。分子模拟的理论和实践-讲习班教材[M],2002。
    [17] 苑世领。两亲分子自组装体系的分子模拟-博士学位论文[M]。济南:山东大学,2003。
    [18] Frenkel,Smit,汪文川(译)。分子模拟-从算法到应用 Understanding Molecular Simulation From Algorithms to Applications[M]。北京:化学工业出版社,2002。
    [19] Hoogerbrugge P. J., Koelman J. M. V. A. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics [J]. Europhys. Lett., 1992, 19:155-160.
    [20] Groot R. D., Warren P. B. Dissipative particle dyanamics: bridging the gap between atomistic and mesoscopic simulation [J]. J. Chem. Phys., 1997, 107:4423-4435.
    [21] Espagnol P., Warren P. B. Statistical mechanics of dissipative particle dynamics [J]. Europhys. Lett., 1995, 30:191-196.
    [22] Groot R. D., Madden T. J. Dynamic simulation of diblock copolymer microphase separation [J]. J. Chem. Phys., 1998, 108:8713-8724.
    [23] Ryjkina E., Kuhn H., Rehage H., Muller F., Peggau J. Molecular Dynamic Computer Simulations of Phase Behavior of Non-Ionic Surfactants [J]. Angew. Chem. Int. Ed., 2002, 41:983-986.
    [24] Kuo M. Y., Yang H. C., Hua C. Y., Cheng C. L., Mao S. Z., Deng E, Wang H. H., Du Y. R. Computer Simulation of Ionic and Nonionic Mixed Surfactants in Aqueous Solution [J]. ChemPhysChem, 2004, 5:575-580.
    [25] Groot R. D., Rabone K. L. Mesoscopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants [J]. Biophys. J., 2001, 81:725-736.
    [1] Kamat P. V. Photophysical, Photochemical and Photocatalytic Aspects of Metal Nanoparticles [J]. J. Phys. Chem. B, 2002, 106(32):7729-7744.
    [2] Henglein A. Physicochemical properties of small metal particles in solution: "microelectrode" reactions, chemisorption, composite metal particles, and the atom-to-metal transition [J]. J. Phys. Chem., 1993, 97(21):5457-5471.
    [3] Gambardella P., Rusponi S., Veronese M., Dhesi S. S., Grazioli C., Dallmeyer A., Cabria I., Zeller R. Giant Magnetic Anisotropy of Single Cobalt Atoms and Nanoparticles [J]. Science, 2003, 300(5622): 1130-1133.
    [4] Schmid G. Large clusters and colloids. Metals in the embryonic state [J]. Chem. Rev., 1992, 92(8): 1709-1727.
    [5] Wei Y., Cao C., Jin R., Mirkin C. A. Nanoparticles with Raman Spectroscopic Fingerprints for DNA and RNA Detection [J]. Science, 2002, 297(5586): 1536-1540.
    [6] Colvin V. L., Schalmp M. C., Alivisatos A. P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer [J]. Nature, 1994, 370(6488):354-357.
    [7] Seitz O., Chehimi M. M., Cabet-Deliry E., Truong S., Felidj N., Perruchot C., Greaves S. J., Watts J. F. Preparation and characterisation of gold nanoparticle assemblies on silanised glass plates [J]. Colloids Surf. A: Physicochem. Eng. Aspects, 2003, 218(1-3):225-239.
    [8] Bonnemann H., Braun G., Brijoux W., Brinkmann R., Tilling A. S., Seevogel K., Siepen K. Nanoscale colloidal metals and alloys stabilized by solvents and surfactants: Preparation and use as catalyst precursors [J]. J. Organomet. Chem., 1996, 520(1-2): 143-162.
    [9] Powell C., Fenwick N., Bresme F., Quirke N. Wetting of nanoparticles and nanoparticle arrays [J]. Colloids Surf. A: Physicochem. Eng. Aspects, 2002, 206(1-3):241-251.
    [10] Service R. F. Atom-scale research gets real [J]. Science, 2000, 290: 1524-1531.
    [11] Normile D. Strange behavior at one dimension [J]. Science, 2000, 290: 1531-1531.
    [12] Rabani E., Reichman D. R., Geissler P. L., Brus L. E. Drying-mediated self-assembly of nanoparticles [J]. Nature, 2003, 426: 271-274.
    [13] Nikoobakht B., El-Sayed M. A. Evidence for bilayer assembly of cationic surfactants on the surface of gold nanorods [J]. Langmuir, 2001, 17: 6368-6374.
    [14] Wang W., Gu B. H. Preparation and Characterization of Silver Colloids at High Concentrations, in P. Somasundaran and B. Markovic, (Eds.), Concentrated Dispersions: Theory, Experiments, and Applications [M]. New York: American Chemical Society, 2004: 1-15.
    [15] Wu S. H., Chen D. H. Synthesis of high-concentration Cu nanoparticles in aqueous CTAB solutions [J]. J. Colloid Interface Sci., 2004, 273: 165-169.
    [16] Link S., Wang Z. L., El-Sayed M. A. Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition [J]. J. Phys. Chem. B, 1999, 103: 3529-3533.
    [17] Nicewarner-Pena S. R., Freeman R. J., Reiss B. D., He L., Pena D. J., Walton I. D., Cromer R., Keating C. D., Natan M. J. Submicrometer metallic barcodes [J]. Science, 2001, 294: 137-141.
    [18] Prodromidis M. I., Veltsistas P. G., Karayannis M. I. Electrochemical study of chemically modified and screen-printed graphite electrodes with [(SbO)-O-V(CHL)(2)]Hex. Application for the selective determination of sulfide [J]. Anl. Chem., 2000, 72: 3995-4002.
    [19] Nie S., Emory S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering [J]. Science, 1997, 275: 1102-1106.
    [20] Sui Z. M., Chen X., Wang L. Y., Chai Y. C., Yang C. J., Zhao J. K. An improved approach for synthesis of positively charged silver nanoparticles [J]. Chem. Lett., 2005, 34: 100-101.
    [21] Cheng W. L., Dong S. J., Wang E. K. Synthesis and self-assembly of cetyltrimethylammonium bromide-capped gold nanoparticles [J]. Langmuir, 2003, 19: 9434-9439.
    [22] Yin K. L., Xia Q., Xia H. T., Xu D. J., Sun X. Q., Chen C. L. Molecular simulation of inner structure of a self assembled gold cluster passivated with thiol-terminated asymmetric hydroquinonyl oligoethers [J]. J. Molecular Structure-Theochem, 2004, 674(1-3): 159-165.
    [23] Henglein A., Giersig M. Formation of colloidal silver nanoparticles: Capping action of citrate [J]. J. Phys. Chem. B, 1999, 103: 9533-9539.
    [24] Wang W., Chen X., Efrima S. Silver nanoparticles capped by long-chain unsaturated carboxylates [J]. J. Phys. Chem. B, 1999, 103: 7238-7246.
    [25] Li X. H., Ma M. H., Huang J. F. Structures and properties of nanometer size materials Ⅲ. Structures and physical properties of iron nanoparticles [J]. Chin. J. Chem., 2005, 23(6): 693-702.
    [26] Shim J. H., Lee S. C., Lee B. J., Suh J. Y., Cho Y. W. Molecular dynamics simulation of the crystallization of a liquid gold nanoparticle [J]. J. Cryst. Growth, 2003, 250(3-4): 558-564.
    [27] Song H. J., Li X. H., Huang J. F. Molecular dynamics studies on the kinetics of phase changes of nanoparticles: Properties, structures, and crystal nucleation of copper nanoparticle Cu-453 [J]. Chin. J. Chem., 2006, 24(2): 273-278.
    [28] Odegard G. M., Clancy T. C., Gates T. S. Modeling of the mechanical properties of nanoparticle/polymer composites [J]. Polymer, 2005, 46(2): 553-562.
    [29] Zhao X., Wang S. Q., Zhang C. B. Kinetics investigation of sintering of nanometer size metal clusters: A molecular dynamics study [J]. J. Mater. Sci. & Tech., 2006, 22(1): 123-126.
    [30] Zhang Z., Beck T. L., Young J. T., Boerio F. J. Molecular structure of monolayers from thiol-terminated polyimide model compounds on gold. 2. Molecular dynamics simulations [J]. Langmuir, 1996, 12: 1227-1234.
    [31] Jung H. H., Won Y. D., Shin S., Kim K. Molecular dynamics simulation of benzenethiolate and benzyl mercaptide on Au(111) [J]. Langmuir, 1999, 15: 1147-1154.
    [32] Rodriguez-Sanchez L., Blanco M. C., Lopez-Quintela M. A. Electro chemical Synthesis of Silver Nanoparticles [J]. J. Phys. Chem. B, 2000, 104(41): 9683-9688.
    [33] Henglein A. Preparation and Optical Aborption Spectra of AU_(core)Pt_(shell) and Pt_(core)AU_(shell) Colloidal Nanoparticles in Aqueous Solution [J]. J. Phys. Chem. B, 2000, 104: 2201-2203.
    [34] Cason J. P., Miller M. E., Thompson J. B., Roberts C. B. Solvent Effects on Copper Nanoparticle Growth Behavior in AOT Reverse Micelle Systems [J]. J. Phys. Chem. B, 2001, 105(12): 2297-2302.
    [35] Pal T., Sau T. K., Jana N. R. Reversible Formation and Dissolution of Silver Nanoparticles in Aqueous Surfactant Media [J]. Langrnuir, 1997, 13(6): 1481-1485.
    [36] Sun Y., Xia Y. Shape-Controlled Synthesis of Gold and Silver Nanoparticles [J]. Science, 2002, 298(5601): 2176-2179.
    [37] Kumar A., Joshi H., Pasricha R., Mandale A. B., Sastry M. Phase transfer of silver nanoparticles from aqueous to organic solutions using fatty amine molecules [J]. J. Colloid Interface Sci., 2003, 264(2): 396-401.
    [38] Hirai H., Aizawa H. Preparation of Stable Dispersions of Colloidal Gold in Hexane by Phase Transfer [J]. J. Colloid Interface Sci., 1993, 161: 471-474.
    [39] Hirai H., Aizawa H., Shiozaki H. Preparation of Nonaquenous Dispersion of Colloidal Silver by Phase Transfer [J]. Chem. Lett., 1992, 21: 1527-1530.
    [40] Wang W., Efrima S., Regev O. Directing Oleate Stabilized Nanosized Silver Colloids into Organic Phases [J]. Langmuir, 1998, 14(3): 602-610.
    [41] Pal T., Sau T. K., Jana N. R. Silver Hydrosol, Organosol, and Reverse Micelle-Stabilized Sol-A Comparative Study [J]. J. Colloid Interface Sci., 1998, 202(1): 30-36.
    [42] Zhao J. K., Chen X., Yang C. J., Sui Z. M., Zhang G. D., Chai Y. C., Liu J. Efficient preparation of metal organosols by phase transfer [J]. Chin. J. Chem., 2005, 23(5): 511-516.
    [43] Zhao J. K., Chen X., Yang C. J., Sui Z. M., Chai Y. C., Zhang G. D., Liu J. An efficient route to prepare metal organosols by phase transfer procedure [J]. Chin. Chem. Lett., 2005, 16(4): 557-560.
    [44] Hun H. J., Young D. W., Seokmin S., Kwan K. Molecular Dynamics Simulation of Benzenethiolate and Benzyl Mercaptide on Au(111) [J]. Langmuir, 1999, 15: 1147-1154
    [45] Sieval A. B., van den Hour B., Han Z., Sudholter E. J. R. Molecular Modeling of Alkyl Monolayers on the Si(111) Surface [J]. Langmuir, 2000, 16: 2987-2990
    [46] Leach A. R. Molecular modelling principles and applications 2nd ed [M]. Beijing: Pearson Education Limited, 2003
    [47] Wijmans C. M., Smit B. Simulating thethered polymer layers in shear flow with dissipative particle dynamics [J]. Macromolecules, 2002, 35(18): 7138-7148.
    [48] Yonezawa T., Onoue S., Kimizuka N. Preparation of Highly Positively Charged Silver Nanoballs and Their Stability [J]. Langmuir, 2000, 16(12): 5218-5220.
    [49] Chen S., Carroll D. L. Silver Nanoplates: Size Control in Two Dimensions and Formation Mechanisms [J]. J. Phys. Chem. B, 2004, 108(18): 5500-5506.
    [1] Fujii H., Ohtaki M., Eguchi K. Synthesis and Photocatalytic Activity of Lamellar Titanium Oxide Formed by Surfactant Bilayer Templating [J]. J. Am. Chem. Soc., 1998, 120(27):6832-6833.
    [2] Andersson M., Alfredsson V., Kjellin P., Palmqvist A. E. C. Macroscopic Alignment of Silver Nanoparticles in Reverse Hexagonal Liquid Crystalline Templates [J]. Nano Lett., 2002, 2(12):1403-1407.
    [3] Attard G. S., Goltner C. G., Corker J. M., Henke S., Templer H. Liquid-Crystal Templates for Nanostructured Metals [J]. Angew. Chem. Int. Ed. Engl., 1997, 36(12):1315-1317.
    [4] Qi L., Gao Y., Ma J. Synthesis of ribbons of silver nanoparticles in lamellar liquid crystals [J]. Colloids Surf. A, 1999, 157(1-3):285-294.
    [5] Chen X., Efrima S., Regev O., Wang W., Niu L., Sui Z. M., Zhu B. L., Yuan X. B., Yang K. Z. Doping Silver Nanoparticles in AOT Lyotropic Lamellar Phases [J]. Sci. China (Ser.B), 2001, 44(5):492-499.
    [6] Wang W., Efrima S., Regev O. Directiong Silver Nanoparticles into Colloid-Surfactant Lamellar Systems [J]. J. Phys. Chem. B, 1999, 103(27):5613-5621.
    [7] 王良御,廖松生.液晶化学[M].北京:科学出版社,1988,138-149.
    [8] Gulik-Krzywicki T., Dedieu J. C., Roux D., Degert C., Laversanne R. Freeze-Fracture Electron Microscopy of Sheared Lamellar Phase [J]. Langmuir, 1996, 12(20): 4668-4671.
    [9] Lin Z., Davis H. T., Scriven L. E. Cryogenic Electron Microscopy of Micelles and Lyotropic Liquid Crystals in Some Polar Solvents [J]. Langmuir, 1996, 12(22): 5489-5493.
    [10] Ryjkina E., Kuhn H., Rehage H., Muller F., Peggau J. Molecular Dynamic Computer Simulations of Phase Behavior of Non-Ionic Surfactants [J]. Angew. Chem. Int. Ed., 2002, 41: 983-986.
    [11] Porter M. R. Handbook of Surfactants, 2nd ed [M]. London: Blackie, 1994
    [12] Rogers J., Winsor P. A. Optically positive, isotropic, and negative lamellar liquid crystalline solutions [J]. Nature, 1967, 216(5114): 477-499.
    [13] Winsor P. A. Binary and multicomponent solutions of amphiphilic compounds. Solubilization and the formation, structure, and theoretical significance of liquid crystalline solutions [J]. Chem. Rev., 1980, 68(1): 1-40.
    [14] Fontell K. Structure of the lamellar liquid crystalline phase in the aerosol OT-water system [J]. J. Colloid Interface Sci., 1973, 44(2): 318-329.
    [15] Coppola L., Muzzalupo R., Ranieri G. A., Terenzi M. Characterization of the Lamellar Phase Aerosol OT/Water System by NMR Diffusion Measurements [J]. Langmuir, 1995, 11(4): 1116-1121.
    [16] Callaghan P. T., Soderman O. Examination of the lamellar phase of aerosol OT/water using pulsed field gradient nuclear magnetic resonance [J]. J. Phys. Chem., 1983, 87(10): 1737-1744.
    [17] Faiman R., Lundstrom. I., Fontell K. A Raman spectroscopic study of the Aerosol OT-water system [J]. Chem. Phys. Lipids, 1977, 18(1): 73-83.
    [18] Boissiere C., Brubach J. B., Mermet A., de Marzi G., Bourgaux C., Prouzet E., Roy P. Water Confined in Lamellar Structures of AOT Surfactants: An Infrared Investigation [J]. J. Phys. Chem. B, 2002, 106(5): 1032-1035.
    [19] Petrov P. G., Ahir S. V., Terentjev E. M. Rheology at the Phase Transition Boundary: 1. Lamellar La Phase of AOT Surfactant Solution [J]. Langmuir, 2002, 18(24): 9133-9139.
    [20] Yuan S. L., Cai Z. T., Xu G. Y., Jiang Y. S. Mesoscopic simulation study on phase diagram of the system oil/water/aerosol OT [J]. Chem. Phys. Lett., 2002, 365(3-4):347-353.
    [21] Zhuang W. C., Chen X., Yang C. J., Wang L. Y., Chai Y. C. Study of ordering for AOT/water lamellar lyotropic liquid crystal: Small-angle X-ray scattering experiments [J]. Acta Phys. Chim. Sin., 2005, 21 (9): 1055-1058.
    [22] Fredrickson G. H., Bates F. S. Dynamics of block copolymers: theory and experiment [J]. Annu. Rev. Mater. Sci., 1996, 26:501-550.
    [23] Jury S., Bladon P., Cates M., Krishna S., Hagen M., Ruddock N., Warren P. Simulation of amphiphilic mesophases using dissipative particle dynamics [J]. Phys. Chem. Chem. Phys., 1999, 1(9):2051-2056.
    [24] Fraaije J. G. E. M., Zvelindovsky A. V., Sevink G. J. A. Computational Soft Nanotechnology with Mesodyn [J]. Molecular Simulation, 2004, 30(4):225-238.
    [25] O'Sullivan E. C., Ward A. J. I. Obvious and Nonobvious Influences of Surfactants on the Formation of Nanosized Particles [J]. Langmuir, 1994, 10(9):2985-2992.
    [26] 隋震鸣。溶致液晶模板法组装无机/有机杂合体-博士学位论文[M]。济南:山东大学,2006。
    [27] Israelachvili J. N. Intermolecular and Surface Forces [J]. London:Academic Press, 1992:366-367.
    [28] Welton T. Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis [J]. Chem. Rev., 1999, 99(8):2071-2084.
    [29] Huddleston J. G. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation [J]. Green Chem., 2001, 3(4): 156-164.
    [30] Fukushima T., Kosaka A., Ishimura Y., Yamamoto T., Takigawa T., Ishii N., Aida T. Molecular Ordering of Organic Molten Salts Triggered by Single-Walled Carbon Nanotubes [J]. Science, 2003, 300:2072-2074.
    [31] Cooper E. R., Andrews C. D., Wheatley P. S., Webb P. B., Wormald P., Morris R. E. Ionic liquids and eutectic mixtures as solvent and template in synthesis of zeolite analogues [J]. Nature, 2004, 430: 1012-1016.
    [32] Rogers R. D., Seddon K. R. CHEMISTRY: Ionic Liquids--Solvents of the Future? [J]. Science, 2003, 302: 792-793.
    [33] Cole-Hamilton D. J. Homogeneous Catalysis--New Approaches to Catalyst Separation, Recovery, and Recycling [J]. Science, 2003, 299: 1702-1706.
    [34] Seddon K. R. Ionic liquids: A taste of the future [J]. Nature Mater., 2003, 2: 363-365.
    [35] DeSimone J. M. Practical Approaches to Green Solvents [J]. Science, 2002, 297: 799-803.
    [36] Antonietti M., Kuang D., Smarsly B., Zhou Y. Ionic Liquids for the Convenient Synthesis of Functional Nanoparticles and Other Inorganic Nanostructures [J]. Angew. Chem. Int. Ed., 2004, 43(38): 4988-4992.
    [37] Huang J., Jiang T., Gao H., Han B., Liu Z., Wu W., Chang Y., Zhao G. Pd Nanoparticles Immobilized on Molecular Sieves by Ionic Liquids: Heterogeneous Catalysts for Solvent-Free Hydrogenation [J]. Angew. Chem. Int. Ed., 2004, 43(11): 1397-1399.
    [38] Zhu Y. J., Wang W. W., Qi R. J., Hu X. L. Microwave- Assisted Synthesis of Single-Crystalline Tellurium Nanorods and Nanowires in Ionic Liquids [J]. Angew. Chem. Int. Ed., 2004, 43(11): 1410-1414.
    [39] Zhao F., Wu X., Wang M., Liu Y., Gao L., Dong S. Electrochemical and Bioelectrochemistry Properties of Room-Temperature Ionic Liquids and Carbon Composite Materials [J]. Anal. Chem., 2004, 76(17): 4960-4967.
    [40] Liu J., Jiang G., Chi Y., Cai Y., Zhou Q., Hu J. T. Use of Ionic Liquids for Liquid-Phase Microextraction of Polycyclic Aromatic Hydrocarbons [J]. Anal. Chem., 2003, 75(21): 5870-5876.
    [41] Li Z., Liu H., Liu Y., He P., Li J. A Room-Temperature Ionic-Liquid-Templated Proton-Conducting Gelatinous Electrolyte [J]. J. Phys. Chem. B, 2004, 108(45): 17512-17518.
    [42] Kishimoto K., Yoshio M., Mukai T., Yoshizawa M., Ohno H., Kato T. Nanostructured Anisotropic Ion-Conductive Films [J]. J. Am. Chem. Soc., 2003, 125(11): 3196-3197.
    [43] Buzzeo M. C., Evans R. G., Compton R. G. Non-Haloaluminate Room-Temperature Ionic Liquids in Electrochemistry-A Review [J]. ChemPhysChem, 2004, 5(8): 1106-1120.
    [44] Dupont J., Fonseca G. S., Umpierre A. P., Fichtner P. F. P., Teixeira S. R. Transition-Metal Nanoparticles in Imidazolium Ionic Liquids: Recycable Catalysts for Biphasic Hydrogenation Reactions [J]. J. Am. Chem. Sot., 2002, 124(16): 4228-4229.
    [45] Bowers J., Vergara-Gurierrez M. C. Surface Ordering of Amphiphilic Ionic Liquids [J]. Langmuir, 2004, 20: 309-312.
    [46] Kato T. Self-Assembly of Phase-Segregated Liquid Crystal Structures [J]. Science, 2002, 295: 2414-2418.
    [47] Firestone M. A., Dzielawa J. A., Zapol P., Curtiss L. A., Seifert S., Dietz M. L. Lyotropic Liquid-Crystalline Gel Formation in a Room-Temperature Ionic Liquid [J]. Langrnuir, 2002, 18(20): 7258-7260.
    [48] Friberg S. E., Yin Q., Pavel F., Mackay R. A., Holbrey J. D., Seddon K. R., Aikens P. A. Solubilization of an Ionic Liquid, 1-Butyl-3-methylimidazolium Hexafluorophosphate, in a Surfactant-Water System [J]. J. Disp. Sci. Technol., 2000, 21(2): 185-197.
    [49] Bowers J., Butts C. P., Martin P. J., Vergara-Gurierrez M. C., Heenan R. K. Aggregation Behavior of Aqueous Solutions of Ionic Liquids [J]. Langmuir, 2004, 20(6): 2191-2198.
    [50] Dupont J. On the Solic, Liquid and Solution Structural Organization of Imidazolium Ionic Liquids [J]. J. Braz. Chem. Sot., 2004, 15(3): 341-350.
    [51] Fletcher K. A., Pandey S. Surfactant Aggregation within Room-Temperature Ionic Liquid 1-Ethyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide [J]. Langmuir, 2004, 20(1): 33-36.
    [52] Downard A., Earle M. J., Hardacre C., McMath S. E. J., Nieuwenhuyzen M., eat S. J. Structural Studies of Crystalline 1-Alkyl-3-Methylimidazolium Chloride Salts [J]. Chem. Mater, 2004, 16: 43-48.
    [53] Buhl M., Chaumont A., Schurhammer R., Wipff G. Ab initio molecular dynamics of liquid 1, 3-dimethylimidazolium chloride [J]. J. Phys. Chem. B, 2005, 109(39): 18591-18599.
    [54] Borodin O., Smith G. D. Structure and dynamics of N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquid from molecular dynamics simulations [J]. J. Phys. Chem. B, 2006, 110(23): 11481-11490.
    [55] Del Popolo M. G., Kohanoff J., Lynden-Bell R. M. Solvation structure and transport of acidic protons in ionic liquids: A first-principles simulation study [J]. J. Phys. Chem. B, 2006, 110(17): 8798-8803.
    [56] Del Popolo M. G., Lynden-Bell R. M., Kohanoff J. Ab initio molecular dynamics simulation of a room temperature ionic liquid [J]. J. Phys. Chem. B, 2005, 109(12): 5895-5902.
    [57] Harper J. B., Lynden-Bell R. M. Macroscopic and microscopic properties of solutions of aromatic compounds in an ionic liquid [J]. Molecular Physics, 2004, 102(1): 85-94.
    [58] Hunt P. A. The simulation of imidazolium-based ionic liquids [J]. Molecular Simulation, 2006, 32(1): 1-10.
    [59] Prado C. E. R., Del Popolo M. G., Youngs T. G. A., Kohanoff J., Lynden-Bell R. M. Molecular electrostatic properties of ions in an ionic liquid [J]. Molecular Physics, 2006, 104(15): 2477-2483.
    [60] Pu M., Chen B. H., Li B. H., Liu K. H. DFT studies on reaction mechanism of the double bond isomerization of butene catalyzed by 1-ethyl-3-methyl-imidazolium of the ionic liquid (Ⅱ) [J]. Acta Physico-Chimica Sinica, 2005, 21 (4): 383-387.
    [61] Rey-Castro C., Vega L. F. Transport properties of the ionic liquid 1-ethyl-3-methylimidazolium chloride from equilibrium molecular dynamics simulation. The effect of temperature [J]. J. Phys. Chem. B, 2006, 110(29): 14426-14435.
    [62] Lopes J. N. C., Deschamps J., Padua A. A. H. Modeling Ionic Liquids Using a Systematic All-Atom Force Field [J]. J. Phys. Chem. B, 2004, 108: 2038-2047.
    [63] Lopes J. N. C., Padua A. A. H. Using Spectroscopic Data on Imidazolium Cation Conformations To Test a Molecular Force Field for Ionic Liquids [J]. J. Phys. Chem. B, 2006, 110: 7485-7489
    [64] Lopes J. N. C., Deschamps J., Padua A. A. H. Modeling ionic liquids of the 1-alkyl-3-methylimidazolium family using an all-atom force field [J]. Ionic Liquids Iiia: Fundamentals, Progress, Challenges, and Opportunities, Properties and Structure, 2005, 901: 134-149.
    [65] Liu Z. P., Huang S. P., Wang W. C. A Refined Force Field for Molecular Simulation of Imidazolium-Based Ionic Liquids [J]. J. Phys. Chem. B, 2004, 108: 12978-12989.
    [66] Liu Z. P., Wu X. P., Wang W. C. A novel united-atom force field for imidazolium-based ionic liquids [J]. Phys. Chem. Chem. Phys., 2006, 8(9): 1096-1104.
    [67] Morrow T. I., Maginn E. J. Molecular Dynamics Study of the Ionic Liquid 1-n-Butyl-3-methylimidazolium Hexafluorophosphate. J. Phys. Chem. B, 2002, 106: 12807-12813.
    [68] Bhargava B. L., Balasubramanian S. Layering at an ionic liquid-vapor interface: A molecular dynamics simulation study of [bmim][PF6] [J]. J. Am. Chem. Soc., 2006, 128(31): 10073-10078.
    [69] Bhargava B. L., Balasubramanian S. Intermolecular structure and dynamics in an ionic liquid: A Car-Parrinello molecular dynamics simulation study of 1, 3-dimethylimidazolium chloride [J]. Chem. Phys. Lett., 2006, 417(4-6): 486-491.
    [70] Bhargava B. L., Balasubramanian S. Dynamics in a room-temperature ionic liquid: A computer simulation study of 1, 3-dimethylimidazolium chloride [J]. J. Chem. Phys., 2005, 123(14): 144505-144508.
    [1] Zhao J. K., Chen X., Sui Z. M., Zhu B. L., Xu L. M., Yang C. J. Fabrication and Assembling of Nanomaterials Templated by Lyotropie Liquid Crystal [J]. Prog. Chem., 2003, 15(6):451-455.
    [2] Firestone M. A., Williams D. E., Seifert S., Csenesits R. Nanoparticle Arrays Formed by Spatial Compartmentalization in a Complex Fluid [J]. Nano Lett., 2001, 1(3):129-135.
    [3] Eiser E., Bouchama F., Thathagar M. B., Tothenberg G. Trapping Metal Nanoclusters in "Soap and Water" Soft Crystals [J]. ChemPhysChem, 2003, 4:526-528.
    [4] Mitov M,, Portet C., Bourgerette C., Snoeck E., Verelst M. Long-range Structuring of Nanoparticles by Mimicry of a Cholesterie Liquid Crystal [J]. Nature Mater., 2002, 1 (4):229-231.
    [5] Quillier C., Ponsinet V., Cabuil V. Magnetically Doped Hexagonal Lyotropic Phases [J]. J. Phys. Chem., 1994, 98(14):3566-3569.
    [6] Chen X., Efrima S., Regev O., Wang W., Niu L., Sui Z. M., Zhu B. L., Yuan X. B., Yang K. Z. Doping Silver Nanoparticles in AOT Lyotropic Lamellar Phases [J]. Sci. China (Ser. B), 2001, 44(5):492-499.
    [7] Wang W., Efrima S., Regev O. Directiong Silver Nanoparticles into Colloid-Surfactant Lamellar Systems [J]. J. Phys. Chem. B, 1999, 103(27):5613-5621.
    [8] Ponsinet V., Fabre P. Flexibility of the Membranes in a Doped Swollen Lamellar Phase [J]. J. Phys. Chem., 1996, 100:5035-5038.
    [9] Raghunathan V. A., Richetti P., Roux D. Dispersion of Latex Particles in a Nematic Solution. 2. Phase Diagram and Elastic Properties [J]. Langmuir, 1996, 12(16):3789-3792.
    [10] Arrault J., Grand C., Poon W. C. K., Cates M. E. Stuffed onions: Particles in multilamellar vesicles [J]. Europhys. Lett., 1997, 38(8):625-630.
    [11] Menager C., Belloni L., Cabuil V., Dubois M., GulikKrzywicki T., Zemb Th. Osmotic Equilibrium between an Ionic Magnetic Fluid and an Electrostatic Lamellar Phase [J]. Langmuir, 1996, 12(14):3516-3522.
    [12] Grillo I., Levitz P., Zemb Th. Insertion of Small Anionic Particles in Negatively Charged Lamellar Phases [J]. Langmuir, 2000, 16(11):4830-4839.
    [13] Feng J. J., Zhou C. Orientational Defects near Colloidal Particles in a Nematic Liquid Crystal [J]. J. Colloid Interface Sci., 2004, 269:72-78.
    [14] Poulin P. Novel Phases and Colloidal Assemblies in Liquid Crystals [J]. Curr. Opin. Colloid Interface Sci., 1999, 4:66-71.
    [15] Poulin P., Stark H., Lubensky T. C., Weita D. A. Novel Colloidal Interactions in Anisotropic Fluids [J]. Science, 1997, 275:1770-1773.
    [16] Ramos L., Fabre P., Dubois E. Compatibiliy between Sokid Particles and a Lamellar Phase: AcRUCIAL role of the Membrane Interactions [J]. J. Phys. Chem., 1996, 100:4533-4537.
    [17] Sens P., Turner M. S., Pincus P. Particulate Inclusions in a Lamellar Phase [J]. Phys. Rev. E, 1997, 55:4394-4405.
    [18] Bittner M., Kreuzer M. Silica Dispersed Nenatics and Cholesterics for Bistable High Resolution Displays [J]. Mol. Cryst. Liq. Cryst., 1996, 282:373-386.
    [19] 王新久。液晶的结构、缺陷与织构[J]。液晶与显示,1996,11(1):1-15。
    [20] 隋震鸣。溶致液晶模板法组装无机/有机杂合体-博士学位论文[M]。济南:山东大学,2006。
    [21] Zhuang W. C., Chen X., Yang C. J., Wang L. Y., Chai Y. C. Study of ordering for AOT/water lamellar lyotropic liquid crystal: Small-angle X-ray scattering experiments [J]. Acta Phys. Chim. Sin., 2005, 21 (9): 1055-1058.
    [22] Chidichimo G., La Mesa C., Ranierl G. A. NMR Investigation of the Lamellar Mesophase Occurring in the System Aerosol OT-water [J]. Mol. Cryst. Liq. Cryst., 1987, 150b: 221-236.
    [23] Callaghan P. T., Soderman O. Examination of the lamellar phase of aerosol OT/water using pulsed field gradient nuclear magnetic resonance [J]. J. Phys. Chem., 1983, 87(10): 1737-1744.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700