脂肪酶选择性催化合成芦丁脂肪酸酯及物化性质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄酮类化合物(flavonoids)广泛分布于绿色植物中,具有抗衰老、抗炎、抗肿瘤、抗病毒、免疫调节等多种生物活性,在保健食品、化妆品和药剂配置等领域有很大的应用前景。然而黄酮类化合物在自然界多以糖苷的形式存在,糖苷极性大,具有一定的亲水性,它与脂肪和油类的相容性很差,难以在脂肪类溶剂中稳定存在,这就限制了黄酮类化合物在这些领域的应用。据研究黄酮类化合物的各种生物活性都是以抗氧化活性为基础的,与抗自由基或抗脂质过氧化有关。特殊的结构赋予它一系列独特的化学性质,如能与多种金属离子发生络合或静电作用,具有还原和捕获自由基的特性以及诸多衍生化反应活性等。黄酮类化合物抑制低密度脂蛋白LDL氧化和抑制类胡萝卜素及不饱和脂肪酸氧化的研究表明,苷元比糖苷具有更优秀的抗氧化活性。这是由于苷元亲脂性强,能嵌入生物膜疏水层的内核中发挥作用。黄酮苷类化合物的多羟基及糖基结构使其具有一定的亲水性,这势必会影响抗氧化活性。黄酮类化合物通过酯化修饰,在分子中引入长烃链可以增加它的脂溶性,从而增加和脂肪的相容性及提高抗氧化性。然而通常的化学修饰反应选择性差,黄酮类化合物的多个羟基都有可能参与酯化,往往结合或屏蔽了主要活性基团,虽然增加了其脂溶性,但降低了本身的抗氧化效果。因此,化学修饰酯化反应通常要经“基团保护-酯化-脱保护基团”三步。酶催化反应具有较强的专一性与选择性,可以选择酯化黄酮类化合物的某位羟基。到目前为止,黄酮苷在酶催化下的酯化已有比较详细的研究,但反应中分子筛添加时间的不同对酯化反应的影响还未见有文献报道。目前引入黄酮苷分子中的最长烃基链也只有16个碳长度,烃链进一步增长可能赋予酯化产物新的性质,比如两亲性。正是基于这些原因,本文以硬脂酸、月桂酸和正己酸为酰基供体,以脂肪酶Novozym 435为催化剂对芦丁进行选择性酯化,合成并提纯出了三种含不同烃基链长度的芦丁脂肪酸酯。用红外光谱和核磁共振波谱对其进行结构鉴定,结果表明该类酯化物的酯化反应位为鼠李糖的C4’’’位羟基。以高效液相色谱监测酯化反应进程,首次研究了分子筛添加时间不同对酯化率的影响。结果显示,添加了分子筛的酯化反应的酯化率和反应速率远大于不添加分子筛的情况。分子筛添加时间不同,酯化率也不同。对于硬脂酸为酰基供体的情况,反应24小时后添加分子筛的酯化反应可以得到最大的酯化转化率46%。以月桂酸为酰基供体的酯化反应,反应11小时后添加分子筛可以得到最大的酯化转化率64.5%。本实验首次得到了芦丁脂肪酸酯的紫外-可见光谱,芦丁脂肪酸酯在256nm和357nm有特征吸收。
     生物分子的吸收代谢涉及它们和生物膜的相互作用,生物膜的结构形态和生理性质如通透性、流动性等随之发生变化。黄酮类化合物和脂质体双层膜相互作用的研究比较多,很少有和单分子膜相互作用的报道。磷脂单分子膜通常作为生物膜的简化体系,研究黄酮类化合物和磷脂单分子膜的相互作用可以从分子水平上揭示黄酮类化合物的抗氧化机理。但是黄酮类化合物的分子为多苯环排列的平面结构,不能在气/液界面铺展,因此以黄酮类化合物为模型物的单分子膜研究很少。然而通过酯化将长碳链引入黄酮类化合物分子中,这将赋予它两亲性。本文合成的芦丁硬脂酸酯(RS),芦丁月桂酸酯(RL)和芦丁正己酸酯(RC)具有两亲分子的特征,亲水基为带芸香糖和多个酚羟基的芦丁母核,疏水基为多碳烃基链,分子具有两亲性而且水溶性很低,能在空气/水界面铺展为单分子膜,可以作为一种研究单分子膜的新型模型分子。而且芦丁脂肪酸酯单独成膜性质的研究能够为它和生物膜相互作用的研究打下基础。
     本文用LB膜分析仪研究了RS、RL和RC在空气/水界面的成膜特性,及亚相中的Al~(3+)对其成膜性质的影响,为进一步研究它们和磷脂单分子膜的相互作用打下基础。研究结果表明芦丁脂肪酸酯的成膜性与引入的碳链长度、压膜速度和亚相性质有关。RS及RL在空气/水界面都铺展为液态扩张单分子膜,它们在水面的形态为苷元部分保留在空气/水界面,芸香糖的两个糖基紧密排列于水面下,疏水链松散地伸向空气中。RS能铺展成较RL稳定的单分子膜。但相对于庞大的亲水基,两者引入的碳链较短,均不能在水面形成足够稳定的单分子膜。RC在水中有很大的溶解度,不能在水表面形成单分子膜。在Al~(3+)的水溶液表面,由于亲水基与Al~(3+)络合,使更多的芦丁脂肪酸酯分子能够保留在亚相表面,因此RS、RL在崩溃压时的平均分子面积较亚相为水时大;而RC也能在表面形成液态扩张膜。
     本文合成的芦丁脂肪酸酯是一类新型两亲分子,根据其在水面Langmuir单分子膜的研究发现,虽然芦丁脂肪酸酯的疏水性很强,能在水面铺展为单分子膜,但它在水中仍有一定的溶解度,尽管非常低。研究芦丁脂肪酸酯在溶液表面的吸附特性,可以作为其铺展单分子膜(解吸过程)的补充和对照。而且至今还未见研究芦丁脂肪酸酯吸附单分子膜的文献。本文在研究芦丁脂肪酸酯的吸附膜过程中发现它在水中的溶解度极低,1000ml水中还不能溶解1mg芦丁脂肪酸酯。如此低的浓度,再加上表面张力仪的测量误差,最终很可能测出的表面张力值和纯水的几乎相等。芦丁脂肪酸酯在碱水溶液中的溶解度比水中大,但芦丁在pH>8.77的情况下会电离形成钠盐,因此,本文将三种烃基链长的芦丁脂肪酸酯溶解在很稀的NaOH水溶液(pH≈8)中,确保它们既能以一定浓度溶解又不会发生电离成盐。用Wilhelmy吊片法测芦丁脂肪酸酯溶液的表面张力,并用研究吸附膜的常规方法讨论了吸附过程的一些性质。三种芦丁脂肪酸酯碱水溶液的表面张力都随溶液浓度的增加而降低。它们的表面性质和含有的疏水链长度有关,疏水链越长降低碱水溶液表面张力的能力越强,CMC值大。三种芦丁脂肪酸酯NaOH水溶液的dγ/dlgC都为负值,说明芦丁脂肪酸酯发生正吸附。RS、RL和RC溶液的表面饱和吸附量,分别为1.71×10~(-11)mol/cm~2、1.35×10~(-11)mol/cm~2和1.41×10~(-11)mol/cm~2。表面吸附量达到饱和时的浓度分别是3×10~(-3)mg/mL、1.65×10~(-3)mg/mL和1.3×10~(-3)mg/mL,对应于它们表面张力降到最小值时的浓度。它们的等温线都属于Langmuir型等温线。三种芦丁脂肪酸酯溶液的表面吸附在标准状态下能自发进行,但体系吸附能力比较弱。
     生物膜中含有很多饱和及不饱和的脂肪酸,黄酮类化合物的抗氧化活性部分体现在它和脂肪酸的相互作用方面。由混合单分子膜的π-A曲线可得到单分子膜的崩溃压、平均分子面积、超额自由能、可压缩性等信息,它们不仅反映成膜性质,还能提供成膜分子间的相互作用力等微观信息。硬脂酸通常都作为研究混合单分子膜的一种重要组分。基于这些原因,本文用LB膜分析仪对能在水面铺展成单分子膜的RS及RL与硬脂酸混合单分子膜在不同摩尔配比不同膜压下的相容性、热力学稳定性、膜收缩/膨胀性和压缩性等成膜性质作了研究。研究结果表明,在任何摩尔配比和膜压下两种混合体系中的组分都相容。SA的加入使膜压缩性发生的变化与膜压及SA的摩尔含量都有关。对于RS/SA混合膜体系,随SA摩尔含量增大,膜分子间作用力由吸引力逐渐变为排斥力,组分间的相容性变差。在各种膜压下,X_(SA)=0.167附近膜收缩效应最大,能形成最稳定的混合膜。膜压越小SA对混合膜的收缩或膨胀效果越显著。对于RUSA混合单分子膜,膜分子间作用力始终为排斥力,膜呈膨胀状态,混合体系不稳定。RS的碳链长,并且具有和SA相同的疏水链碳数,因此RS/SA较RL/SA混合膜体系的相容性和稳定性好。
     脂质的氧化通常是自由基进攻含不饱和键的磷脂,因此研究黄酮类化合物与含不饱和键磷脂的相互作用是非常有意义的。基于这些原因,本文选择L-α二油酸磷脂酰胆碱(DOPC)单分子膜为生物膜的简化体系,用LB膜分析仪讨论了它和RS及RL混合单分子膜的组分相容性、热力学稳定性和膜压缩性,并得到了膜分子间相互作用的相关信息。这些信息对从分子水平上解释芦丁脂肪酸酯对磷脂膜的抗氧化机理是非常有价值的。不同温度下磷脂的存在状态不同,这必然导致混合单分子膜某些性质发生改变,同时会影响分子间相互作用。因此本文还讨论了温度对DOPC/芦丁脂肪酸酯混合单分子膜的成膜性质。任何温度和任何混合比例下的DOPC/RS和DOPC/RL混合单分子膜中的两组分是完全互容的。温度越高组分相容性越好。在各种温度下,RS对DOPC单分子膜的收缩效果随表面压降低而更加显著。RS对DOPC单分子膜的收缩作用是由于两种分子形状匹配,可以以相互咬合的方式排列。DOPC与RL的相容性比较差,这是由于RL的烃链短,在某些条件下两组分的分子结构不匹配。但升温或降低RL含量都能改善两组分的相容性。DOPC/RS混合体系在三个实验温度的某些条件下都是热力学稳定的,而DOPC/RL体系只有在37℃时才在0.2<X_(RL)<0.5范围内处于热力学稳定状态。温度对DOPC/RS和DOPC/RL混合单分子膜的C_s没有影响。任何温度下,混合单分子膜中芦丁脂肪酸酯的摩尔含量越大膜越容易被压缩,且C_s随膜压的增大而减小。
     芦丁是一类重要的黄酮类化合物,通过酶催化酯化引入长烃基链得到的芦丁脂肪酸酯具有较强的脂溶性,由此推测它在脂类中的抗氧化性将增强。然而至今国内外还未见有关黄酮糖苷脂肪酸酯的抗氧化性研究。本文以反映脂质氧化修饰程度的硫代巴比妥酸反应物质(TBARS)为指标,研究了含不同长度烃链的RS、RL和RC对Fe~(2+)介导的卵磷脂氧化修饰的影响。结果表明芦丁脂肪酸酯的抗氧化活性优于芦丁。而且RC具有最好的抗氧化活性,能使氧化体系中卵磷脂的MDA含量在四小时内都保持非常低。
     黄酮类化合物在人体内主要通过体液吸收代谢,而RS、RL及RC在水中的溶解度非常小,这将影响它们的抗氧化效果。本文以芦丁月桂酸酯(RL)为代表,自制了RL-聚乙二醇固体分散体。结果表明以PEG4000为载体,采用甲醇溶解法制备RL为固体分散体,可以显著提高RL的溶解度,并起到缓释RL的效果。RL在固体分散体中的分散程度随着PEG4000含量的增加而增大。在固体分散体的制备中,RL与载体PEG4000无化学键生成。制备过程不改变RL的分子结构。
Flavonoids are widely distributed in different parts of miscellaneous plants and exhibit a wide range of biological activities, such as anticancer, anti-inflammatory, anti-virus, anticoagulant, anti-atherosclerosis, and inhibitory effects on low-density lipoprotein (LDL) oxidation. Due to their biological properties, the use of flavonoids in food, cosmetic and pharmaceutical preparations is currently the subject of great interest. Unfortunately, most of naturally occurring flavonoids (mainly flavonoid glycosides) show a low solubility and stability in the lipophilic media and ineffectiveness in stabilizing fats and oils. These properties limit the development of nutrition food and commodity containing flavonoids. Most of biological activities of flavonoids may arise from their resistance to oxidation including scavenging free radicals, chelating transition metal ions, and protecting the lipid from peroxidization. Aglucone show more excellent anti-oxidation compared with glucosides because the former exhibit strong lipotropy and partition preferentially into the hydrophobic core of the bio-membrane. These results are confirmed by protecting LDL and the complex of carotenoids and unsaturated fatty acids from oxidation by flavonoids. Generally speaking, the hydrophilic property of flavonoid glucosides, which dues to polyhydroxyl and saccharide groups, will compress their anti-oxidative activity. Esterification of the hydroxyl groups in molecules by fatty acids is a possible way to improve the hydrophilic property of flavonoid glucosides. In the classical esterification catalyzed by chemical catalyst, most of hydroxyl groups may be acylated, which leads to a mixture of products with various degree of esterification. Once the active hydroxyls are acylated, the biological activity of flavonoids will be reduced or even lost. However, the enzymatic catalysis is an alternative because enzymes are very regioselective. More attention has recently been paid to enzymatic esterification of flavonoid glucosides. By now a lot of literatures have reported the effect of water content, acyl donor structure, flavonoid backbone, enzyme origin and solvent nature on the results of the acylation. However, the effect of addition time of molecular sieves on the conversion in esterification has not yet been reported in some detail. The longest alkyl chain of acyl donor that has been reported by now is hexadecyl. The esterification by acyl donors with longer alkyl chains will bring rutin esters some new properties, such as amphipathy. Thus, in our experiments, rutin was acylated with a series aliphatic acid in esterification reaction catalyzed by immobilized Candida antarctica lipase B (Novozym 435) in tert-arnyl alcohol. The lipophilic rutin stearate was synthesized by this method. The structure of turin esters were characterized by spectra methods of ~1H-NMR and ~(13)C-NMR, FT-IR and UV-Vis. The results suggested that the regioselectivity of the lipase-catalyzed esterification of rutin was specific at the C4'" position of the rhamnose moiety. It was found that the addition Of molecular sieves increased both of the reaction rate and the yield obviously. For the esterification which stearic acid was the acyl donor, the final conversion for the case to add molecular sieves at 24 h after the beginning of reaction was the highest, i. e. about 46%. And the highest conversion, i. e. about 64.5%, for the esterification which lauric acid was acyl donor was obtained with adding molecular sieves at 11 h. The UV-Vis spectrums of rutin esters, what have not been reported until now in other literatures, were very similar to that of rutin. The main peaks were 256 and 357 nm in the UV-Vis spectrum for rutin esters.
     The absorption and metabolism of pharmaceuticals involve the interaction of pharmaceuticals with bio-membrane, which leads to the changes of structure and physio-properties of bio-membrane, such as permeation, fluidity. Lipid monolayer is usually chosen as simple model of bio-membrane, so the investigation on interaction of flavonoids with lipid monolayer may be a simple as well as effective way to reveal the antioxidative activity mechanism of flavonoids. However, few papers have reported the interaction of flavonoids with lipid monolayer, more with the lipid bilayers. This probably because flavonoids can not spread at air/water interface, as other conjugated aromatic molecules. However, amphiphilic flavonoids esters which are obtained by esterification could spread at air/water interface to form monolayer. The properties of monolayers formation of amphiphilic flavonoid esters at the air/water is the precondition for investigating the interaction of flavonoids with lipid monolayer. However, little attention has by now been paid to this subject. In our experiments, we explored the monolayers formation of RS, RL and RC at the air/water interface, changing the compression rate. We also report the influences of Al~(3+) in subphase toπ-A isotherms of RS and RL monolayer. Although the introduction of alkyl chains makes the rutin, which does not spread at air/water interfaces, amphiphilic, the properties of monolayers depend on the alkyl chain length, cmpression rate and the subphase. Independent of subphase, the isotherms of RS and RL monolayers with liquid-phase are observed. Near to the collapse of monolayers, the aglucons of rutin esters lie on the surface with a tightly packing of glucose and rhamnose, which are oriented perpendicularly to the surface and point into the water phase, and alkyl chains point into air loosely. Both RS and RL have not enough hydrophobicity to form monolayers which are stable enough to maintain the surface pressure for a long period. RL with shorter alkyl chain shows a more pronounced tendency of dissolution. The molecular area of the RS and RL monolayers decreased as the compression rate was reduced, however, theπ_(coll) increased. RC was so soluble that it was not capable of forming monolayer at air/water interface. When RS, RL and RC were spread on aqueous aluminum solution, the values of a_(coll) andπ_(coll) of monolayers are larger compared to spread at air/water interface, and RC could spread to form monolayer with liquid-phase.
     Although amphipathic rutin esters could spread at water/air interface, they were soluble in water a little. The surface properties of rutin esters adsorbed at the water/air interface from bulk phase could be the supplement and comparison for that of spread monolayer of rutin esters. However, the adsorption of rutin esters at water/air from bulk phase has not been reported by now. In our experiments, the surface properties of rutin esters adsorbed at the surface of diluted alkali solution. The reason why choose diluted alkali solution was that the solubility of rutin esters in water was so low that 1 mg rutin esters could not dissolve in 1000 ml water, while rutin esters could dissolve in alkali solution. But rutin would ionize and form sodium salt in the alkali solution if pH>8.77, thus we chose diluted alkali solution, of which the value of pH was about 8, as experiment solution. The measurement of surface pressure of rutin esters in diluted alkali solution was performed using a KSV instrument of interfacial tension with a Wilhelmy type microbalance using a platinum plate. The suface properties of rutin esters adsorbed at the surface were investigated. The surface pressure of RS, RL and RC decreased with the increasing of their concentration. Surface activity was more effective and the value of CMC was higher with longer alkyl chain of rutin esters. The values of d_γ/dlgC of all rutin esters were negative, which indicated the positive adsorption. Respectively, the maximum of surface excess of RS, RL and RC were 1.71×10~(-11) mol/cm~2、1.35×10~(-11) mol/cm~2 and 1.41×10~(-11) mol/cm~2 and the concentration of which were 3×10~(-3) mg/mL、1.65×10~(-3) mg/mL and 1.3×10~(-3) mg/mL. The adsorption isotherm of the rutin esters were all Langmuir adsorption. At standard state, they all could adsorb at surface spontaneously.
     Stearic acid is usually mixed with other amphiphilic molecules to study the two-component mixed monolayer. In the present paper, the characteristic such as miscibility, thermodynamic stability and compressibility of RS/SA and RL/SA mixed monolayers have been investigated by Langmuir film balance to yield quantitative information on the nature of the molecular interaction. These are the precondition for investigating the interaction of flavonoids with lipid monolayer. The collapse pressures of the mixed monolayers increase gradually with increasing proportion of stearic acid and are between that of the pure components, which mean RS/SA and RL/SA monolayers are miscible throughout the mixture composition range. However, with the increasing of X_(SA), the attraction between molecules of the two components in RS/SA mixed monolayers turns to be repulsion and the miscibility of two components turns to be bad. At X_(SA)=0.14-0.16 the prominent negative deviations from ideal molecular areas and the most negative values of△G_(ex) are observed with an exception for the case of 25 mN/m, where the maximum deviations and the most negative excess free energies are observed at X_(SA)=0.25. The deviations from ideal molecular areas and the excess free energies of RL/SA are all positive at any mole fraction of stearic acid. The miscibility and stability of RS/SA mixed monolayers are better than those of RL/SA mixed monoalyers. This probably because RS has longer alkyl chains and favors the array of hydrophobic groups of two components of mixture. The compressibility of the mixed monolayers seems to be sensitive to both the amount of stearic acid component and the surface pressure. The considerable fluctuations of comressibility of RS/SA and RL/SA mixed monolayers with the various X_(SA) were observed and the greatest compressibility were both obtained atπ=5 mN/m.
     Monolayers of dioleoylphosphatidylcholine (DOPC) are used as model membranes to study their molecular interaction with RS and RL. The characteristic such as miscibility, thermodynamic stability and compressibility of DOPC/RS and DOPC/RL mixed monolayers have been investigated by Langmuir film balance to yield quantitative information on the nature of the molecular interaction, which can provide valuable insights to reveal the antioxidative activity mechanism of flavonoids. The effects of temperature of the subphase on the DOPC-rutin esters interactions are investigated. Pure RS, RL and DOPC were all capable of forming monolayers with liquid-phase at the air/water interface. The two components of DOPC/RS and DOPC/RL monolayers were miscible throughout the mixture composition range. The miscibility was more excellent at higher temperature. At different temperatures, the condensing effect of RS on the DOPC monolayer, which represented the attractive forces between DOPC and RS, is more significant at lower surface pressures. This condensing effect could be ascribed to the match of molecular shapes of RS and DOPC on the monolayers packing. The less miscibility of RL and DOPC may be dues to its shorter alkyl chain. At some mole fraction of RS and surface pressure, DOPC and RL molecular shapes may mismatch, and the cohesion between RL and RL, DOPC and DOPC is greater than RL and DOPC. But high temperature and low X_(RL) both could improve the miscibility of RL and DOPC. The values of△G_(ex) of RS/DOPC monolayers are all negative at any X_(RS) and surface pressures, with the exception for the case ofπ= 30mN/m, X_(RS)=0.75, where△G_(ex) is positive. In the range of 0.33<X_(RS)<0.47 for all surface pressure studied, the mixture exhibits the greatest thermodynamic stability compared with the pure component monolayers. The two components of DOPC/RL monolayers mix spontaneously only for X_(RL)>0.5 andπ<25 mN/m. At any temperatures studied, the compressibility of DOPC/RS monolayers increased with the increasing of X_(RS) and the decreasing of the surface pressure. This phenomenon was also observed for DOPC/RL monolayers.
     Rutin is famous and typical one of flavonoids. Esterification of the hydroxyl groups in molecules by aliphatic acid is a possible way to improve the hydrophilic property of rutin. We expect that rutin esters will inset into bio-membrane with alkyl chains locating at the hydrophobic core. The hydrophobic interaction between the alkyl chains steadies the location of rutin esters in the bio-membrane. Furthermore, the anti-oxidation groups keep retentive during the esterification of rutin. Thus, more prominent antioxidative activity may be expected for rutin esters. However, the investigations about the antioxidation of rutin esters have been reported by now. In our experiments, using the content of thiobabituric acid reactive substance (TBARS) as index, the inhibitory effects of rutin and rutin esters on oxidative modification of lecithin induced by Fe_(2+) were compared. The results showed that, rutin and rutin esters could inhibit the oxidative modification and the role of rutin esters was better than that of rutin; rutin caporate, which has moderate solubility in water, was the best in three kinds of rutin esters.
     Rutin is adsorbed and metabolized via body fluid in vivo, while its three aliphatic esters, i. e. stearic ester, lauric ester and caproic ester, are weak soluble in water. In our experiments, rutin laurie ester was chosen as sample to prepare solid dispersions for increasing its water solubility. PEG4000 was taken as a carrier, and solid dispersions of rutin laurie ester with different ratio were prepared by methanol solution method. The solubility of the solid dispersion was significantly increased, compared with the rutin laurie eater, and its solubility increased with the increase of content of PEG4000. IR spectrophotometer and UV spectrophotometer were used to investigate the solid dispersion. It is clear that there was no chemical reaction between rutin laurie ester and PEG4000.
引文
1 Smith H. Phytochrome. New York and London: Academic Press, 1972: 433.
    2 中国科学院上海药物研究所植物化学研究室.黄酮体化合物鉴定手册.北京:科学出版社,1981.
    3 Harbome JB. The flavonoids, advances in research. London: Chapman and Hall, 1988
    4 Harborne JB, Baxter H. The Handbook of Natural Flavonoids, Vols. 1 and 2, Wiley, New York, 1999.
    5 姚新生.天然药物化学(第三版).北京:人民卫生出版社,2002:167
    6 张金桐,宋仰弟.黄酮类化合物的生物活性与电子结构关系的量子化学研究.山西农业大学学报:自然科学版.1993,13(2):134-140.
    7 Richards M, Bird AE, Munden JE. An allelic series for the chaicone synthase locus in Arabidopsis. J Antibiotics. 1969, 22:388-400
    8 List PH, Freund B. Flavonoids from Emblica officinalis and Mangifera indica—effectiveness for dyslipidemia. Planta Med. 1968:123-129
    9 Markham KR, Porter LJ. Flavonoid methylation: a novel 4′-O-methyltransferase from Catharanthus roseus, and evidence that partially methylated flavanones are substrates of four different flavonoid dioxygenases. Phytochemistry. 1969, 8:1777-1782
    10 Harborne JB. Comparative Biochemistry of the Flavonoids. London and New York: Academic Press. 1967
    12 Stefan M, Axel M. Flavones and flavone synthases. Phytochemistry. 2005, 66(20): 2399-2407.
    13 McNally DJ, Wurms KV, Labbe C, et al. Synthesis of C-glycosyl flavonoid phytoalexins as a site-specific response to fungal penetration in cucumber. Phys Mole Plant Path. 2003, 63(6): 293-303.
    14 Yadav PP, Gupta P, Chaturvedi AK, et al. Synthesis of 4-hydroxy-l-methylindole and benzobthiophen-4-ol based unnatural flavonoids as new class of antimicrobial agents. Bioorg Med Chem. 2005, 13(5): 1497-1505.
    15 李巧玲.黄酮类化合物提取分离工艺的研究进展.山西食品工业.2003,4:6-7.
    16 哈本,等著.戴伦凯,等译.黄酮类化合物.北京:科学出版社,1983
    17 Witztum JL, Steinberg D. Role of oxidized low density lipoprotein in atherogensis. J Clin Invest, 1991, 88: 1785-1792.
    18 Saija A, Tomaino A, Trombetta D, et al. 'In vitro' antioxidant and photoprotective properties and interaction with model membranes of three new quercetin esters. Euro J Pharma Biopharma, 2003, 56: 167-174.
    19 Belinky PA, Aviram M, Fuhrman B, et al. The antioxidative effects of the isoflavan glabridin on endogenous constituents of LDL during its oxidation. Atherosclerosis, 1998, 137: 49-61.
    20 Zhu QY, Huang Y, Chen ZY. Interaction between flavonoids and α-tocopherol in human low density lipoprotein. J Nutr Biochem, 2000, 11: 14-21.
    21 Hou L, Zhou B, Yang L, et al. Inhibition of human low density lipoprotein oxidation by flavonols and their glycosides. Chem Phys Lipids, 2004, 129:209-219.
    22 Marta V, Coral B, Bartolome B, et al. In vitro effects ofa flavonoid-rich extract on LDL oxidation. Atherosclerosis. 1996, 1213(1-2): 83-91.
    23 Michael A, Bianca F. Polyphenolic flavonoids inhibit macrophage-mediated oxidation of LDL and attenuate atherogenesis. Atherosclerosis Sup. 1998, 137(1): S45-S50.
    24 Roland A, Leake DS. The inhibition of low density lipoprotein oxidation by the flavonoids quercetin and catechin. Atherosclerosis. 1997, 134(1-2): 207.
    25 Riceevans CA, Miller N J, Bolwell PG, et al. The relative antioxidant activites of plant-derived polyphenolic flavonoids. Free Radic Res, 1995, 22(4): 375-383
    26 Riceevans CA, Miller Nj, Paganga G, et al. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med, 1996, 20:933-947
    27 vanacker SABE, vandenBerg DJ, Tromp MNJL, et al. Structural aspects of antioxidant activity of flavonoids. Free Radic Biol Med, 1996, 20(3): 331-342
    28 Samejima K, Kanazawa K, Ashida H, et al. Luteolin-a strong antimutagen against dietary carcinogen, trp-p-2, in peppermint, sage, and thyme. J Agric Food Chem. 1995, 43(2): 410-414
    29 白凤梅,蔡同一.类黄酮生物活性及其机理的研究进展.食品科学.1999,8:11-13
    30 Chung HS, Chang LC, Lee SK, et al. Flavonoid constituents of Chorizanthe diffusa with potential cancer chemopreventive activity. J Agric Food Chem. 1999, 47(1): 36-41
    31 张德权,台建祥,付勤,等.生物类黄酮的研究及应用概况.食品与发酵工业.1999,6:52-57
    32 Baderschneider B. Isolation and characterization of novel benzoates, cinnamates, flavonoids, and iignans from Riesling wine and screening for antioxidant activity. J Agric Food Chem. 2001, 29(6): 2788-2798
    33 Burda S, Oleszek W. Antioxidant and antiradical activities of flavonoids J Agric Food Chem. 2001, 49(6): 2774-2779
    34 Beladi I, Mucsi I, Veckenstedt A, et al. Combined antiviral effect of flavonoid and acyclovir. Antiv Res. 1995, 26(3): A256.
    35 Seralini GE, Moslemi S. Aromatase inhibitors: past, present and future. Mole Cell Endo. 2001, 178(1-2): 117-131.
    36 Breinholt V, Hossaini A, Svendsen GW, et al. Estrogenic activity of flavonoids in mice. The importance of estrogen receptor distribution, metabolism and bioavailability. Food Chem Toxicol. 2000, 38:555-564
    37 Lake BG, Beamand JA, TRedger JM, et al. Inhibition of xenobiotic-induced genotoxicity in cultured precision-cut human and rat liver slices. Muta Res/Gene Toxi Envi Mut. 1999, 440(1): 91-100.
    38 Guohua C, Emin S, Ronald L P. Antioxidant and Prooxidant Behavior of Flavonoids: Structure-Activity Relationships. Free Radical Biology Medicine. 1997, 22(5): 749-760
    39 郑荣梁.自由基生物学.北京:高等教育出版社,1992:1
    40 Yokozawa T, Dong E, Liu ZW, et al. Antioxidative activity of flavones and flavonols in vitro. Phyt Res. 1997, 11(6): 446-449
    41 陈季武,朱振勤,杭凯,等.八种天然黄酮类化合物的抗氧化构效关系.华东师范大学学报(自然科学版),2002,1:90-95
    42 祁克宗,王林安.自由基和生物抗氧化系统理论与外科学的关系.安徽农业大学学报.1996,23(2):171-174
    43 Hodek P, Trefii P, Stiborova M. Flavonoids-potent and versatile biologically active compounds interacting with cytochromes P450. Chem Biol Inter. 2002, 139(1): 1-21.
    44 陈瑗,周玫.自由基医学.北京:人民军医出版社.1991
    45 Packer L, Rimbach G, Virgili F. Antioxidant activity and biologic properties of a procyanidin-rich extract from pine (Pinus maritima) bark, pycnogenol. Free Radical Biology and Medicine. 1999, 27(5-6): 704-724
    46 Rodgers EH, Grant MH. The effect of the flavonoids, quercetin, myricetin and epicatechin on the growth and enzyme activities of MCF7 human breast cancer cells. Chem Bio Inter. 1998, 116(3): 213-228.
    47 Schubert SY. Lansky EP, Neeman I. Antioxidant and eicosanoid enzyme inhibition properties of pomegranate seed oil and fermented juice flavonoids. J Ethnopharma. 1999, 66(1): 11-17
    48 Moini H, Guo QO, Packer L. Enzyme inhibition and protein-binding action of the procyanidin-rich French maritime pine bark extract, pycnogenol: Effect on xanthine oxidase. J Agri Food Chem. 2000, 48(11): 5630-5639
    49 Kameoka S, Leavitt P, Chang C, et al. Expression of antioxidant proteins in human intestinal Caco-2 cells treated with dietary flavonoids. Cancer Letter. 1999, 146(2): 161-167
    50 Shi B, He XQ, Haslam E. Gelatin-polyphenol interaction. J Am Leather Chem Assoc. 1994, 89(4): 98-104
    51 Hemingway R, Laks P. Plant Polyphenols. New York: Plenum Press, 1992:421
    52 宋立江,狄莹,石碧.植物多酚研究与利用的意义及发展趋势.化学进展.2000,12(2):161-170
    53 狄莹,石碧.植物单宁化学研究进展.化学通报.1999,3:1-5
    54 Brown JE, Khodr H, Hider RC, et al. Structural dependence of flavonoid interactions with Cu2+ ions: implications for their antioxidant properties Biochem J. 1998, 330(3): 1173-1178
    55 Ito T, Warnken SP, May WS. Protein Synthesis Inhibition by Flavonoids: Roles of Eukaryotic Initiation Factor 2α Kinases. Biochem Biophy Res Comm. 1999, 265(2): 589-594.
    56 Milic BL, Djilas SM, Canadanovic-Brunet JM. Antioxidative activity of phenolic compounds on the metal-ion breakdown of lipid peroxidation system. Food Chemistry. 1998, 61(4): 443-447
    57 Husain S.R., Cillard J., Cillard P. Expression of antioxidant proteins in human intestinal Caco-2 cells treated with dietary flavonoids Phytochemistry. 1987, 26(9): 2487
    58 Miyake T, Shibamoto T. Antioxidative activities of natural compounds found in plants. J Agric Food Chem. 1997, 45(5): 1819-1822
    59 Chen JH, Ho CT. Antioxidant activities of caffeic acid and its related hydroxycinnamic acid compounds. J Agric Food Chem. 1997, 45(7): 2374-2378
    60 Pokorny J. Autoxidation of Unsaturated Lipids. London: H Chan, Academic Press, 1987: 141
    61 张红雨.黄酮类抗氧化剂结构——活性关系的理论解释.中国科学:B辑,1999,29(1):91-96
    62 Beyeler S., Testa B., Daniel S. Antioxidant status and mineral contents in tissues of rutin and baicalin fed rats. Biochem. Pharmacol. 1988, 37(10): 1971-1984
    63 Cholbi MR. Activities of chalcone synthase and UDPGal: flavonoid-3-o-glycosyltransferase in relation to anthocyanin synthesis in apple. Experientia. 1001, 47:195-204
    64 Mora A, Pay M, Rios JL, et al. Characterization of Two cDNA Clones Which EncodeO-Methyltransferases for the Methylation of both Flavonoid and Phenylpropanoid Compounds. Biochem Pharmacol. 1990, 40(4): 793-812
    65 Hollman PCH, Devries JHM, Vanleeuwen, SD, et al. Absorption of dietary quercetin glycosides and quercetin in healthy ileostomy volunteers. Am J Clin Nutr. 1995, 62: 1276-1282
    66 Walgren RA, Kamaky KJ Lindenmayer GE, et al. Effiux of dietary flavonoid quercetin 4'-beta-glucoside across human intestinal Caco-2 cell monolayers by apical multidrug resistance-associated protein-2. J Pharmacol Exp Ther. 2000, 264:830-836
    67 Graefe EU, Witting J, Mueller S, et al. Pharmacokinetics and bioavailability of quercetin glycosides in humans. J Clin Pharmacol. 2001, 41:492-499
    68 Sesink ALA, O'Leary KA, Hollman PCH. Quercetin gluouronides but not glucosides are present in human plasma after consumption of quercetin-3-glucoside or quercetin-4'-glucoside. J Nutr. 2001, 131(7): 1938-1941
    69 Cova D, De Angelis L, Giavarini F, et al. Int J Clin Pharmacol Ther Toxicol. 1992, 30:29
    70 Shimoi K, Okada H, Furugori M, et al. Intestinal absorption of luteolin and luteolin 7-O-beta-glucoside in rats and humans. FEBS Letters. 1998, 438(3): 220-224
    71 Day AJ, DuPont MS, Ridley S, et al. Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver beta-glucosidase activity. FEBS Letters. 1998, 436(1): 71-75
    72 Ioku K, Pongpiriyadacha Y, Konishi Y, et al. Beta-glucosidase activity in the rat small intestine toward quercetin monoglucosides. Biosci. Biotechnol. Biochem. 1998, 62: 1428-1431
    73 Hollman PCH, Bijsman MNCP, Van Gameren Y, et al. The sugar moiety is a major determinant of the absorption of dietary flavonoid glycosides in man. Free Radic Res. 1999, 31(6): 569-537
    74 Gugler R, Leschik M, Dengler HJ. The effect of dietary flavonoids on DNA damage (strand breaks and oxidised pyrimdines) and growth in human cells. J Clin Pharmacol. 1975, 9: 229-240
    75 Erlund I, Kosonen T, Alfthan G, et al. Pharmacokinetics of quercetin from quercetin aglycone and rutin in healthy volunteers. Eur J Clin Pharmacol. 2000, 56(8): 545-553
    76 Walle T, Otake Y, Brubaker JA., et al. Disposition and metabolism of the flavonoid chrysin in normal volunteers. Br J Clin. Pharmacol. 2001, 51(2): 143-146
    77 Hackett A M, Griffiths L A, Broillet A, et al. Flavonoid-induced alterations in cytochrome P450-dependent biotransformation of the organophosphorus insecticide parathion in the mouse Xenobiotica. 1983,13: 279-291
    78 Hong J, Lu H, Meng X, et al. Stability, cellular uptake, biotransformation, and efflux of tea polyphenol (-)-epigallocatechin-3-gallate in HT-29 human colon adenocarcinoma cells. Cancer Res. 2002, 62(24): 7241-7246
    79 Vaidyanathan J B, Walle T. Cellular uptake and efflux of the tea flavonoid (-)-epicatechin-3-gallate in the human intestinal cell line Caco-2. J Pharmacol Exp Thera. 2003, 307(2): 745-752
    80 Vaidyanathan JB, Walle T, Glucuronidation and sulfation of the tea flavonoid (-)-epicatechin by the human and rat enzymes. Drug Metab Dispos. 2002, 30(8): 897-903
    81 Saija A, Bonina F, Tomaino D, et al. Flavonoid-biomembrane interactions-a calorimetric study on dipalmitoylphosphatidylcholine vesicles. Int J Pharm, 1995, 124:1-8
    82 Wojtowicz K, Pawlikowska PB, Gawron A, et al. Modifying effect of quercetin on the lipid membrane. Folia Histochem Cytobiol, 1996, 34:49-50
    83 Arora A, Byrem TM, Nair MG, et al. Modulation of liposomal membrane fluidity by flavonoids. 2000, 373(1):102-109
    
    84 Henduich AB, Malon R, Pola A, et al. Differential interaction of Sophora isoflavonoids with lipid bilayers. European Journal of Pharmaceutical Sciences, 2002, 16:201-208
    
    85 O'Leary TJ, Ross PD, Levin IW. Antioxidative Constituents in Heterotheca inuloides Biophys J 1986, 50: 1053-1064
    86 Lehtonen JYA, Adlercreutz H, Kinnunen PKJ. Binding of daidzein to liposomes. Biochimica et Biophysica Acta, 1996, 1285:91-100.
    87 White SH., Wimley WC. Electronic publishing-protein science at the edge of a revolution. Protein Sci. 1994, 3(11): 1899-1900
    88 Danieli B, DeBellis P, Carrea G, et al. Enzyme-mediated regioselective acylations of flavonoid disaccharide monoglycosides. Helvetica Chimca Acta, 1990, 73:1837-1842
    89 Klibanov AM. Asymmetric transformations catalyzed by enzymes in organic solvents. Acco Chem Res. 1990, 23 (4): 114-118
    90 Danieli B, Bertario A, Carrea G, et al. Chemo-enzymatic synthesis of 6"-O-(3-arylprop-2-enoyl) derivatives of the flavonol glucoside isoquercitrin. Helv Chim Acta, 1993, 76:2981-2972
    91 沈生荣,金超芳,杨贤强.儿茶素的分子修饰.茶叶.1999,25(2):76-79
    92 王巧娥,黄文,唐安斌,石碧.脂溶性茶多酚的合成及其抗油脂自动氧化特性的研究.天然产物研究与开发.2001,13(4):12-15
    93 张怡,房诗宏.茶多酚类抗氧化剂的改性.食品科学.2002,22(2):88-92
    94 Danieli B, Riva S. Enzyme-mediated regioselective acylation of polyhydroxylated natural products. Pure and Applied Chemistry, 1994, 66(10-11): 2215-2224
    95 Danieli B, Luisetti M, Sampognaro S, et al. Regioselective acylation of polyhydroxylated natural compounds catalyzed by Candida Antarctica Lipase B (Novozym435) in Organic solvents. J Mol Cata B: Enzy. 1997, 3:193-198
    96 Nakajima N, Ishihara K, ltoh T, et al. Lipase-catalyzed direct and regioselective acylation of flavonoid glucoside for mechanistic investigation of stable plant pigments. J Biosci Bioeng. 1999, 87 (1): 105-112
    97 Nakajima N, Ishihara K, Hamada H, et al. Regioselective acylation of flavonoid glucoside with aromatic acid by an enzymatic reaction system from cultured cell of Ipomoea batatas. J Biosci Bioeng, 2000, 90 (3): 347-358
    98 Riva S, Danieli B, Luisetti M. A two-step efficient chemoenzymatic synthesis of flavonoid glycoside malonates. J Nat Pro, 1996, 59 (6): 618-631
    99 Gayot S, Santarelli X, Coulon D. Modification of flavonoid using lipase in non-conventional media: effect of the water content. J Biotech. 2003, 101: 29-40
    100 Kontogianni A, Skouridou V, Sereti V, et al. Lipase-catalyzed esterification of rutin and naringin with fatty acids of medium carbon chain. J Mol Cata B: Enzym. 2003, 21: 59-6-71
    101 Ardhaoui M, Falcimaigne A, Oginer S, et al. Effect of acyl donor chain length and substitutions pattern on the enzymatic acylation of flavonoids. J Biotech. 2004, 110: 265-271
    102 Pignataro B, Sardone L, Marietta G. From micro- to nanometric scale patterning by Langmuir-Blodgett technique. Materials Science and Engineering C, 2002, 22: 177-181
    103 Chi LF, Jacobi S, Anczykowski B, et al. Supermolecular periodic structures in monolayers Adv Mater. 2000,12(1): 25-+
    104 Gleiche M, Chi L F, Fuchs H. Nanoscopic channel lattices with controlled anisotropic wetting. Nature. 2000,403(6766): 173-175
    105 Sardone L, Pignataro B, Castelli F, et al. Temperature and pressure dependence of quercetin-3-O-palmitate interaction with a model phospholipids membrane: film balance and scanning probe microscopy study. J Colloid Inter Sci, 2004,271: 329-335
    106 Santos JP, Zaniquelli MED, De Giovani WF, et al. Aluminum ion complex formation with 3-hydroxyflavone in Langmuir and Langmuir-Blodgett films. Collids Surfaces A: Physicochem Eng Asp. 2002, 198: 569-576
    1 Saleh MM, Hashem FA, Glombitza KW. Study of Citrus taitensis and radical scavenger activity of the flavonoids isolated. Food Chemistry, 1998, 63:397-400
    2 Gamez EJ, Luyengi L, Lee SK, et al. Antioxidant flavonoid glycosides form daphniphyllum calycinum. Journal of Natural products, 1998, 61:706-708
    3 Formica JV, Regelson W. Review of the biology of quercetin and related bioflavonoids. Food Chem Toxicol, 1995, 33:1061-1080
    4 Guohua C, Emin S, Ronald LP. Antioxidant and Prooxidant Behavior of Flavonoids: Structure-Activity Relationships. Free Radi Biol Med. 1997, 22(5): 749-760
    5 Zhu Q Y, Huang Y, Chen ZY. Interaction between flavonoids and α-tocopherol in human low density lipoprotein. J Nutr Biochem. 2000, 11:14-21
    6 Vaya J, Mahmood S, Goldblum A, et al. Inhibition of LDL oxidation by flavonoids in relation to their structure and calculated enthalpy. Phytochemistry. 2003, 62:89-99
    7 Hou L, Zhou B, Yang L, et al. Inhibition of human low density lipoprotein oxidation by flavonols and their glycosides. Chem Phys Lipids, 2004, 129:209-219
    8 Vaya J, Belinky PA, Aviram M. Antioxidant constituents from licorice roots: isolation, structure elucidation and antioxidative capacity toward LDL oxidation. Free Radi Biol Med, 1997, 23(2): 302-313
    9 Schubert SY, Lansky EP, Neeman I. Antioxidant and eicosanoid enzyme inhibition properties of pomegranate seed oil and fermented juice flavonoids. J Ethnopharma, 1999, 66: 11-17.
    10 Bi SY, Ding L, Tian Y, et al. Investigation of the interaction between flavonoids and human serum albumin. J Mole Stru, 2004, 703: 37-45.
    11 Saija A, Tomaino A, Trombetta D, et al. "In vitro" antioxidant and photoprotective properties and interaction with model membranes of three new quercetin esters. Eur J Pharma Biopharma, 2003, 56: 167-174.
    12 沈生荣,金超芳,杨贤强.茶多酚的分子修饰.茶叶,1999,25(2):76-79
    13 王巧娥,黄文,唐安斌,石碧.脂溶性茶多酚的合成及其抗油脂自动氧化特性的研究.天然产物研究与开发.2001,13(4):12-15
    14 张怡,房诗宏.茶多酚类抗氧化剂的改性.食品科学.2002,22(2):88-92
    15 Danieli B, Riva S. Enzyme-mediated regioselective acylation of polyhydroxylated natural products. Pure Appl Chem, 1994, 66 (10-11): 2215-2218.
    16 Danieli B, Luisetti M, Sampognaro G., et al. Regioselective acylation of polyhydroxylated natural compounds catalyzed by Candida antarctica lipase B (Novozym 435) in organic solvents. J Mol Catal B: Enzym, 1997, 3(10): 193-201
    17 Nakajima N, Ishihara K, Hamada H, et al. Regioselective acylation of flavonoid glucoside with aromatic acid by an enzymatic reaction system from cultured cells of Ipomoea batatas. J Biosci Bioeng, 2000, 90:347-349
    18 Nakajima N, Ishihara K, Itoh, T, et al. Lipase-catalyzed direct and regioselective acylation of flavonoid glucoside for mechanistic investigation of stable plant pigments. J Biosci Bioeng, 1999, 87:105-107
    19 Kongogianni A, Skouridou V, Sereti V, et al. Lipase-catalyzed esterification of rutin and naringin with fatty acids of medium carbon chain. J Mol Catal B: Enzym, 2003, 21 (1-2): 59-62
    20 Gayot S, Santarelli X, Coulon D. Modification of flavonoid using lipase in non-conventional media: effect of the water content. J Biothech, 2003, 101 (1): 29-36
    21 Ardhaoui M, Falcimaigne A, Ognier S, et al. Effect of acyl donor chain length and substitutions pattern on the enzymatic acylation of flavonoids. J Biotech, 2004, 110 (3): 265-272
    22 宋欣,曲音波,胡晓燕.非水介质中脂肪酶催化亚麻酸油醇酯合成的研究.高等学校化学学报,1999,20(10):1578-1580
    23 吴冀华.酶促茶油酯交换制类可可脂的研究硕士学位论文.郑州:郑州粮食学院,1997.
    24 Lee KT, Akoh CC. Structured lipids: synthesis and applications. Food Rev Int. 1998, 14(1): 17-34.
    25 Yahya ARM, Anderson WA, Moo-Young M. Ester synthesis in lipase-catalyzed reactions. Enzyme Microb Technol. 1998, 23(7-8): 438-450.
    26 Giacometti J, Giacometti F, Cedomila M, et al. Kinetic characterisation of enzymatic esterification in a solvent system: adsorptive control of water with molecular sieves. J Mol Catal B: Enzym, 2001, 11 (4-6): 921-928
    1 Santos J P, Zaniquelli M E D, De Giovani W F, et al. Aluminum ion complex formation with 3-hydroxyflavone in Langmuir and Langmuir-Blodgett films. Colloids and Surfaces A: Physicochem Eng Asp, 2002, 198-200: 569-576.
    2 Sardone L, Pignataro B, Castelli F, et al. Temperature and pressure dependence of quercetin-3-O-palmitate interaction with a model phospholipids membrane: film balance and scanning probe microscopy study. J Colloid Inter Sci, 2004, 271: 329-335
    3 Pignataro B, Sardone L, Marietta G. From micro- to nanometric scale patterning by Langmuir-Blodgett technique. Mate Sci Eng C, 2002, 22:177-181.
    4 Petter M C. Langmuir-Blogdett film, New York: Cambridge University Press. 1996, 65.
    5 Kobayashi K, Kajikawa K, Sasabe H, er al. Monomolecular layer formation of amphiphilic cyclodextrin derivatives at the air/water interface. Thin Solid Films, 1999, 349: 244-249.
    6 Cornard J P, Merlin J C. Complexes of aluminium (III) with isoquercitrin: spectroscopic characterization and quantum chemical calculations. Polyhedron, 2002, 21: 2801-2810.
    1 朱步瑶,赵振国,界面化学基础.北京:化学工业出版社.1996,
    2 Milane H A, Ubeaud G, Vandamme T F, et al. Isolation of quercetin's salts and studies of their physicochemical properties and antioxidant relationships. Bioorg Med Chem, 2004, 12: 3627-3635.
    1 Sardone L, Pignataro B, Castelli F, et al. Temperature and pressure dependence of quercetin-3-O-palmitate interaction with a model phospholipids membrane: film balance and scanning probe microscopy study. Journal of Colloid and Interface Science, 2004, 271: 329-335.
    2 邹纲,方堃,何平笙.花生酸与铈β-二酮络合物混合单分子膜的成膜特性.化学物理学报,2003,16(3):228-231.
    3 Gong K, Feng SS, Go ML, et al. Effects of pH on the stability and compressibility of DPPC/cholesterol monolayers at the air-water interface. Colloids and Surfaces A: Physicochem Engi Asp, 2002, 207: 113-125.
    4 Chou TH, Chang CH. Thermodynamic behavior and relaxation processes of mixed DPPC/cholesterol monolayers at the air/water interface. Colloids Surfaces B: Biointerface. 2000, 17: 71-79.
    5 Ali S, Smaby JM, Momsen MM, et al. Acyl chain-length asymmetry alters the interface elastic interaction of phosphatidylcholines. Biophys J. 1998, 71: 338-348.
    6 Gong K, Feng SS, Go ML, et al. Effects of pH on the stability and compressibility of DPPC/cholesterol monolayers at the air-water interface. Colloids & Surfaces A: Phys Engine Aspects. 2002, 207: 113-125.
    1 Arora A, Byrem TM, Nair MG, et al. Modulation of liposomal membrane fluidity by flavonoids and isoflavonoids. Arch Biochem Biophy. 2000, 373:102-109.
    2 Hendrich BA, Malon R, Pola A, et al. Differential interaction of Sophora isoflavonoids with lipid bilayers. Euro J Pharmaceu Sci. 2002, 16: 201-209.
    3 Movileanu L, Neagoe I, Fionta ML Interaction of the antioxidant flavonoid quercetin with planar lipid bilayers. Inter J Pharmaceu. 2000, 205:135-146.
    4 Lehtonen JYA, Adlercreutz H, Kinnunen PKJ. Bingding of daidzein to liposomes. Biochim Biophy Acta-Biomembranes. 1996, 1285: 91-100..
    5 Sardone L, Pignataro B, Castelli F, et al. Temperature and pressure dependence of quercetin-3-O-palmitate interaction with a model phospholipids membrane: film balance and scanning probe microscopy studyJ. Journal of Colloid and Interface Science, 2004, 271: 329-335.
    6 邹纲,方堃,何平笙.花生酸与铈β-二酮络合物混合单分子膜的成膜特性.化学物理学报,2003,16(3):228-231.
    7 Gong K, Feng SS, Go ML, et al. Effects of pH on the stability and compressibility of DPPC/cholesterol monolayers at the air-water interface. Colloids and Surfaces A: Physicochem Engi Asp, 2002, 207: 113-125.
    8 Chou TH, Chang CH. Thermodynamic behavior and relaxation processes of mixed DPPC/cholesterol monolayers at the air/water interface. Colloids Surfaces B: Biointerface. 2000, 17: 71-79.
    9 All S, Smaby JM, Momsen MM, et al. Acyl chain-length asymmetry alters the interface elastic interaction of phosphatidylcholines. Biophys J. 1998, 71: 338-348.
    10 Gong K, Feng SS, Go ML, et al. Effects of pH on the stability and compressibility of DPPC/cholesterol monolayers at the air-water interface. Colloids & Surfaces A: Phys Engine Aspects. 2002, 207: 113-125.
    1 Xi MY, Wei L, Olsson AG, et al. Iron in human atheroma and LDL oxidation by macrophages following erythrophagocytosis. Atherosclerosis. 1996, 124(1): 61-73.
    2 Itabe H, Jimi S, Kamimura S, et al. Appearance of cross linked proteins in human atheroma and rat pre-fibrotic liver detected by a new monoclonal antibody. Biochim Biophy Acta (BBA)/Mole Basis Disease. 1998, 1406(1): 28-39.
    3 Otero P, Herrera E, Bartolome. Dual effect of glucose on LDL oxidation: dependence on vitamin E. Free Rad Bio Med. 2002, 33(8): 1133-1140.
    4 Princen HMG, van Duyvenvoorde W, Buytenhek R, et al. Supplementation with low doses of vitamin E protects low density lipoprotein from lipid peroxidation in men and women. Atherosclerosis. 1995, 115: S42.
    5 Luisa T, Daniele D, Aurelio M, et al. Oxidation resistance of LDL is correlated with vitamin E status in β-thalassemia intermedia. Atherosclerosis. 1998, 137(2): 429-435.
    6 Hodis HN, Mack WJ, La Bree L, et al. Serial coronary angiographic evidence that antioxidant vitamin intake reduces progression of coronary-artery atherosclerosis. JAMA-J Amer Med Assoc. 1995, 273: 1849-1854.
    7 Kritchevsky SB, Shimalawa T, Tell GS, et al. Dietary antioxidants and carotid-artery wall thickness-the aric study. Circulation, 1995, 92:2142-2150.
    8 Pryor William A. Vitamin E and heart disease: Basic science to clinical intervention trials. Free Rad Bio Med. 2000, 28(1): 141-164.
    9 Beatriz N, Maitane P, Patricia F, et al. Vitamins C and E downregulate vascular VEGF and VEGFR-2 expression in apolipoprotein-E-deficient mice. 2003, 171(1): 67-73.
    10 Abudu N, Miller JJ, Attaelmannan M, et al. Vitamins in human arteriosclerosis with emphasis on vitamin C and vitamin E. Clin Chim Acta. 2004, 339(1-2): 11-25.
    11 Monsen E. Dietary Reference Intakes for The Antioxidant Nutrients: Vitamin C, Vitamin E, Selenium, and Carotenoids. J Am Diet Asso. 2000, 100(6): 637-640.
    12 康德伸.醋柳黄酮治疗缺血性心脏病的作用.老年医学杂志.1994,14(1):61-63.
    13 李家富,何涛,邓辉胜,等.槲皮素、异鼠李素对体外低密度脂蛋白氧化修饰的影响.心脏杂志,2003,15(5):414-416.
    14 阎道广,周玫,陈媛,等.槲皮素、芦丁和BHT对低密度脂蛋白氧化修饰的抑制效应.第一军医大学学报,1995,15(1):24-26.
    15 阎道广,周玫,陈媛.芦丁、槲皮素对已受剑Fe2+和Cu2+氧化修饰的低密度脂蛋白的抑制作用.第一军医大学学报,1995.15(2):103-106.
    16 Zhu Q Y, Huang Y, Chen Z Y. Interaction between flavonoids and α-tocopherol in human low density lipoprotein. J Nutr Biochem, 2000. 11: 14-21.
    17 Saija A, Tomaino A, Trombetta D, et al. "In vitro" antioxidant and photoprotective properties and interaction with model membranes of three new quercetin esters. Eur J Pharma Biopharma, 2003.56: 167-174.
    1 毕殿洲.药剂学.北京:人民卫生出版社,1999,114
    2 Makiko F, Katsuhiro H, Mitsuo M. Physicochemical properties of phenobarbital solid dispersion with phosphatidylcholine. Chem Pharm Bull. 1990, 38:2237-2241
    3 Makiko F, Katsuhiro H, Keiko Y, et al. Dissolution and bioavailability of Phenobarbital in solid dispersion with phosphatidylcholine. Chem Pharm Bull. 1991, 39:1886-1888
    4 Muhammad JH, Mimi TP, Godfried OA. Dissolution profiles of flurbiprofen in phospholipids solid dispersions. Drug Dev Ind Pharm. 1998, 24:1077-1082
    5 Suni P, Dion RB, Guru VB. Enhancement of dissolution of ehtopropazine using solid dispersions prepared with phospholipids and/or polyethylene glycol. Drug Dev Ind Pharm. 2001, 27:413-418
    6 Saija A, Tomaino A, Trombetta D, et al. "In vitro" antioxidant and photoprotective properties and interaction with model membranes of three new quercetin esters. Eur J Pharma Biopharma, 2003, 56:167-174
    7 翟光喜,娄红详,毕殿洲,等.槲皮素磷脂固体分散体的研制.山东大学学报(医学版),2002,40(4):364-367
    8 翟光喜,娄红详,毕殿洲,等.磷脂固体分散体对槲皮素溶出促进作用的研究.沈阳药科大学学报,2003,20(4):235-238
    9 李宝红,张立坚,东野广智,等.槲皮素-聚乙二醇固体分散体的研制.华西药学杂志.2004,19(1):35-37

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700