蛋白质及其模型分子的溶液热力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质是生物体中必不可少的基本物质,在生命活动中起着重要的作用。血清白蛋白是血浆中具有广泛结合能力的蛋白质,能结合内源性和外源性物质,并能将这些物质输送到身体的各个部位。研究有机小分子与血清白蛋白的相互作用,可帮助人们更深入地了解亲水-憎水等弱相互作用在生物大分子溶液中的重要性,揭示相关生命过程的奥秘。
     氨基酸、肽、酰胺及其衍生物被认为是理论研究中重要的生物模型物质。糖类和多羟基化合物能够稳定球形蛋白质分子的天然构象。通过研究水溶液中氨基酸或酰胺与羟基化合物的热力学性质以及pH值对溶液热力学性质的影响,既可以获得水溶液中溶剂化的溶质分子间的相互作用方面的信息,又有助于了解多羟基化合物对蛋白质的稳定机理及氨基酸在蛋白质中的构象稳定性和解折叠过程中所担当的角色。
     微量热方法是现代热力学和热化学研究中的重要方法,对含有多种组分的生命体系溶液的热力学性质研究具有其它方法不可比拟的优势。因此,大量开展这方面的研究,对开拓物理化学的研究及应用领域、解决生命科学中许多复杂问题有着重要的理论意义和广阔的应用前景。二十一世纪是生命科学的世纪,应用微量热法结合波谱学方法研究拟生命体液中生物大分子与小分子之间的相互作用以及生物模型化合物的热力学性质,对于人类探究生命的本质和揭示生命之奥秘具有非常重要的意义。
     本论文作为国家自然科学基金资助项目(No.20273061)的部分工作,主要由以下五部分组成:
     第一部分:血清白蛋白(人血清白蛋白Human Serum Albumin,HSA;牛血清白蛋白Bovine Serum Albumin,BSA)与季铵盐双子表面活性剂的相互作用
     本部分应用等温滴定量热法研究298.15 K时血清白蛋白与两种季铵盐双子表面活性剂((C_nN)_2Cl_2,n=12,14)在缓冲溶液(pH=7.0)中的相互作用,由实验数据拟合出结合常数、结合位点数以及热力学函数变化。并利用圆二色谱技术研究了这两种表面活性剂对蛋白二级结构的影响。
     结果表明:
     (1)HSA和BSA对这两种表面活性剂均有两类结合位点,一类是表面活性剂的极性基团和蛋白质分子表面的氨基酸残基之间的静电作用造成的强结合位点(有较高的结合常数),此类结合为吸热过程;另一类是表面活性剂的憎水基团与蛋白质分子疏水空腔的疏水相互作用造成的弱结合位点(有较低的结合常数),该过程放出热量。
     (2)HSA和BSA对这两种表面活性剂结合的熵效应均为正值。表面活性剂分子中疏水链的增长可加强它们向HSA或BSA分子上的结合,且同一种表面活性剂对HSA分子的结合强度大于BSA。对于高结合位点,两种表面活性剂分子对应的结合位点数差别不大。但对于弱结合位点,由于(C_(14)N)_2Cl_2疏水链过长,只有部分进入疏水空腔内,因此相应的结合位点数和放热量减小,而熵变增加。
     (3)这两种表面活性剂与HSA或BSA的结合作用会使蛋白质的二级结构发生变化,主要是α-螺旋向β-折叠的转变,这样会使构成α-螺旋的肽段伸展开来,转化为较为松散的二级结构。
     第二部分:血清白蛋白与丹皮酚及其两种同分异构体的相互作用
     本部分应用等温滴定量热法研究298.15 K时血清白蛋白与丹皮酚(2′-羟基-4′-甲氧基苯乙酮,Pae)及其两种同分异构体(2′-羟基-5′-甲氧基苯乙酮,Hma;4′-羟基-3′-甲氧基苯乙酮,Ace)在缓冲溶液(pH=7.0)中的相互作用。由实验数据拟合出结合常数、焓变、熵变及吉布斯自由能变等热力学数据。并利用圆二色谱技术研究了这三种药物分子对蛋白质分子二级结构的影响。
     结果表明:
     (1)血清白蛋白(Serum Albumin,SA)对这三种药物分子有两类结合位点,一类是通过药物分子苯环上的取代基与SA分子表面的氨基酸残基的静电及氢键作用形成,另一类则通过药物分子的苯环与SA分子疏水空腔的疏水相互作用达到彼此结合。
     (2)根据吉布斯自由能的变化特征,这两类结合主要以焓驱动为主。同一种药物分子对HSA结合过程的放热量及结合常数比其对BSA的结合均有所减少,并且在同一类结合位点上,Pae,Hma以及Ace与SA结合过程的焓变绝对值依次减小,这些热力学数据的差异主要是由于蛋白分子结构的不同以及客体分子苯环上取代基的相对位置不同引起的。
     (3)由于这三种同分异构体与SA的结合,使蛋白的二级结构发生变化,这表明Pae,Hma以及Ace与SA的相互作用既包含结合反应也包含其诱导蛋白质分子结构部分改变的过程。
     (4)Pae-SA体系的第二类结合位点数远远大于其它体系,所以其它条件相同时,Pae分子结合到蛋白分子上的几率最大,这可能是Pae比Hma及Ace具有更多的治疗功效的主要原因。
     第三部分:血清白蛋白与三种咪唑基离子液体的相互作用
     本部分应用等温滴定量热法研究298.15 K时血清白蛋白与三种咪唑基离子液体([bmim]BF_4,[bmim]PF_6,[omim]BF_4)在缓沖溶液(pH=7.0)中的相互作用。通过对实验数据的非线性拟合得到结合常数、焓变、熵变及吉布斯自由能变等热力学数据。并利用圆二色谱技术研究了这三种离子液体对蛋白质分子二级结构的影响。
     结果表明:
     (1)SA对这三种离子液有两类结合位点,一类主要是通过离子液中阴离子与蛋白分子表面的氨基酸残基的静电及氢键作用等形成,另一类则主要通过离子液中的咪唑环及与之键合的烷基链与蛋白分子疏水空腔的疏水相互作用形成。
     (2)根据吉布斯自由能的变化特征,这两类结合均为熵驱动过程。同一种离子液对HSA结合过程的放热量及结合常数比其对BSA的结合均有所增加。与[bmim]BF_4相比,[omim]BF_4与蛋白的疏水作用结合常数明显增大,这表明[omim]BF_4烷基链长度与蛋白疏水空腔尺寸更匹配。另一方面,与[bmim]BF_4相比,蛋白对[bmim]PF_6结合的第一类结合位点数显著增加,这主要是由于阴离子PF6~-在蛋白表面上的结合机率增大造成的。
     (3)由于这三种离子液与SA的结合,使蛋白质分子的二级结构发生变化,主要是α-螺旋相对含量的减少,进一步表明了这三种离子液与SA之间存在相互作用。
     第四部分:甲酰胺和N,N—二甲基甲酰胺与肌醇在氯化钠水溶液中的焓相互作用
     本部分应用等温流动微量热法测定298.15 K时甲酰胺和N,N—二甲基甲酰胺(DMF)与肌醇分子在不同浓度氯化钠水溶液中的混合过程焓变及这些溶质分子的稀释焓,根据McMillan-Mayer理论关联得到各级异系焓相互作用系数(h_(xy),h_(xxy)及h_(xyy))。从溶质—溶质相互作用和溶质—溶剂相互作用角度讨论这两种酰胺与肌醇分子之间的相互作用机制。
     结果表明:
     (1)无论是在纯水还是在不同浓度的氯化钠水溶液中,甲酰胺与肌醇分子的异系焓对相互作用系数h_(xy)均为负值,表明在所研究体系中,h_(xy)的大小主要决定于这两种溶质分子之间的偶极-偶极作用。
     (2)DMF与肌醇分子的异系焓对相互作用系数h_(xy)在所研究的所有氯化钠浓度范围内均为正值,这是由于DMF分子的甲基与肌醇分子的羟基之间的疏水—亲水作用以及这两种溶质分子的去水化超过了DMF分子的极性基团与肌醇分子羟基之间的偶极—偶极作用。
     (3)在不同浓度的氯化钠水溶液中,随着盐浓度的增大,甲酰胺与肌醇的焓对作用系数h_(xy)的绝对值逐渐减小,而DMF与肌醇的焓对作用系数逐渐增大,这主要是由于氯化钠浓度的增大导致对被稀释组分水化结构的部分破坏增强(一种溶剂效应)所致。
     第五部分:D-(-)-对羟基苯甘氨酸在不同pH缓沖溶液中的稀释焓
     本部分应用等温滴定微量热法测定298.15 K时D-(-)-对羟基苯甘氨酸在不同pH磷酸缓冲溶液中的稀释焓,根据McMillan-Mayer理论关联得到各级同系焓相互作用系数。根据溶质—溶质相互作用和溶质—溶剂相互作用对结果进行了讨论。
     结果表明:
     (1)D-(-)-对羟基苯甘氨酸在不同pH磷酸缓冲溶液中的稀释焓均为正值,而相应的焓对作用系数h_2均为负值,这表明在所研究体系中,分子之间的氢键、离子—偶极作用以及静电作用在焓对作用中占主导地位。
     (2)D-(-)-对羟基苯甘氨酸的稀释焓在pH 7.0时具有最小值,导致其焓对作用系数在该pH下具有最大值。这是由于该pH值接近D-(-)-对羟基苯甘氨酸的等电点(6.6),电解质与D-(-)-对羟基苯甘氨酸之间的静电作用最小。而当pH值高于等电点时,D-(-)-对羟基苯甘氨酸所带电荷随pH的增大而增加,静电作用增强,从而导致稀释焓增大。
     (3)当pH=6,7,8时,-((?)Δ_(dil)H_m/(?)m_f)_m_f→0值接近零,而当pH:9,10时该值大大增加。当pH=11时,-((?)Δ_(dil)H_m/(?)m_f)_m_f→0值再次减小。这种差别可归因于不同pH下溶质之间相互作用的差异。
Protein is an indispensable material in living body,which plays an important role in life process.Serum albumin(SA)is a kind of protein which can bind with intrinsic and extrinsic materials,and transfers them to every parts of the body.Study on interaction between small organic molecules and serum albumin is helpful to understand the importance of such weak interaction as hydrophilic-hydrophobic interaction in biomacromolecule solution more deeply,thereby disclose the mystery of relevant life process.
     Amino acids,small peptides,acylamides and their derivatives have been used extensively as the most important biological model compounds.Sugars and polyols help in stabilizing the native conformation of globular proteins.The principle reasons for studying the thermodynamics of amino acids or acylamides with polyhydric compounds and the influence of pH value on such systems are to obtain(ⅰ)the information that contributes to the growing body of knowledge about solute solvation and solute -solute interactions in aqueous media,and(ⅱ)a better understanding of their role played in the conformational stability and unfolding behavior of proteins.
     Thermometry is an important method in the modern thermodynamic and thermochemical research,which has incomparable advantages than other methods in the thermodynamic research of life system containing many components.21~(th) Century is the century of life science.Study on interaction between biology macromolecule and small molecule in life body solutions by utilizing microcalorimetry combined with spectroscopy methods is of great significance for human being to explore the life essences and to disclose the life mystery.
     As a part of the project supported by National Natural Science Foundation (No.20273061),the present work consists of five parts.
     The first part:interactions of human and bovine serum albumin(HSA and BSA) with bis-quatemary ammonium surfactants.
     In this part,the interactions of serum albumin with two bis-quatemary ammonium surfactants,(C_nN)_2Cl_2(n = 12,14),in buffer solutions(pH=7.0)has been investigated by isothermal titration calorimetry at 298.15 K.The binding site number, binding constant and thermodynamic function change were obtained by fitting the experimental data.In addition,the influence of the two surfactants on the secondary structure of protein has been studied by Circular dichroism(CD)spectra.
     The results show that:
     (1)There are two classes of binding sites on HSA and BSA molecules for the two surfactants.One is high affinity binding(corresponding to larger K value)caused by electrostatic interaction of surfactant head groups with ionic sites on the protein surfaces,the other is low affinity binding(corresponding to smaller K value)due to the binding of alkyl chains of the surfactant to hydrophobic cavities of the protein molecules.The two classes of binding processes respectfvely cause positive and negative thermal effect.
     (2)The entropy effects for the two surfactants binding sites are all positive. Elongation of the alkyl chains in the surfactant molecules can strengthen their binding to HSA or BSA,and the binding force of the both surfactants to HSA is stronger than that to BSA.For high affinity sites,the difference of the binding site number between the two surfactants is small.However,for low affinity sites,the binding site number for(C_(14)N)_2Cl_2 is much smaller than that for(C_(12)N)_2Cl_2,this is because the alkyl chains of(C_(14)N)_2Cl_2 molecules are too long to be completely enclosed in the molecular cavity of a single binding site,which would lead to the reduction of evolved heat and the increasing of entropy.
     (3)The binding of the two surfactants to HSA or BSA can change the secondary molecular structure of the two kinds of proteins.The change of the secondary structure is mainly the conversion fromα-helix toβ- sheet.This is because the adsorption of surfactant cations on the protein macromolecule surface would lead to a swelling of the macromolecule and exposing of the hydrophobic residues.Thus the originalα-helices are partly broken,which gives a more open disordered structure.
     The second part:interactions of serum albumin with paeonol and two of its isomers.
     In this part,the interaction of serum albumin with paeonol (2'-hydroxyl-4'-methoxyacetophone,Pae)as well as two of its isomers (2'-hydroxyl-5'-methoxyacetophone,Hma and 4'-hydroxyl-3'-methoxyacetophone, Ace)in buffer solutions(pH=7.0)has been determined by isothermal titration calorimetry at 298.15 K.The binding constants,changes of enthalpy,entropy and Gibbs free energy are obtained by fitting experimental data.Moreover,the influence of the three drug molecules on the secondary structure of protein has been studied by CD spectra.
     The results show that:
     (1)There are two classes of binding sites on SA molecules for the three drugs. The first-class binding is caused by electrostatic interaction and hydrogen bonding of substitute groups on benzene ring of drug molecules with amino acid residues on SA surface,and the second one is due to the binding of benzene ring of drug to hydrophobic cavities of SA.
     (2)The binding process is predominantly driven by enthalpy according to the characteristics of standard Gibbs energy change.For the binding of the same drug molecule,the evolved heat and binding constant to HSA are smaller than those to BSA.On the same class of binding site,the negative value ofΔH°decreases in the order of Pae,Hma and Ace.The difference of thermodynamic data is caused by the different protein structure and locations of substitute groups on aromatic benzene ring of guest molecules.
     (3)The binding of the three isomers to HSA or BSA can change the secondary structure of the two protein molecules.These results indicate that the interaction includes contributions of the binding and the partial change of molecular structure of SA induced by the three isomers.
     (4)The second binding site number of Pae- SA system is much larger than that of other systems.So the chance for the binding of Pae to SA is largest under the same conditions,which may be helpful to understand that Pae has more therapeutic efficacy than its two isomers.
     The third part:interactions of serum albumin with three imidazole-based ionic liquids.
     In this part,the interactions of serum albumin with three imidazole-based ionic liquids([bmim]BF_4,[bmim]PF_6,[omim]BF_4)in buffer solutions(pH=7.0)have been determined by isothermal titration calorimetry at 298.15 K.The binding constants, changes of enthalpy,entropy and Gibbs free energy are obtained by the non-linear fitting of experimental data.In addition,the influence of the three ionic liquids on the secondary structure of protein has been studied by CD spectra.
     The results show that:
     (1)There are two classes of binding sites on SA molecules for the three ionic liquids.The first-class binding is caused by electrostatic interaction and hydrogen bonding of anions of ionic liquids with amino acid residues on SA surface,and the second one is due to the binding of imidazole ring of ionic liquid and the alkyl chains thereon to hydrophobic cavities of SA.
     (2)The binding processes are both entropy driven according to the characteristics of standard Gibbs energy change.For the binding of the same ionic liquid,the evolved heat and binding constant to HSA are larger than those to BSA.The binding constant for the hydrophobic interaction of[omim]BF_4 with SA is much larger than that for[bmim]BF_4,which shows that the match degree between alkyl chains and hydrophobic cavity of protein for[omim]BF_4 is better than that for[bmim]BF_4.In addition,the first-class binding site number for the binding of[bmim]PF_6 to SA is much larger than that for the binding of[bmim]BF_4,which may be caused by the increasing of binding chance of anion PF_6~- to the surface of SA molecule.
     (3)The binding of the three inoic liquids to HSA or BSA can change the secondary structure of the two protein molecules,mainly the decrease ofα-helix content.These results proved the interactions of SA with the three ionic liquids.
     The fourth part:Enthalpic interactions of formamide and N, N-dimethylformamide with myo-inositol in aqueous sodium chloride solutions.
     In this part,the enthalpies of mixing of formamide and N,N-dimethylformamide with myo-inositol along with those of their dilution in aqueous sodium chloride solution of different concentration have been determined by using flow-mix-isothermal microcalorimetry at 298.15 K.These results were used to determine the heterotactic enthalpic interaction coefficients(h_(xy),h_(xxy)and h_(xyy)) according to the McMillan-Mayer theory.The pairwise interactions between the two acylamide and myo-inositol have been discussed by solute-solute interactions and solute-solvent interactions.
     The results show that:
     (1)The heterotactic enthalpic pairwise interaction coefficients h_(xy)between formamide and myo-inositol in water and aqueous sodium chloride solution of different concentration are all negative,which shows that the value of h_(xy)is mainly dependent on the dipole-dipole interaction between solute molecules.
     (2)The h_(xy)values for interaction between DMF and myo-inositol are all positive over the whole concentration of the salt aqueous solutions investigated.This indicates that the cooperative effects of the hydrophobic-hydrophilic interaction between the methyl group of DMF molecule and the hydroxyl group of myo-inositol molecule and the partial dehydration of the two solutes can surpass the dipole-dipole interaction between the polar group of DMF molecule and the hydroxyl group of myo-inositol molecule.
     (3)In aqueous sodium chloride solution of different concentration,the heterotactic enthalpic pairwise interaction coefficients(h_(xy))between formamide and myo-inositol become less negative with increase of the concentration of sodium chloride.In contrast,the values of h_(xy)between N,N-dimethylformamide and myo-inositol become more positive with elevated concentration of sodium chloride solutions.This mainly due to the increase of dehydration effects of solute molecules caused by the increase of the concentration of sodium chloride.
     The fifth part:Enthalpies of dilution of D-p-hydroxyphenylglycine in buffer solutions at different pH.
     In this part,enthalpies of dilution of D-p-hydroxyphenylglycine in phosphate buffer solutions at different pH have been determined by isothermal titration microcalorimetry at 298.15 K.The corresponding homogeneous enthalpic interaction coefficients have been calculated according to the McMillan-Mayer.The results are discussed according to solute-solute interactions and solute-solvent interactions.
     The results shows:
     (1)The enthalpies of dilution of D-pHPG in phosphate buffer solutions at different pH are all positive,while the enthalpic pair interaction coefficients h_2 are all negative.This suggests that the hydrogen bond,ion - dipole interaction and electrostatic interaction dominate the pairwise interactions.
     (2)There is a minimum for the enthalpies of dilution at pH 7.0,which leads to the enthalpic pair interaction coefficient of D-pHPG pass through a maximum at pH 7.0.This is because the pH value is near to the isoelectric point(pI)of D-pHPG (6.6),at which D-pHPG becomes electro-neutralized,the electrostatic interactions between the cation and anion of electrolyte with D-pHPG are minimized.When pH>pI,the higher the pH value is,the more electric charges D-pHPG molecule will possess,so the electrostatic interactions reinforces,which results in the increase of dilution enthalpies.
     (3)At pH = 6,7,8,negative value of partial differential of molar enthalpy of dilution versus final molality of the diluted component(m_f)when m_f→0 (i.e.-((?)Δ_(dil)H_m/(?)m_f)_(m_f→0))is approximately zero,while such values are much larger when pH = 9,10.But when pH = 11,-((?)Δ_(dil)H_m/(?)m_f)_(m_f→0)value decreases again. This kind of difference can be attributed to their different interaction between solutes.
引文
1.陶慰孙,李惟,姜涌明.蛋白质分子基础.第1版.北京:人民教育出版社,1995.
    2.Brown J R,Shockley P.Lipid-Protein Interactions.Vol.1,Wiley,New York,1982.
    3.Carter D,Ho J X.Advances in Protein Chemistry,Vol.45,Academic Press,New York,1994.
    4.Curry S,Brick P,Franks N P.Fatty acid binding to human serum albumin:new insights from crystallographic studies.Biochim.Biophys.Acta,1999,1441(2):131-140
    5.Carter D C,Ho J X.Advances in protein chemistry.Vol.45,Academic Press,New York,1994:153-203
    6.马国正,谭非,蒋勇军,郑柯文,郭明,俞庆森.甲磺酸培氟沙星与人血清白蛋白之间结合模式的研究.物理化学学报,2005,21(2):123-127
    7.Moren A K,Regev O,Khan A.A Cryo-TEM Study of Protein-Surfactant Gels and Solutions.J.Collid Interface Sci.,2000,222(2):170-178
    8.Dill K A.Dominant forces in protein folding.Biochemistry,1990,29(31):7133-7155
    9.Barone G,Castronuovo G,Vecchio P D,Ella V.Excess enthalpies of ternary aqueous solutions of amides and ureas at 298.15 K.J.Chem.Soc.,Faraday Trans.Ⅰ,1988,84:1919-1925
    10.Cheek P J,Lilley T H.The enthalpies of interaction of some amides with urea in water at 25℃.J.Chem.Soc.,Faraday Trans.Ⅰ.,1988,84:1927-1940
    11.Lilley T H.Biochemical Themodynamics.2nd Ed.,Jones M N(Edtior),Elsevier,Amsterdam,1988
    12.Lilley T H.The interplay between solute solvation and solute-solute interactions in solutions containing amino acids,peptides and related species.Pure&Appl.Chem.,1993,65(12):2551-2560
    13.Lilley T H.Interactions in solutions:The interplay between solute solvation and solute-solute interactions.Pure&Appl.Chem.,1994,66(3):429-434
    14.Makhatadze G I.Thermodynamics of protein interactions with urea and guanidinium hydrochloride.J.Phys.Chem.B,1999,103(23):4781-4785
    15.Palecz B,Taniewska-Osonska S.Enthalpies of solution of glycine in solutions of aqueous ureas at 298.15 K.Thermochim.Acta,1990,173(1-2):295-299
    16.Wang X,Xu N,Zhang R,Lin R S,Yan W D.Enthalpic Interaction Coefficients of Formamide in Aqueous Methanol and Ethanol Solutions at 298.15 K.J.Solution Chem.,2006,35(7):969-977
    17. Brigs C C, Lilley T H, Rutherford J, Woodhead S. The activity of calcium chloride in aqueous solutions of some amino acids at 25℃. J. Solution Chem., 1974, 3 (8): 649-658
    
    18. Falcone J S, Wood R H. The enthalpies and entropies of dilution of alkali halides and tetraalkylammonium halides in N-methylacetamide. J. Solution Chem., 1974, 3 (3):215-232
    
    19. Hagler A T, Scheraga H A, Nemethy C. Structure of liquid water, statistical thermodynamic theory. J. Phys. Chem., 1972, 76 (22): 3229-3243
    
    20. Nemethy G, Peer W J, Scheraga H A. Minimization of polypeptide energy. I. Preliminary structures of bovine pancreatic ribonuclease S-peptide. Annu. Rev. Biophys. Bioeng., 1981,10 (4): 459-497
    
    21. Lesile T E, Lilley T H. Aqueous solutions containing amino acids and peptides. Part 20. Volumetric behavior of some terminally substituted amino acids and peptides at 298.15 K.Biopolymers, 1985, 24 (4): 695-710
    
    22. Kent H E, Lilley T H, Milburn P J, Bloemendal M, Somsen G. Interactions between terminally substituted amino acids in an aqueous and a non-aqueous environment. Enthalpic interactioncoefficients in water and in N,N-dimethylformamide at 25℃. J. Solution Chem., 1985, 14 (2):101-115
    
    23. Lilley T H. Biochemical Thermodynamics. 2-(nd) Ed., Jones M N. Chapter 1, Elsevier, Amsterdam, 1988
    
    24. Ben-Naim A. Water and Aqueous Solutions. Plenum Press, New York, 1980
    
    25. Ben-Naim A. Hydrophobic Interactions, Dlenum Press, New York, 1980
    
    26. Krishnan C V, Friedman H L. Studies of hydrophobic bonding in aqueous alcohols: Enthalpy measurements and model calculations. J. Solution Chem., 1973, 2 (2-3): 119-140
    
    27. Clanks A M, Franks F, Pedley M D, Reid D S. Solute interactions in dilute solutions. Part 2.-A statistical mechanical study of the hydrophobic interaction. J. Chem. Soc.,Faraday Trans, I, 1977,73:290-305
    
    28. Franks F, Quickenden M A J, Reid D S, Watson B. Calorimetric and volumetric studies of dilute aqueous solutions of cyclic ether derivatives. Trans Faraday Soc., 1970, 66 (5):582-589
    
    29. He X M, Carter D C. Atomic structure and chemistry of human serum albumin. Nature, 1992, 358 (2): 209-215
    
    30. Diaz N, Suarez D, Sordo T L, Merz K M. Molecular dynamics study of the IIA binding site in human serum albumin: influence of the protonation state of lys195 and lys199. J.Med. Chem.,2001, 44 (2): 250-260
    31.Pinkerton T C,Koeplinger K A.Determination of warfarin-human serum albumin protein binding parameters by an improved Hummel-Dreyer high-performance liquid chromatographic method using internal surface reversed-phase columns.Anal.Chem,1990,62(19):2114-2122
    32.Villamor J P.Data plotting of warfarin binding to human serum albumin.J.Biochem.Biophys.Methods,2001,48(1):33-41
    33.Petitpas I,Bhattacharya A A,Twine S,East M,Curryl S.Crystal structure analysis of warfarin binding to human serum albumin,anatomy of drug site Ⅰ.J.Biol.Chem.,2001,276(6):22804-22809
    34.Dockal M,Carter D C,Ruker F.The three recombinant domains of human serum albumin.structural characterization and ligand binding properties.J.Biol.Chem.,1999,274(10):29303-29310
    35.Il'ichev Y V,Perry J L,Simon J D.Interaction of ochratoxin A with human serum albumin.A common binding site of ochratoxin A and warfarin in subdomain ⅡA.J.Phys.Chem.,B,2002,106(2):460-465
    36.Curry S,Mandeikow H,Brick P,Franks N.Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites.Nat.Struct.Biol.,1998,5(9):827-835
    37.Momany C,Kovari L C,Prongay A J,Keller W,Gitti R K,Lee B M,Gorbalenya A E,Tong L,McClure J,Ehrlich L S,Summers M F,Carter C,Rossmann M G.Crystal structure of dimeric HIV-1 capsid protein.Nat.Struct.Biol.,1996,3(9):763-770
    38.Peters T.Advances in protein chemistry.Vol.37,Academic Press,New York,1985:161-245
    39.王守业,徐小龙,刘清亮,解永树.荧光光谱在蛋白质分子构象研究中的应用.化学进展,2001,13(4):257-260
    40.Scatchard G,Scheinberg I H,Armstrong S H.Physical chemistry of protein solutions,ⅳ.the combination of human serum albumin with chloride ion.J.Am.Chem.Soc.,1950,72(1):535-540
    41.Miller L M,Tague T J.Development and biomedical applications of fluorescence-assisted synchrotron infrared micro-spectroscopy.Vibrational Spectroscopy,2002,28(1):159-165
    42.鄢远,许金钩,陈国珍.三维荧光光谱法研究蛋白质溶液构象.中国科学(B辑),1997,27(1):16-22
    43.Greenfield N J.Methods to Estimate the conformation of proteins and polypeptides from circular dichroism data.Anal.Biochem.,1996,235(1):1-10
    44.Price N C.Conformational issues in protein characterization.Biotechnol.Appl.Biochem., 2000,31(1):29-40
    45.Dockal M,Carter D C,Ruker F.Conformational transitions of the three recombinant domains of human serum albumin depending on pH.J.Biol.Chem.,2000,275(2):3042-3050
    46.Neault J F,Tajmir-Riahi H A,Interaction of cisplatin with human serum albumin.Drug binding mode and protein secondary structure.Biochim.Biophys.Acta,1998,1384(1):153-159
    47.Meghee J D,Von Hippel P H.Theoretical aspects of DNA-protein interactions:Co-operative and non-co-operative binding of large ligands to a one-dimensional homogeneous lattice.J.Mol.Biol.,1974,86(2):469-489
    48.Galbusera C,Chen D Y.Molecular interaction in capillary electrophoresis.Current Opinion in Biotechnology,2003,14(1):126-130
    49.Hage D S,Terence A,Noctor G,Wainer I W.Characterization of the protein binding of chiral drugs by high-performance affinity chromatography interactions of R- and S-ibuprofen with human serum albumin.J.Chromatogr.A,1995,693(1):23-32
    50.董艳红,邵伟平,唐雯霞,戴安邦.平衡透析法研究顺铂与多核苷酸的作用.无机化学学报,1991,7(1):104-109
    51.Masuoka J,Saltman P.Zinc(Ⅱ)and copper(Ⅱ)binding to serum albumin.A comparative study of dog,bovine,and human albumin.J.Biol.Chem.,1994,269(10):25557-25561
    52.Pang D W,Abruna H D,Micromethod for the investigation of the interactions between DNA and redox-active molecules.Anal.Chem.,1998,70(15):3162-3169
    53.张保林,王文清.稀土离子(Ⅲ)与牛血清白蛋白的相互作用.无机化学学报,1993,9(4):369-373
    54.Zhao Y D,Pang D W,Wang Z L,Cheng J K,Qi Y P.DNA-modified electrodes.Part 2.Electrochemical characterization of gold electrodes modified with DNA.J.electroanal.Chem.,1997,431(2):203-209
    55.陈润生,董贻诚,梁曦云,黄岳顺.紫茉莉抗病毒蛋白(Mirabilis antiviral protein,MAP)的空间结构和与底物相互作用的模拟研究.生物物理学报,1996,12(3):482-488
    56.孙之荣,郭青.蛋白质中原子与基团的可及性的一种新计算方法及其应用.生物物理学报,1996,12(3):471-476
    57.Morris K F,Johnson C S.Resolution of discrete and continuous molecular size distributions by means of diffusion-ordered 2D NMR spectroscopy.J.Am.Chem.Soc.,1993,115(10):4291-4299
    58.Simard J R,Zunszain P A,Hamilton J A,Curry S.Location of High and Low Affinity Fatty Acid Binding Sites on Human Serum Albumin Revealed by NMR Drug-competition Analysis. J. Molec. Biol., 2006, 361 (2): 336-351
    
    59. Zhang W B, Zhang L H, Ping G C, Zhang Y K, Kettrup A. Study on the multiple sites binding of human serum albumin and porphyrin by affinity capillary electrophoresis. J. Chromatogr. B,2002, 768(1): 211-214
    
    60. Reichardt C. Solvent Effects in Organic Chemistry, Verlag Chemic, New York, 1979
    
    61. Gatta G D, Barone G, Elia Y. Enthalpies of solvation for N-alkylamides in water and in carbon tetrachloride at 25℃. J. Solution chem., 1986, 15 (2): 157-167
    
    62. Barone G, Gianocola C. Peptide-peptide interactions in water and concentrated urea solutions Pure & Appl. Chem., 1990, 62 (1): 57-68
    
    63. Hedwig G R, Reading J F, Lilley T H. Aqueous solutions containing amino acids and peptides. Part 27.-Partial molar heat capacities and partial molar volumes of some N-acetyl amino acid amides, some N-acetyl peptide amides and two peptides at 25℃. J.Chem.Soc.Faraday Trans., 1991,87: 1751-1758
    
    64. Hedwwig G R. Partial molar heat capacities volumes and compressibilities of aqueous solutions of some peptides that model side-chains of proteins. Pure & Appl. Chem., 1994, 66 (3): 387-392
    
    65. Soto A M, Khoshkbarchi M K, Vera J H. Interaction of DL-threonine with NaCl and NaNO_3 in aqueous solutions: e.m.f. measurements with ion-selective electrodes. J. Chem. Thermodyn.,1997, 29 (5): 609-622
    
    66. Soto A M, Khoshkbarchi M K, Vera J H. Activity coefficients of the electrolyte and the amino acid in water + NaNO_3 + glycine and water + NaCl + DL-methionine systems at 298.15 K.Biophys.Chem.,1997, 67 (1-3): 97-105
    
    67. Kozak J J, Knight W S, Kauzmann W. Solute-solute interactions in aqueous solutions. J. Chem. Phys., 1965, 48 (2): 675-690
    
    68. McMillan W G, Mayer J E. The statistical thermodynamics of multicomponent systems. J. Chem. Phys., 1945, 13 (7): 276-305
    
    69. Fernandez J, Lilley T H. Aqueous solutions containing amino acids and peptides. Part 28.-Enthalpy of interaction of some amides with glycine and α-alanine: interactions of the zwitterionic group of α-amino acids with hydrophobic groups and peptide groups. J. Chem.Soc. Faraday Trans., 1992, 88: 2503-2509
    
    70. Palecz B. Thermochemical properties of L-α-amino acids in electrolyte-water mixtures. Fluid Phase Equilibria, 2000, 167 (2): 253-261
    
    71. Hoiland H. Thermodynamic data for biochemistry and biotechnology, Edited by Hinz H J. Spring-verlag, Berlin, 1986
    72. Palecz B. The enthalpies of interaction of glycine with some alkan-1-ols in aqueous solutions at 298.15 K. Fluid Phase Equilibria, 1996, 126 (2): 299-303
    
    73. Frank H S, Robinson R L. Entropy of dilution of strong electrolytes in aqueous solutions. J. Chem. Phys., 1940, 8 (12): 933-938
    
    74. Lou Y, Lin R S. Enthalpy of transfer of amino acids from water to aqueous glucose solutions at 298.15 K. Thermochim. Acta, 1998,316(2): 145-148
    
    75. Li S Q, Hu X G, Lin R S, Zong H X. Enthalpic interaction of glycine in aqueous glucose and sucrose solutions at 298.15 K. Thermochim. Acta, 1999, 342 (1-2): 1-6
    
    76. Sijpkes A H, Somsen G, Lilley T H. Enthalpies of interaction of some N-acetyl amino acid amides in aqueous urea solutions at 298.15 K. J. Chem. Soc. Faraday Trans., 1990, 86:2943-2949.
    
    77. Blackburn G M, Lilley T H, Walmsley E. Aqueous solutions containing amino acids and peptides. Part 11.-Enthalpy of dilution of single and binary solute solutions of N-acetylglycine amide, N-acetyl-L-alanine amide,N-acetyl-L-valine amide and N-acetyl-L-leucine amide at 298.15 K. J. Chem. Soc. Faraday Trans. I , 1980, 76: 915-922
    
    78. Lilley T H, Scott R P. Aqueous solutions containing amino-acids and peptides. Part 2.-Gibbs function and enthalpy behaviour of the systems urea + glycine, urea +α-alanine,urea +α-aminobutyric acid and urea + glycylglycine at 298.15 K. J. Chem. Soc. Faraday Trans. I, 1976,72: 184-196
    
    79. Lilley T H, Scott R P. Aqueous solutions containing amino-acids and peptides. Part 3.-The osmotic coefficient at the freezing temperature of the solutions of aqueous systems containing glycine and some alkali metal chlorides and some tetra-alkylammonium bromides. J. Chem.Soc. Faraday Trans.I, 1976, 72: 197-207
    
    80. Killey B P, Lilley T H. Aqueous solutions containing amino acids and peptides. Part 5.-Gibbs free energy of interaction of glycine with some alkali metal chlorides at 298.15 K. J. Chem. Soc. Faraday Trans.I, 1978, 74: 2771-2778
    
    81. Killey B P, Lilley T H. Aqueous solutions containing amino acids and peptides. Part 8.-Gibbs free energy of interaction of some α, ω-amino acids with sodium chloride at 298.15 K. J. Chem. Soc. Faraday Trans.I, 1978, 74: 2779-2785
    
    82. Nowicka B, Osinska S T. Enthalpies of solution of ,N-acetylamino acid amides in aqueous solutions of electrolytes at the temperature 298.15 K. J. Chem. Thermodyn., 1997, 29 (9):1017-1024
    
    83. Lilley T H, Moses E, Tasker I R. Aqueous solutions containing amino acids and peptides. Part 10.-Enthalpy of interaction of glycine with some alkali metal chlorides at 298.15 K. J. Chem. Soc. Faraday Trans.I, 1980, 76: 906-914
    
    84. Lilley T H, Tasker I R. Aqueous solutions containing amino acids and peptides. Part 12.-Enthalpy of interaction of α-alanine, α-aminobutyric acid, norvaline and norleucine with sodium chloride at 298.15 K. J. Chem. Soc. Faraday Trans.I, 1982, 78: 1-6
    
    85. Blackburn G M, Lilley T H, Walmsley E. Aqueous solutions containing amino acids and peptides. Part 13.-Enthalpy of dilution and osmotic coefficients of some N-acetyl amino acid amides and some N-acetyl peptide amides at 298.15 K. J. Chem. Soc. Faraday Trans.I,1982,78: 1641-1665
    
    86. Nelander K, Oloffson G, Blackburn G M, Kent H E, Lilley T H. Aqueous solutions containing amino acids and peptides. Part 18. The enthalpy of solution of N-acetyl-L -phenylalaninamide in aqueous solutions containing formamide. Thermochim. Acta, 1984,78 (1-3): 303-307
    
    87. Blackburn G M, Lilley Y H, Milburn P J. Aqueous solutions containing amino acids and peptides. Part 19: The enthalpic coefficients for the interactions of N-acetylsarcosinamide with 2-(N-acetylamino)acyl amides at 25℃. J. Solution Chem., 1984, 13(11): 789-803
    
    88. Blackburn G M, Lilley T H, Milburn P J. Aqueous solutions containing amino acids and peptides. Part 21. The enthalpic coefficients at 298.15 K for the interaction of N-acetyl-L-prolinamide with some 2-(N-acetylamino)acyl amides. Thermochim. Acta, 1985,83 (2): 289-297
    
    89. Hakin A W, Groft L L, Marty J L, Rushfeldt M L. Modeling of transfer properties using revised HKF theory: thermodynamics of transfer of an amino acid and small peptides from water to urea-water solutions at 298.15 K. Can. J. Chem., 1997, 75 (4): 456-464
    
    90. Blackburn G M, Lilley T H, Milburn P J. Aqueous solutions containing amino acids and peptides. Part 16.-Solute-solute interactions in solutions containing some N-acetyl-N‘ -methylamino acid amides. J. Chem. Soc. Faraday Trans.I, 1985, 81: 2191-2205
    
    91. Blackburn G M, Kent H K, Lilley T H. Aqueous solutions containing amino acids and peptides. Part 17.-Pairwise enthalpic coefficients for the interaction of N-acetyl-L-phenylalaninamide with some N-acetylamino acid amides at 25℃. J. Chem. Soc.Faraday Trans.I, 1985, 81: 2207-2214
    
    92. Blackburn G M, Lilley T H, Milburn P J. Aqueous solutions containing amino acids and peptides. Part 22 - free energetic and enthalpic virial coefficients at 25℃ for some interactions of isofunctional amides. J. Solution Chem., 1986, 15 (2): 99-108
    
    93. Blackburn G M, Lilley T H, Milburn P J. Aqueous solutions containing amino acids and peptides. Part 24.-Free energetic and enthalpic coefficients for the interactions of some prolyl and sarcosyl terminally substituted compounds at 25℃. J. Chem. Soc. Faraday Trans.I, 1986, 82: 2965-2976
    
    94. Davis K G, Lilley T H. Aqueous solutions containing amino acids and peptides : Part 25. The enthalpy of interaction at 298.15 K of glycine with potassium halides. Thermochim. Acta,1986, 107 (1-2): 267-276
    
    95. Ali A, Hyder S, Sabir S, Chand D. Nain A K. Volumetric, viscometric, and refractive index behaviour of α-amino acids and their groups contribution in aqueous d-glucose solution at different temperatures. J. Chem. Thermodyn., 2006, 38 (2): 136-143
    
    96. Yu L, Yuan S L, Hu X G, Lin R S. Studies on the interactions between some α- amino acids with a non-polar side chain and two saturated cyclic ethers at 298.15 K: enthapic measurement and computer simulation. Chem. Eng. Sci., 2006, 61 (2): 794-801
    
    97. Abbate M, Barone G, Castronuovo G, Cheek P J, Giancola C, Leslie T E, Lilley T H. Thermodynamic behaviour of some uncharged organic molecules in concentrated aqueous urea solutions and other polar solvents. Thermochim. Acta, 1990, 173 (l-2):261-272
    
    98. Humphrey R S, Hedwig G R, Watson I D, Malcolm G N. The partial molar enthalpies in aqueous solution of some amino acid with polar and non-polar side chains. J. Chem. Thermodyn., 1980, 12 (6): 595-603
    
    99. Smith E B R, Smith P K. The activity of glycine in aqueous solution at twenty-five degrees. J. Biol. Chem., 1973, 117 (1): 209-216
    
    100. Gallardo M A, Lilley T H, Linsdell H, Otin S. Aqueous solutions containing amino acids and peptides: Part 29. The enthalpies of dilution of some amino acids at 25℃. Thermochim.Acta, 1993,223 (1-2): 41-49
    
    101. Wegrzyn T F, Watson L D, Hedwig G R. Enthalpies of mixing of aqueous solutions of the amino acids glycine, 1-alanine and 1-serine. J. Solution Chem., 1984, 13 (4): 233-244
    
    102. Barone G, Castronuovo G, Vecchio P D, Elia V, Puzziello S. Chiral recognition between enantiomeric α-aminoacids. A calorimetric study at 25℃. J. Solution Chem., 1989, 18(12): 1105-1116
    
    103. Andini S, Castronuovo G, Elia V, Pignone A, Velleca F. Chiral recognition in aqueous solutions: On the role of urea in hydrophilic and hydrophobic interactions of unsubstituted α-amino acids. J. Solution Chem., 1996, 25 (9): 837-847
    
    104. Barone G, Castronuovo G, Vecchio P D, Elia V, Giancola C. Calorimetric determination of chiral interactions in aqueous solutions: Part 2 N-Acetyl-leucinamide at 298.15 K.Thermochim. Acta, 1987, 122(1): 105-115
    
    105. Palecz B. The enthalpies of interaction of glycine with some amides and ureas in water at 25℃.J.Solution Chem.,1995,24(6):537-550
    106.Bhat R,Ahluwalia J.Partial molar heat capacities and volumes of transfer of some amino acids and peptides from water to aqueous sodium chloride solutions at 298.15 K.J.Phys.Chem.,1985,89(7):1099-1105
    107.Badarayani R,Kumar A.The Mixing Effect of Glycylglycine with KCI,KBr,and Na_2SO_4from volumetric and viscometric investigations at 298.15 K.J.Solution Chem.,2004,33(4):405-424
    108.Castronuovo G,Ella V,Postiglione C,Velleca F.Interactions of aminoacids in concentrated aqueous solutions of urea or ethanol.Implications for the mechanism of protein denaturation.Thermochim.Acta,1999,339(1-2):11-19
    109.Yu L,Hu X G,Lin R S,Shao S,Zhang H L.Enthalpic interactions of glycine in aqueous sodium halide solutions.Thermochim.Acta,2001,378(1-2):1-8
    110.Ren X,Hu X,Lin R,Zong H.Apparent molar volumes of 1-glycine,1-alanine,and l-serine in water + dimethylformamide mixtures at 298.15 K.J.Chem.Eng.Data,1998,43(5):700-702
    111.任小玲,倪亚明,林瑞森,胡新根.甘氨酸在DMF/水和乙醇/水混合溶剂中的焓对相互作用.化学学报,1999,57(8):875-880.
    112.胡新根,林瑞森,宗汉兴.水/乙醇混合溶剂中氨基酸离解的取代基效应.化学学报,1999,57(5):479-484
    113.厉刚,林瑞森,宗汉兴.α-氨基酸在水-乙醇中羧基质子化热力学.物理化学学报,2000,16(2):188-192
    114.任小玲,倪亚明,林瑞森.L-丝氮酸在乙醇-水混合溶剂中的稀释焓.物理化学学报,2000,16(2):166-169
    115.Liu H G,Lin R S,Zhang H L.Enthalpic interactions of amino acids with imidazole in aqueous solutions at 298.15 K.Thermochim.Acta,2004,412(1-2):7-12
    116.Yu L,Hu X G,Lin R S,Xu G Y.Studies on the interaction between α-amino acids with polar side-chains and heterocyclic compounds at T=298.15 K.J.Chem.Thermodyn.,2004,36(6):483-490
    117.王旭,许莉,林瑞森,孙德忐.甘氨酸在氯化钾水溶液中的稀释焓.化学学报,2004,62(15):1405-1408
    118.Yu L,Zhu Y,Hu X G,Pang X H.Enthalpies of interaction of n,n-dimethylformamide with polyalcohols in aqueous solutions at 298.15 K.J.Chem.Eng.Data,2006,51(3):1110-1114
    119.Whitesides T H,Miller D D,Interaction between photographic gelatin and sodium dodecyl sulfate. Langmuir, 1994, 10 (9): 2899-2909
    
    120. Singer S J, Nicolson G L. The fluid mosaic model of the structure of cell membranes. Science, 1972, 175:720-731
    
    121. Steinhardt J, Retnolds J A. Multiple equilibria in proteins, New York, Academic Press,1969
    
    122. Gelamo E L, Tabak M. Spectroscopic studies on the interaction of bovine (BSA) and human (HSA) serum albumins with ionic surfactants. Spectrochim. Acta Part A, 2000, 56(11): 2255-2271
    
    123. Chen A, Wu D, Johnson C S. Determination of the binding isotherm and size of the bovine serum albumin-sodium dodecyl sulfate complex by diffusion-ordered 2D NMR. J. phys. Chem., 1995, 99 (2): 828-834
    
    124. De S, Girigoswami A, Das S. Fluorescence probing of albumin-surfactant interaction. J. Colloid Interface Sci, 2005, 285 (2): 562-573
    
    125. Yamasaki M, Yano H, Aoki K. Differential scanning calorimetric studies on bovine serum albumin: Ⅰ. Effects of pH and ionic strength. Int. J. Biol. Macromol., 1990, 12 (4): 263-268
    
    126. Yamasaki M, Yano H, Aoki K. Differential scanning calorimetric studies on bovine serum albumin: Ⅱ. Effects of neutral salts and urea. Int. J. Biol. Macromol., 1991, 13 (6): 322-328
    
    127. Yamasaki M, Yamashita T, Yano H, Tatsumi K, Aoki K. Differential scanning calorimetric studies on bovine serum albumin IV. Effect of anionic surfactants with various lengths of hydrocarbon chain. Int. J. Biol. Macromol., 1996, 19 (4): 241-246
    
    128. Valstar A, Almgren M, Brown W. The interaction of bovine serum albumin with surfactants studied by light scattering. Langmuir, 2000, 16 (3): 922-927
    
    129. Liu R T, Yang J H, Sun C X, Wu X, Li L, Li Z. Resonance light-scattering method for the determination of BSA and HSA with sodium dodecyl benzene sulfonate or sodium lauryl sulfate. Anal Bioanal Chem., 2003, 377 (2): 375-379
    
    130. Bordbar A K, Moosavi-Movahedi A A, Saboury A A. Comparative thermodynamic stability of bovine and pigeon haemoglobins by interaction with sodium n-Dodecyl sulphate.Thermochim. Acta., 1996, 287 (2): 343-349
    
    131. Nielsen A D, Borch K, Westh P. Thermochemistry of the specific binding of C12 surfactants to bovine serum albumin. Biochim. Biophys. Acta, 2000, 1479 (1-2): 321-331
    
    132. Chatterjee A, Moulik S P, Majhi P R, Sanyal S K. Studies on surfactant-biopolymer interaction. I. Microcalorimetric investigation on the interaction of cetyltrimethylammonium bromide (CTAB) and sodium dodecylsulfate (SDS) with gelatin (Gn), lysozyme (Lz) and deoxyribonucleic acid (DNA). Biophys. Chem., 2002, 98 (3): 313-327
    133.魏晓芳,刘会洲.Triton X-100与牛血清白蛋白的相互作用.分析化学,2000,28(6):699-701
    134.Kelley D,McClements D J.Interactions of bovine serum albumin with ionic surfactants in aqueous solutions.Food Hydrocolloids,2003,17(1):73-85
    135.Gharibi H,Javadian S,Hashemianzadeh M.Investigation of interaction of cationic surfactant with HSA in the presence of alcohols using PFG-NMR and potentiometric technique.Collid.Surf.A Physicochem.Eng.Aspects,2004,232(1):77-86
    136.Nicholas J T,Xue G L.Spectroscopic probe analysis of protein-surfactant interactions:the bsa/sds system.Langmuir,1995,11(7):2525-2533
    137.Gelamo E L,Silva C H T P,lmasato H,Tabak M.Interaction of bovine(BSA)and human (HSA)serum albumins with ionic surfactants:spectroscopy and modelling.Biochim.Biophys.Acta,2002,1594(1):84-99
    138.杨频,陈绘丽,范英芳,岳丽君,孟祥丽.用饿胺分子氢探针以竞争模式研究金属抗癌剂与核苷酸的作用.中国科学(B辑),2004,34(6):478-489
    139.Tayyab S,Haq S K,Sabeeha,Aziz M A,Khan M M,Muzammil S.Effect of lysine modification on the conformation and indomethacin binding properties of human serum albumin.Int.J.Biol.Macromol.,1999,26(2-3):173-180
    140.Rawel H M,Czajka D,Rohn S,Kroll J.Interactions of different phenolic acids and flavonoids with soy proteins.Int.J.Biol.Macromol.,2002,30(3-4):137-150
    141.Berde C B,Hudson B S,Simoni R D,Sklar L A.Human serum albumin.Spectroscopic studies of binding and proximity relationships for fatty acids and bilirubin.J.Biol.Chem.,1979,254(1):391-400
    142.Coassolo P,Sarrazia M,Sari J C.Comparison of an iterative microcalorimetric method and dialysis equilibrium for calculating thermodynamic parameters of a binding protein which presents a weak affinity for its substrate.Anal.Biochem.,1980,104(1):37-43
    143.Hatsumi A,Yuhsuke K.Thermodynamic clarification of interaction between antiseptic compounds and lipids consisting of stratum corneum.Thermochim.Acta,2004,416(1-2):113-119
    144.Hatsumi A,Magobei Y.Biothermodynamic characterization of monocarboxylic and dicarboxylic aliphatic acids binding to human serum albumin:A flow microcalorimetric study.Biophys.Chem,,1993,46(1):91-99
    145.Magobei Y,Hatsumi A.Flow microcalorimetry for human erythrocyte hemolysis induced by ionic drug binding.Thermochim.Acta,1991,193(2):287-297
    146.Hatsumi A,Magobei M.Thermodynamic characterization of drug binding to human serum albumin by isothermal titration microcalorimetry.J.Pharm.Sci.,1994,83(12):1712-1716
    147.Hatsumi A,Michitaka G,Magobei Y.Thermodynamic aspects of the molecular recognition of drugs by human serum albumin.Thermochim.Acta,1995,251(2):379-388
    148.曾慧慧,王懿,王怀保,张有民.微量量热法研究肌动蛋白的聚合及顺铂的影响.物理化学学报,1994,10(3):197-199
    149.Norde W,Lyklema J.The adsorption of human plasma albumin and bovine pancreas ribonuclease at negatively charged polystyrene surfaces:Ⅴ.Microcalorimetry.J.Colloid Interface Sci.,1979,66(2):295-302
    150.Bowen W R,Pan L C.Ion exchange of bovine serum albumin at a natural organic anion exchanger:thermodynamics and energetics.J.Colloid Interface Sci.,1997,189(2):328-336
    151.Bowen W R,Hughes D T.Ion exchange of proteins:A microcalorimetric study of the adsorption of bovine serum albumin on anion-exchange materials.J.Colloid Interface Sci.,1993,158(2):395-402
    152.Gryczynski Z,Gering H,Bucci E.Temperature titration:A new approach to the thermodynamics of oxygen binding to hemoglobin.Anal.Biochemistry,1998,255(2):176-182
    153.Welton T.Room-temperature ionic liquids,solvents for synthesis and catalysis.Chem Rev.,1999,99(8):2071-2084
    154.Ranu B C,Jana R.Catalysis by ionic liquid.A green protocol for the stereoselective debromination of vicinal-dibromides by[pmlm]BF_4 under microwave irradiation.J.Org.Chem.,2005,70(21):8621-8624
    155.蒲敏,刘坤辉,李会英,陈标华.DFT法研究离子液中EMIM-+催化丁烯双键异构反应机理.物理化学学报,2004,20(8):826-830
    156.赵剑曦.低聚表面活性剂-两亲分子表面活性的突破.日用化学工业,2000(2):20-22
    157.池田功,崔正刚.新型Gemini阳离子表面活性剂的合成和性能(3)-在烷基链中引入易水解集团促进生物降解.日用化学工业,2001(5):28-31
    158.邱晓梅,李玲,魏西莲,尹宝霖,孙得志.α-环糊精与季铵盐型双子表面活性剂包结作用的研究.物理化学学报,2005,21(12):1415-1418
    159.Fainerman V B,Lucas sen-Reynders E H,Miller R.Adsorption of surfactants and proteins at fluid interfaces.Colloids and Surfaces A,1998,143(2-3):141-165
    160.Kragel J,Wustneck R,Husband F,Wilde P J,Makievski A V,Grigoriev D O,Li J B.Properties of mixed protein/surfactant adsorption layers.Colloids and Surfaces B,1999,12 (6):399-407
    161.Chen Z h,Liu Q L,Wang Sh Y,Xu X L,Yu H M.Study on hemorrhagin Ⅲ purified from the venom of Agkistrodon acutus by three-dimensional fluorescence spectrometry.Spectrochim.Acta Part A,1999,55(9):1909-1914
    162.Weber K,Osborn M.The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis.J.Biol.Chem.,1969,244(10):4406-4412
    163.Jones M J.Surfactants interactions with biomembranes and proteins.Chem.Soc.Rev.,1992,21(2):127-136
    164.Deep S,Ahluwalia J C.Interaction of bovine serum albumin with anionic surfactants.Phys.Chem.Chem.Phys.,2001,3(20):4583-4591
    165.张朝红,臧树良,耿兵,铁梅,吴林友,苏欣,冯冲.紫外和圆二色谱法研究丁基锡化合物与牛血清白蛋白的相互作用.分析科学学报,2005,21(2):179-181
    166.Vasilescu M,Angelescu D,Almgren M,Valstar A.Interactions of globular proteins with surfactants studied with fluorescence probe methods.Langmuir,1999,15(8):2635-2643
    167.Giancola C,Sena C D,Fessas D,Graziano G,Barone G.DSC studies on bovine serum albumin denaturation effects of ionic strength and SDS concentration.Int.J.Biol.Macromol.,1997,20(3):193-204
    168.Saboury A A.Application of a new method for data analysis of isothermal titration calorimetry in the interaction between human serum albumin and Ni~(2+).J.Chem.Thermodyn.,2003,35(12):1975-1981
    169.Moosavi- Movahedi A A,Bordbar A K,Taleshi A A,Naderimanesh H M,Ghadam P.Mechanism of denaturation of bovine serum albumin by dodecyl trimethylammonium bromide.Int.J.Biochem.Cell Bio.,1996,28(9):991-998
    170.Gelamo E L,Itri R,Alonso A,Silva J V,Tabak M.Small - angle X-ray scattering and electron paramagnetic resonance study of the interaction of bovine serum albumin with ionic surfactants.J.Colloid Interface Sci.,2004,277(2):471-482
    171.Zhang Y,Akilesh S,Wilcox D E.Isothermal titration calorimetry measurements of Ni(Ⅱ)and Cu(Ⅱ)binding to His,GlyGlyHis,HisGlyHis,and bovine serum albumin:A critical evalution.Inorg.Chem.,2000,39(14):3057-3064
    172.Bou-Abdallah F,Arosio P,Santambrogio P,Yang X,Janus-Chandler C,Chasteen N D.Ferrous ion binding to recombinant human H-chain ferritin,an isothermal titration calorimetry study.Biochemistry,2002,41(37):11184-11191
    173.Trandum C,Westh P,Jorgensen K,Mouritsen O G.Use of isothermal titration calorimetry to study the interaction of short-chain alcohols with lipid membranes.Thermochimi.Acta, 1999,328(1):129-135
    174.项瑾,梁毅,陈楠.等温滴定量热法和荧光滴定法研究十二烷基硫酸钠与纤维素酶的结合.化学学报,2003,61(12):1949-1954
    175.Xiang J,Fan J B,Chen N,Chen J,Liang Y.Interaction of cellulase with sodium dodecyl sulfate at critical micelle concentration level.Collids Surf.,B,2006,49(2):175-180
    176.Moriyama Y,Takeda K.Protective effects of small amounts of bis(2-ethylhexyl)sulfosuccinate on the helical structures of human and bovine serum albumins in their thermal denaturations.Langmuir,2005,21(12):5524-5528
    177.Ricci C G,Cabrera M I,Luna J A,Grau R J.A convenient synthesis of quaternary ammonium Gemini surfactants from long-chain alkyldimethylamines and epichlorohtdrin.Synlett.,2002,2002(11):1811-1814
    178.Xie C L,Tang H K,Song Z H,Qu S S,Liao Y T,Liu H S.Microcalorimetric study of bacterial growth.Thermochim.Acta,1988,123(1):33-41
    179.谢昌礼,徐桂端,屈松生.热动力学方法的研究:1反应速率常数、活化能的量热法测定.物理化学学报,1986,2(4):363-369
    180.Bai G,Wang Y,Yan H.Thermodynamics of interaction between cationic Gemini surfactants and hydrophobically modifiedp Polymers in aqueous solutions.J.Phys.Chem.B,2002,106(9):2153-2159
    181.Sun D Z,Wang S B,Wei X L,Yin B L.A microcalorimetric study of β-cyclodextrin with 3-alkoxyl-2-hydroxypropyl trimethyl ammonium bromides in aqueous solutions.J.Chem.Thermodyn.,2005,37(5):431-436
    182.谢孟峡,蒋敏,李崧,刘媛,β-1,2,3,4,6-五-O-倍酰-D-葡萄糖与人血清白蛋白的相互作用研究.化学学报,2004,62(16):1460-1466
    183.Lin L N,Mason A B,Woodworth R C,Brandts J F.Calorimetric studies of the binding of ferric ions to ovotransferrin and interactions between binding sites.Biochemistry,1991,30(50):11660-11669
    184.Wiseman T,Wiliston S,Brandts J F.Lin L N.Rapid measurement of binding constants and beats of binding using a new titration calorimeter.Anal.Biochem.,1989,179(1):131-137
    185.Nielsen A D,Fuglsang C C,Westh P.Isothermal titration calorimetric procedure to determine protein-metal ion binding parameters in the presence of excess metal ion or chelator.Anal.Biochem.,2003,314(2):227-234
    186.Wang Z X.An exact mathematical expression for describing competitive-binding of 2different ligands to a protein molecule.FEBS Lett.,1995,360(2):111-114
    187.Wang Z X,Jiang R F,A novel 2-site binding equation presented in terms of the total ligand concentration.FEBS Lett.1996,392(3):245-249
    188.Knowles J R,Blyth C A.Kinetic consequences of intermolecular attraction.Ⅱ.Hydrolysis of a series of fatty acid p-nitrophenyl esters catalyzed by a series of N-n-alkylimidazoles.A very simple esterase model.J.Am.Chem.Soc.,1971,93(12):3021-3027
    189.Sun D Z,Wang S B,Song M Z,Wei X L,Yin B L.A microcalorimetric study of host-guest complexes of α-cyclodextrin with alkyl trimethyl ammonium bromides in aqueous solutions.J.Solution Chem.,2005,34(3):701-712
    190.Kim T S,Kida T,Nakatsuji Y,Hirao T,Ikeda I.Surface-active properties of novel cationic surfactants with two alkyl chains and two ammonium groups.J.Am.Oil Chem.Soc.,1996,73(7):907-911
    191.Barbosa S,Taboada P,Attwood D,Mosquera V.Thermodynamic properties of the complex formed by interaction of two anionic amphiphilic penicillins with human serum albumin.Langmuir,2003,19(24):10200-10204
    192.黄波,邹国林,杨天鸣.阿霉素与牛血消白蛋白结合作用的研究.化学学报,2002,60(10):1867-1871
    193.王勇,李林玺,赵东保,张卫,刘绣华.5,7-二羟基-4'-甲氧基二氢黄酮与牛血清白蛋白的相互作用研究.化学学报,2006,64(13):1361-1366
    194.Hu Y J,Liu Y,Pi Z B,Qu S S.Interaction of cromolyn sodium with human serum albumin:A fluorescence quenching study.Bioorg.Med.Chem.,2005,13(24):6609-6614
    195.叶志义,任绍光,李发琪,石铁松,王远亮.丹皮酚对鼠微循环的作用影响.中国血液流变学杂志,1999,9(3):137-138
    196.李薇,王远亮,蔡绍皙,张海雁,石红艳,曹雪波.丹皮酚和阿司匹林对大鼠血液流变型影响的比较.中草药,2000,31(1):29-31
    197.李逢春,周晓玲,磨红玲.丹皮酚注射液增强免疫功能的试验研究.中国中西医结合杂志,1994,14(1):37-38
    198.孙国平,沈玉先,张玲玲,王华,魏伟,徐叔云.丹皮酚的体内外抗肿瘤作用.安徽医科大学学报,2002,37(3):183-185
    199.Eftink M R,Harrison J C.Calorimetric studies of p-nitrophenol binding to to α- and β-cyclodextrin.Bioorg.Chem.,1981,10(4):388-398
    200.刘春云,武廷章,周大喜,汪翠萍.凤丹丹皮酚抗菌作用的研究.生物学杂志,2000,17(3):23-24
    201.Van den W E,Beukelman C J,Van den Berg A J J,Kroes B H,Labadie R P,Dijk H.V. Effect of methoxylation of apocynin and analogs on the inhibition of reactive oxygen species production by stimulated human neutrophils. Eur. J. Pharmacol., 2001, 433 (3):225-230
    
    202. Peters E A, Hiltermann J T N, Stolk J. Effect of apocynin on ozone-induced airway hyperresponsiveness to methacholine in asthmatics. Free Radic. Biol. Med., 2001, 31 (11):1442-1447
    
    203. Ross P D, Subramanian S. Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry, 1981, 20 (11): 3096-3102
    
    204. Eftink M R, Anusiem A C, Biltonen R L. Enthalpy-entropy compensation and heat capacity changes for protein-ligand interactions: general thermodynamic models and data for the binding of nucleotides to ribonuclease A. Biochemistry, 1983, 22 (16): 3884-3896
    
    205. Horn J R, Russell D, Lews E A. Van't Hoff and calorimetric enthalpies from isothermal titration calorimetry: Are there signigicant discrepancies. Biochemistry, 2001, 40 (16):1774-1778
    
    206. Upadrashta S M, Wurster D E. Equilibrium binding studies of the interaction between anthralin and bovine serum albumin. Int. J. Pharm., 1989, 49 (2): 103-108
    
    207. Wurster D E, Upadrashta S M. Equilibrium binding studies of the l,8-dihydroxy-9,10-anthraquinone -bovine serum albumin interaction. Int. J. Pharm., 1989, 55 (2-3): 221-227
    
    208. Sulkowska A. Interaction of drugs with bovine and human serum albumin. J. Mol. Struct.,2002, 614 (1-3): 227-232
    
    209. Forgacs E, Cserhati T. Binding of anticancer drugs to human serum albumin studied by reversed-phase chromatography. J. Chromatogr. A, 1995, 696 (2): 265 - 272
    
    210. Sulkowska A, Bojko B, Rownicka J. The competition of drugs to serum albumin in combination chemotherapy: NMR study. J. Mol. Struct., 2005, 744-747: 781-787
    
    211. Kandagal P B, Ashoka S, Seetharamappa J, Shaikh SMT, Jadegoud Y, Ijare O B. Study of the interaction of an anticancer drug with human and bovine serum albumin: Spectroscopic approach. J. Pharm. Biomed. Anal., 2006, 41 (2): 393-399
    
    212. Hu Y J, Liu Y, Shen X S. Studies on the interaction between 1-hexylcarbamoyl-5-fluo- rouracil and bovine serum albumin. J Mol. Struct., 2005, 738 (123): 145-149
    
    213. Aki H, Goto M, Kai M, Yamamoto M. Competitive binding of drugs to the multiple binding sites on human serum albumin A calorimetric study. J. Therm. Anal. Cal., 1999, 57 (2):361-370
    
    214. Sudlow, G., Birkett D.J., Wade D.N., 1976. Further characterisation of specific drug binding sites on human serum albumin. Molec. Pharmac. 12 (7): 1052-1061
    215.Wilkes J S,Levisky J A,Wilson R A,Hussey C L.Dialkylimidazolium chloroaluminate melts:a new class of room-temperature ionic liquids for electrochemistry,spectroscopy and synthesis.Inorg.Chem.,1982,21(3):1263-1264
    216.Wilkes J S,Zaworotko M J.Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids.J.Chem.Soc.Chem.Commun.,1992:965-967
    217.Fuller J,Carlin R T,Osteryoung R A.The room-temperature ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate:electrochemical couples and physical properties.Electrochem Soc,1997,144(11):3881-3886
    218.李汝雄.绿色溶剂-离子液体的合成与应用.第1版,北京:化学工业出版社,2004,20-25
    219.Yadav J S,Reddy B V S,Basak A K,Narsaiah A V.[Bmim]PF6 and BF4 ionic liquids as novel and recyelable reaction media for aromatic amination.Tetrahedron Lett.,2003,44(10):2217-2220
    220.Kubisa P.Application of ionic liquids as solvents for polymerization processes.Prog.Polym.Sci.,2004,29(1):3-12
    221.Harrisson S,MacKenzie S R,Haddleton D M.Pulsed laser polymerization of methyl methacrylate in ionic liquids.ACS Polymer Prepr.,2002,43(2):883-884
    222.Kim D W,Song C E,Chi D.Significantly enhanced reactivities in the nucleophilic substitution reactions in ionic liquid.J.Org.Chem.,2003,68(11):4281-4285
    223.Lau R M,Van Rantwijk F,Seddon K R,Sheldon R O.Lipaze catalyzed reactions in ionic liquids.Org.Lett.,2000,2(26):4189-4191
    224.顾彦龙,石峰,邓全友.室温离子液体浸取分离牛磺酸与硫酸钠固体混合物.化学学报,2004,62(5):532-536
    225.Janiszewska L,Osteryoung R A.Electrochemistry of polythiophene and polydithiophene films in ambient temperature molten salts.J.Electrochem.Soc.,1987,134(10):2787-2794
    226.Suarez P A Z,Dullius J E L,Einloft S,DeSouza R F,Dupont J.The use of new ionic liquids in two-phase catalytic hydrogenation reaction by rhodium complexes.Polyhedron.,1996,15(7):1217-1219
    227.Zhao H,Malhotra S W.Application of ionic liquids in organic synthesis.Aldrichim.Acta,2002,35(1):75-83
    228.Adam D.Clean and green but are they mean? Nature,2000,407(10):938-940
    229.Anthony L,Maginn E J,Brennecke J F.Solution thermodynamics of imidazolium-based ionic liquids and water.J.Phys.Chem.B.,2001,105(44):10942-10949
    230.Seddon K R,Stark A,Torres M J.Influence of chloride,water,and organic solvents on the physical properties of ionic solids.Pure Appl.Chem.,2000,72(12):2275-2288
    231.Gu Z,Brennecke J F.Volume expansivities and isothermal compressibilities of imidazolium and pyridinium-based ionic liquids.J.Chem.Eng.Data,2002,47(2):339-345
    232.张保林,王文清,伊敏.稀土离子(Ⅲ)与牛血清白蛋白的相互作用Ⅰ.结合反应热力学.北京大学学报(自然科学版),1994,30(4):383-387
    233.周永洽,胡绪英,申泮文.金属-血清白蛋白的结构研究Ⅱ.Cu(Ⅱ)-BSA和Ni(Ⅱ)-BSA的四方锥-四方平面结构.化学学报,1991,49(1):59-64
    234.刘雪锋,夏咏梅,方云,刘玲玲,邹鲁.中药黄连有效成分盐酸小蘖碱与牛血清白蛋白的相互作用.高等学校化学学报,2004,25(11):2099-2103
    235.刘雪锋,夏咏梅,曹玉华,方云,邹珠燕,毛本刚,丁漪.香豆素类中药有效成分与牛血清白蛋白结合的构效关系.高等学校化学学报,2006,27(1):150-152
    236.高饱安.在绿色溶剂中超分子结构研究-微乳液,环糊精与离子液包容相互作用:[博士学位论文].济南:山东大学,2005
    237.Palecz B.Enthalpic pair interaction coefficient between zwitterions of L-α-amino acids and urea molecule as a hydrophobicity parameter of amino acid side chains.J.Am.Chem.Soc.,2005,127(50):17768-17771
    238.Jiang Y C,Yang Q,Hu M C,Xia S P.Thermodynamic properties of L-alanine in(RbCl or CsCl)+ water from 298.15 K to 313.15 K.J.Chem.Eng.Data,2005,50(5):1608-1612
    239.Hackel M,Hinz H J,Hedwig G R.The partial molar of some tetra- and entapeptides in aqueous solution:a test of amino acid side-chain group additivity for unfolded proteins.Phys.Chem.Chem.Phys.,2000,2(21):4843-4849
    240.Hackel M,Hinz H J,Hedwig G R.Tripeptides in aqueous solution:Model compounds for the evaluation of the partial molar heat capacities of amino acid side-chains in proteins.Thermochim.Acta,1998,308(1-2):23-34
    241.Chalikian T V,Breslauer K J.Thermodynamic analysis of biomolecules:a volumetric approach,Curr.Opin.Struc.Biol.,1998,8(5):657-664
    242.Chalikian T V,Sarvayan A P,Funck T,Breslauer K J.Partial molar volumes,expansibilities,and compressibilities of oligoglycines in aqueous solutions at 18-55℃,Biopolymers.,1994,34(4):541-553
    243.Yancey P H,Clark M E,Hand S C,Bowlus R D,Somero G N.Living with water stress:evolution of osmolyte systems Science.1982,217(24):1214-1222
    244.Plattner R,Irvin B J,Guo S,Blackburn K,Kazlauskas A,Abraham R T,York J D,Pendergast A M.A new link between the c-Abl tyrosine kinase and phosphoinositide signalling through PLC-γ1. Nat. Cell Biol., 2003, 5 (4): 309-319
    
    245. Liang Y, Du F, Sanglier S, Zhou B R, Xia Y, Van Dorsselaer A, Maechling C, Kilhoffer M C, Haiech J. Unfolding of Rabbit Muscle Creatine Kinase Induced by Acid: A study using electrosray ionization mass spectrometry, isothermal titration calorimetry, and fluoreacence spectroscopy. J. Bio. Chem., 2003, 278 (8): 30098-30105
    
    246. Lu Y, Xie W, Lu Z, Lu J S, Wang H H. The enthalpic interaction parameters of glycine with sodium halides in water at 298.15 K. Thermochim. Acta, 1995, 256 (2): 261-270
    
    247. Sarma T S, Ahuwalia J C. Thermodynamics of transfer of tetrabutylammonium bromide from water to aqueous urea solutions and the effects on the water structure. J. Phys. Chem.,1972,76(9): 1366-1369
    
    248. Cifra P, Romanov A. Group contributions and hydrophobic hydration. J. Solution Chem., 1984, 13 (6): 431-441
    
    249. Desnoyers J E, Preeon G, Avedikian L, Morel J P. Enthalpies of the urea-tert-butanol-water system at 25℃. J. Solution Chem., 1976, 5 (9): 631-644
    
    250. Franks F, .Pedley M, Reid D S. Solute interactions in dilute aqueous solutions. Part 1.-Microcalorimetric study of the hydrophobic interaction. J. Chem. Soc. Faraday Trans. I,1976, 72: 359-367
    
    251. Kulikov O V, Zielenkiewicz W, Krestov G A. Enthalpies of interaction of some amino acids and peptides with crown ethers in water at 25℃. Thermochim. Acta, 1994, 241(1): 1-16
    
    252. Castronuovo G, Dario R P, Elia V. The hydrophobic effect in aqueous solutions of positional isomers of alkan-n-ols : A calorimetric study at 298.15 K. Thermochim. Acta, 1991, 181 (2):305-313
    
    253. Piekarski H, Waliszewski D. Hydration effect on urea-non-electrolyte enthalpic pair interaction coefficients. Dissolution enthalpies of urea in aqueous solution of alkoxyethanols at 298.15 K. Thermochim. Acta, 1995, 258 (1): 67-76
    
    254. Robinson A L. The differential entropy of dilution in aqueous solutions of amino acids. J. Chem. Phys., 1946, 14 (10): 588-590
    
    255. Visser C D, Petton G, Desnoyers J E. Volumes and heat capacities of ternary aqueous systems at 25℃. Mixtures of urea, tert-butyl alcohol, dimethylformamide, and water. J. Am. Chem. Soc., 1977, 99 (18): 5894-5900
    
    256. Okamoto B Y, Wood R H, Thompson P T. Freezing points of aqueous alcohols. Free energy of interaction of the CHOH, CH_2, CONH and C=C functional groups in dilute aqueous solutions. J. Chem. Soc. Faraday Trans. I, 1978, 74: 1990-2007
    
    257. Kert H E, Lilley T H, Miburm P J, Bloemendal M, Somsen G. Interactions between terminally substituted amino acids in an aqueous and a non-aqueous environment.Enthalpic interaction coefficients in water and in N,N-dimethylformamide at 25℃.J.Solution Chem.,1985,14(2):101-115
    258.Lu Y,Wang X F,Su G J,Lu J S.Calorimetric and volumetric studies of interactions of formamide with alkan-l-ol in water at 298.15K.Thermochim.Acta,2003,406(1-2):233-239
    259.Palecz B,Piekarski H.Dissolution enthalpy of glycine in aqueous solutions of bivalent metal electrolytes.Fluid Phase Equilib.,1999,164(2):257-265
    260.殷树梅,赵海峰,李高宁,杨晓玲.D-对羟基苯甘氦酸的合成.青岛科技大学学报,2004,24(4):290-293
    261.Runser S M,Chinski N,Ohleyer E.D-p-Hydroxyphenylglycine production from DL-5-p-hydroxyphenylhydantoin by agrobacterium species.Appl.Microbiol.Biotechnol.,1990,33(4),382-388
    262.Fan C,Lee C,Chao Y.Recombinant escherichia coli for D-p- hydroxyphenylglycine production from D-N-carbamoyl-p-hydroxyphenylglycine.Enzy.Microb.Technol.,2000,26(2-4):222-228
    263.李庆文,蒋俊树.化学拆分法制备左旋对羟基苯甘氨酸.安徽化工,2000,106(4):11-12
    264.Sijpkes A H,Staneke P O,Somsen G.Enthalpies of interaction of some N-Acelyl amides of L-serine,L-threonine and L-hydroxyprotine dissolved in N,N-dimenthylformamide at 298.15 K.Thermochim.Acta,1990,167(1):65-72
    265.Liu Q W,Hu X G,Lin R S,Li S Q,Sang W Q.Enthalpies of dilution of glycine,L-alanine and L-serine in aqueous ethylene glycol solutions at 298.15 K.Thermochim.Acta,2001,369(1-2):31-37
    266.Shao S,Hu X G,Lin R S.Enthalpic interactions of L-alanine and L-serine in aqueous urea solutions.Thermochim.Acta,2000,360(2):93-100
    267.Palecz B.Enthalpies of solution and dilution of some L-a-amino acids in water at 298.15K.J.Thermal Anal.,1998,54(1):257-263
    268.Yu L,Hu X G,Lin R S,Zhang H L,Xu G.Enthalpies of dilution and enthalpies of mixing of α-amino acids + pyridine and α-amino acids + methylpyridine in aqueous solutions at 298.15 K.J.Chem.Eng.Data,2003,48(4):990-994
    269.Xu L,Wang X,Lin R S,Sun D Z.Enthalpies of dilution of glycine and L-alanine in aqueous 1- propanol solutions at T=298.15K.J.Chem.Thermodyn.,2005,37(4):371-375
    270.Nakamura S,Kidokoro S I.Isothermal acid-titration calorimetry for evaluating the pH dependence of protein stability.Biophys.Chem.,2004,109(2):229-249
    271. Bernazzani L, Cabani S, Conti G, Mollica V. Enthalpies of solution of organic compounds in water/octan-1-ol mixtures, J solution Chem., 2000, 29 (4): 389-404
    
    272. Wang X, Xu L, Lin R S, Sun D Z. Enthalpies of dilution of glycine, L-alanine and L-serine in aqueous potassium chloride solutions. Thermochim. Acta, 2005, 425 (1-2): 31-37
    
    273. Sijpkes A H, Somsen G. Enthalpic interaction coefficients of some dipeptides dissolved in N,N-dimethylformamide. J. Chem. Soc. Faraday Trans.1, 1989, 85: 2563-2573
    
    274. Bloemendal M, Somsen G. Properties of some protein denaturants in N,N-dimethylformamide. Enthalpic interaction coefficients of urea and substituted urea compounds. J. Am. Chem. Soc., 1985, 107 (12): 3426-3431
    
    275. Amold P., Lilley T. H., Aqueous solutions containing amino acids and peptides, J Chem.Thermodyn., 1985, 17 (1), 99-100

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700