甲基丙烯酸酯系两亲共聚物的合成、表征及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
两亲性共聚物可以通过自组装形成不同形态的纳米级或微米级的高度有序结构,如球状、蠕虫状、棒状、囊泡状和复合状结构等,这些制得的具有特殊结构的材料在生物、医药、催化、分离及分子光电器件等领域有很好的应用前景。本文对两亲性共聚物的合成及其自组装性能方面的研究进展作一个综述;开展了两亲性共聚物的合成及其性能的研究;探讨了两亲性共聚物的合成和自组装的机理;探索了所得组装体在纳米材料制备中的应用。
     采用自由基聚合法合成了甲基丙烯酸十八酯和马来酸酐的无规共聚物P(SMA-co-MA),并用仲胺化合物吗啡啉化学修饰了此聚合物,制得了P(SMA-co-MPMA),用~1H-NMR、FT-IR、GPC对其进行了表征,确定了其组成和结构;研究了它们在THF/H_2O中的自组装行为,通过改变浓度、H_2O量等影响自组装的条件,制得了球形、囊泡、复合、珍珠项链状、空间网络状等多种形态的自组装体;当水含量为5.32wt%时,P(SMA-co-MA)水解产物经组装形成粒径约为300nm的复合组装体,当水含量为18.35wt%时,其经组装形成囊泡;当浓度为0.11wt%、水含量为11.1wt%时,P(SMA-co-MPMA)经组装形成珍珠项链状结构;讨论了其在不同条件下的自组装机理,并建立了可能的自组装机理模型。以BTBA为链转移剂,采用可逆加成—断链链转移(RAFT)聚合法合成了新颖的具有交替结构的嵌段共聚物P(SMA-alt-MA)-b-PSMA,用~1H-NMR、FT-IR、GPC对其进行了表征,确定了其组成和结构;研究了其在THF/H_2O中的自组装行为,通过改变浓度、H_2O量、pH值等影响自组装的条件,制得了球形、复合等多种形态的自组装体;当浓度为0.05wt%时,P(SMA-alt-MA)_(50)-b-PSMA_(30)水解产物经组装能形成粒径为150~200nm的球形结构,当浓度为0.20wt%时,其经组装形成粒径约为400nm的复合组装体;提出了其可能的自组装机理模型。
     采用RAFT聚合法制备了两个系列的甲基丙烯酸十八酯—N-异丙基丙烯酰胺共聚物(PSMA-b-PNIPAAm、PSMA-b-PNIPAAm-b-PSMA),用~1H-NMR、FT-IR、GPC对其进行了表征,确定了其组成和结构;研究了所得共聚物在混合溶剂中的自组装行为,通过改变溶剂种类、混合溶剂组成、嵌段比及分子量、温度等影响自组装的条件,制得了巨型复合囊泡、巨型囊泡、“珍珠项链”、球形等多种形态的自组装体;当浓度为0.1wt%、水含量为30.0wt%时,PSMA_(29)-b-PNIPAAm_(23)经组装形成粒径约为30μm的巨型复合囊泡,PSMA_(17)-b-PNIPAAm_(40)经组装形成尺寸为5-10μm的巨型囊泡,PSMA_(17)-b-PNIPAAm_(32)经组装形成粒径为800nm的球形结构;当浓度为0.1wt%、水含量为30.0wt%时,PSMA_(10)-b-PNIPAAm_(68)-PSMA_(10)经组装形成粒径约为1.0μm的“核一壳”球形结构,PSMA_(10)-b-PNIPAAm_(26)-PSMA_(10)经组装形成尺寸约为250nm的囊泡;讨论了其在不同条件下的自组装机理,建立可能的自组装机理模型。
     合成了甲基丙烯酸特丁酯—N-异丙基丙烯酰胺系的嵌段共聚物(PtBMA-b-PNIPAAm、P(MAA-co-PyMA)-b-PNIPAAm),用~1H-NMR、FT-IR和GPC对其进行了表征,确定了其组成和结构;研究了PtBMA-b-PNIPAAm在混合溶剂中的自组装行为,发现PtBMA-b-PNIPAAm在THF/H_2O中可以通过自组装形成球形、囊泡和三维网络结构,PtBMA-b-PNIPAAm在1,4-dioxane/H_2O中可经自组装形成囊泡和交联网络结构;研究了P(MAA-co-PyMA)-b-PNIPAAm在1,4-dioxane/H_2O中的自组装行为,用1,2-二(2-胺基乙氧基)乙烷将所得组装体的中间层MAA链段进行化学交联,制得稳定的交联温敏性荧光纳米微球。
     采用原子转移自由基聚合(ATRP)方法合成了三个系列的甲基丙烯酸十八酯—γ-(甲基丙烯酰氧)丙基三甲氧基硅烷的嵌段共聚物(PTMSPMA-b-PSMA-Fc-PSMA-b-PTMSPMA、PSMA-b-PTMSPMA、S-(PSMA-b-PTMSPMA)_4),用~1H-NMR和GPC对其进行了表征,确定了其组成和结构;研究了所得共聚物在混合溶剂中的自组装行为,通过改变浓度、混合溶剂组成和嵌段比及分子量等影响自组装的条件,得到了球形、囊泡和复合囊泡等形态的自组装体;当浓度为0.10wt%时,PTMSPMA_(15)-b-PSMA_(32)-Fc-PSMA_(32)-b-PTMSPMA_(15)经自组装形成复合组装体,当浓度为0.20wt%时,其经自组装形成复合囊泡;当浓度为0.10wt%时,PSMA_(25)-b-PTMSPMA_3经自组装形成复合组装体,当浓度为0.50wt%时,其经自组装形成复合囊泡;当浓度为0.05wt%、乙醇含量为10.0wt%时,S-(PSMA_(128)-b-PTMSPMA_(56))_4经组装形成球,而S-(PSMA_(128)-b-PTMSPMA_9)_4经组装形成囊泡;将所得组装体中的三甲氧基硅烷水解和缩合,制得内部交联的有机—无机杂化纳米材料;讨论了其在不同条件下获得多种形态的有机—无机杂化纳米材料的形成机理;探索了用PSMA_(25)-b-PTMSPMA_3的组装体封装银纳米粒子,然后经溶胶—凝胶过程,制备了稳定的银纳米粒子/聚合物的“核—壳”复合纳米粒子的可能性。
     采用ATRP方法合成了PSMA-Crown-PSMA聚合物,用~1H-NMR、FT-IR和GPC对其进行了表征,确定了其组成和结构;研究了PSMA-Crown-PSMA在THF/H_2O中的自组装行为,通过改变分子量、H_2O量、浓度等影响自组装的条件,制得了球形、复合和中空球等多种形态的自组装体:当浓度为0.10wt%、水含量为10.0wt%时,PSMA_9-Crown-PSMA_9、PSMA_(12)-Crown-PSMA_(12)和PSMA_(16)-Crown-PSMA_(16)经自组装分别形成中空纳米球、实心纳米球和多孔单层膜;讨论它们在不同条件下的自组装机理,建立了可能的自组装机理模型;以PSMA-Crown-PSMA的自组装膜为模板,将其浸渍在AgNO_3/HF溶液中,使金属离子在冠醚基团富集,通过Ag~+与硅原子之间的原电池氧化还原反应,使Ag~+发生还原反应,并就地沉积形成纳米点,制得了金属纳米粒子的有序阵列。
Amphiphilic polymers have received considerable attention due to their ability to self-assemble in bulk and in solution forming a range of different morphologies (e.g., spheres, rods, lamellae and large compound vesicles) through weak noncovalent interactions. These resultant aggregates have very interesting particular properties, so they have many potential applications in areas such as microreactors, microcapsules, drug delivery systems and encapsulation of various kinds of guest molecules. In this paper, progress in synthesis, self-assembly and application of amphiphilic polymers were reviewed. Many amphiphilic polymers containing mathacrylate were prepared and characterized. The self-assembly behavior of the resultant polymers in mixed solvents was investigated.
    Maleic anhydride-stearyl methacrylate (MA-SMA) random copolymer was synthesized via the free radical polymerization and its amide was prepared through the MA moieties being reacted with morpholine. The resultant polymers were characterized by ~1H-NMR, FT-IR and GPC It was found that the resultant polymers could form various morphologies in THF/H2O by adjusting the concentration and water content. The hydrolyzate of P(SMA-co-MA) can self-assemble into large compound micelles (LCMs) with diameter of ca. 300nm at water content of 5.32wt%, while it can form vesicles at water content of 18.35wt%; P(SMA-co-MPMA) can yield pearl-necklace aggregates at the concentration of 0.11wt% in THF/H_2O 88.9/11.1 (WAV). The effect of the polymer-solvent interaction on these aggregations was discussed. P(MA-alt-SMA)-b-PSMA having alternating segments was prepared via the reversible-addition-fragmentation-transfer (RAFT) polymerization. The resultant polymers were characterized by ~1H-NMR, FT-IR and GPC. Various morphologies self-assembled from the hydrolyzate of P(MA-alt-SMA)-b-PSMA in THF/H_2O were obtained by varying the concentration, water content and pH value. The hydrolyzate of P(SMA-alt-MA)_(50)-b-PSMA_(30) can self-assemble into spheres with diameter of 150~200nm at the concentration of 0.05wt%, while it can form LCMs with diameter of 400nm at the concentration of 0.20wt%.
    Stearyl methacrylate-N-isopropylacrylamide (SMA-NIPAAm) diblock and triblock copolymers
    were synthesized via the RAFT polymerization. The resultant polymers were characterized by
    ~1H-NMR, FT-IR and GPC. Various morphologies self-assembled from block copolymers in mixed
    solvents were obtained by varying solvent, block ratio, temperature and so on. When the
    concentration was maintained at 0.10wt% in THF/H_2O 70/30 (WAV), PSMA_(29)-b-PNIPAAm_(23) can
    self-assemble to giant compound vesicles with diameter of 30μm, PSMA_(17)-b-PNIPAAm_(40) can form giant vesicles with diameter of 5-10μm, while PSMA_(17)-b-PNIPAAm_(32) can yield spheres with diameter of 800nm. At the same condition, PSMA_(10)-b-PNIPAAm_(38)-PSMAio can form "core-shell" spheres with diameter of 1.0μm and PSMA_(10)-b-PNIPAAm_(26)-PSMA_(10) can yield vesicles with diameter of 250nm.
    t-Butyl methacrylate-N-isopropylacrylamide (tBMA-NIPAAm) diblock copolymer was synthesized via the RAFT polymerization and (P(MAA-co-PyMA)-b-PNIPAAm) was prepared through the hydrolysis and esterification reactions. The resultant polymers were characterized by ~1H-NMR, FT-IR and GPC. Their self-assembly behaviors were studied in different solvents. It was found that spheres, vesicles and network can be obtained through the self-assembly of PtBMA-b-PNIPA Am/THF/H_2O system; vesicles and cross-linked network can be formed through the self-assembly of PtBMA-b-PNIPAArn/1,4-dioxane/H_2O system. The self-assemble behavior of P(MAA-co-PyMA)-b-PNIPAAm in 1,4-dioxane/H_2O was also investigated. Stable thermo-responsive fluorescent nanoballs can be prepared via the covalent cross-linking of MAA segments within the aggregates. The thermo-responsive and fluorescent properties of the nanoballs were investigated.
    Stearyl methacrylate-3-(trimethoxysilyl)propyl methacrylate (SMA-TMSPMA) diblock, multi-block and star block copolymers were synthesized via atom transfer radical polymerization (ATRP). The resultant polymers were characterized by ~1H-NMR and GPC. By controlling concentration, copolymer composition and solvent composition, the different aggregates could be obtained, including spheres, vesicles, LCMs and large compound vesicles. With a base catalyst, the resultant copolymers containing R-Si(OCH_3)_3 groups were subsequently transferred into the crosslinked polysilsesquioxane by the hydrolysis and condensation reactions. This sol-gel process resulted in the formation of organic/inorganic hybrid nanomaterials. Furthermore, the aggregates of PSMA_(25)-b-PTMSPMA_3 were used to encapsulate Ag nanoparticles, stable "core-shell" inorganic/polymer nanoparticles can be prepared by the sol-gel procedure.
    PSMA-Crown-PSMA was synthesized via ATRP. The resultant polymers were characterized by ~1H-NMR, FT-IR and GPC. By adjusting molecular weight, water content and concentration, various morphologies could be obtained, including spheres, LCMs and hollow spheres. A metal particle array based on the self-assembled template from the polymer was prepared by the galvanic displacement reaction.
引文
[1] Hamley I. W. The Physics of Block Copolymers. Oxford: Oxford University Press, 1998.
    [2] 冯新德,张中岳,施良和.高分子辞典.北京:中国石化出版社,1998.6.
    [3] Kim J. K., Lee E., Lee M. Nanoribers with tunable stiffness from self-assembly of an amphiphilic wedge-coil molecule. Angew Chem Int Ed, 2006, 45(43):7195-7198.
    [4] Geng Y., Discher D. E., Justynska J., Schlaad H. Grafting short peptides onto polybutadiene-block-poly(ethylene oxide): A platform for self-assembling hybrid amphiphiles. Angew Chem Int Ed, 2006, 45(45):7578-7581.
    [5] Stubenrauch K., Moitzi C., Fritz G., Glatter O., Trimmel G., Stelzer F. Precise tuning of micelle, core, and shell size by the composition of amphiphilic block copolymers derived from ROMP investigated by DLS and SAXS. Macromolecules, 2006, 39(17):5865-5874.
    [6] An Z. H., Lu G., Mohwald H., Li J. B. Self-assembly of human serum albumin (HSA) and L-alpha-dimyristoylphosphatidic acid (DMPA) microcapsules for controlled drug release. Chem-Eur J, 2004, 10 (22): 5848-5852.
    [7] Lin Y., Boker A., He J. B., Sill K., Xiang H. Q., Abetz C., Li X. E, Wang J., Emrick T., Long S.. Wang Q., Balazs A., Russell T. P. Self-directed self-assembly of nanoparticle/copolymer mixtures. Nature, 2005, 434:55-59.
    [8] Corma A., Rey F., Rius J., Sabater M. J., Valencia S. Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites. Nature, 2004, 431:287-290.
    [9] 王国建.高分子合成新技术.北京:化学工业出版社,2004.4.
    [10] 张洪敏,侯元雪.活性聚合.北京:中国石化出版社,1998.
    [11] 薛联宝,金关泰.阴离子聚合的理论和应用.北京:中国友谊出版社,1990.
    [12] Hillmyer M. A., Bates F. S. Synthesis and characterization of model polyalkane-poly(ethylene oxide) block copolymers. Macromolecules, 1996, 29:6994-7002.
    [13] Allgaier J., Poppe A., Willner L., Richter D. Synthesis and characterization of poly[1, 4-isoprene-b-(ethylene oxide)] and poly[ethylene-co-propylene-b-(ethylene oxide)] block copolymers. Macro molecules, 1997, 30(6):1582-1586.
    [14] Forster S., Kramer E. Synthesis of PB-PEO and PI-PEO block copolymers with alkyllithium initiators and the phosphazene base t-BuP4. Macromolecules, 1999, 32 (8):2783-2785.
    [15] Sanger J., Gronski W. Side-chain liquid crystalline copolymers with nonmesogenic comonomers-Influence of comonomer content on the nature of the mesophase. Macromol Rapid Comm, 1997, 18(1):59-64.
    [16] 潘祖仁.高分子化学(第三版).北京:化学工业出版社,2003.
    [17] Faust R., Kennedy J. P. Living carbocationic polymerization. Ⅳ. Living polymerization of isobutylene. J Polym Sci Part A: Polym Chem, 1987, 25:1847-1869.
    [18] Miyamoto M., Sawamoto M., Higashimura T. Living polymerization of isobutyl vinyl ether with hydrogen iodide/iodine initiating system. Macromolecules, 1984, 17: 265-268.
    [19] Patrickios C. S., Forder C., Armes S. P., Billingham N. C. Synthesis and characterization of amphiphilic diblock copolymers of methyl tri(ethylene glycol) vinyl ether and isobutyl vinyl ether. J Polym Sci Part A: Polym Chem, 1996, 34:1529-1541.
    [20] Forder C., Armes S. P., Billingham N. C. Synthesis of poly(vinyl alcohol)s with narrow molecular weight distribution from poly(benzyl vinyl ether) precursors. Polym Bull, 1995, 35:291-298.
    [21] Patrickios C. S., Forder C., Armes S. P., Billingham N. C. Water-soluble ABC triblock copolymers based on vinyl ethers: Synthesis by living cationic polymerization and solution characterization. J Polym Sci Part A: Polym Chem, 1997, 35(7): 1181-1195.
    [22] Feldthusen J., Ivdn B., Mailer A. H. E. Synthesis of linear and star-shaped block copolymers of isobutylene and methacrylates by combination of living cationic and anionic polymerizations. Macromolecule, 1998, 31:578-585.
    [23] 王国建,颜得岳.甲基丙烯酸—四氢呋喃两亲性嵌段共聚物的合成与表征.科学通报,2000(10):1037-1042.
    [24] Webster O. W., Hertler W. R., Sogah D. Y. Group-transfer polymerization. 1. A new concept for addition polymerization with organosilicon initiators. J Am Chem Soc, 1983, 105:5706-5708.
    [25] 邱志平,邹友思.基团转移聚合新进展.高分子通报,1998,4:34-40.
    [26] Baines F. L., Armes S. P., Billingham N. C, Tuzar Z. Micellization of poly(2-(dimethylamino) ethyl methacrylate-block-methyl methacrylate) copolymers in aqueous solution. Macromolecules, 1996, 29: 8151-8159.
    [27] Su T. J., Styrkas D. A., Thomas R. K., Baines F. L., Billingham N. C., Armes S. P. Neutron and X-ray reflectivity studies of water-soluble block and statistical copolymers adsorbed at the air-water interface. Macromolecules, 1996, 29:6892-6900.
    [28] Budde H., Horing S. Synthesis of ethylene oxide methyl methacrylate diblock copolymers by group transfer polymerization of methyl methacrylate with poly(ethylene oxide) macroinitiators. Macromol Chem Phys,1998,199(11):2541-2546.
    [29] Rizzardo E., Solomon D.H. New method for investigating the mechanism of initiation of radical polymerization. Polym Bull, 1979,1(8):529-534.
    [30] Moad G, Rizzardo E., Solomon D.H. Selectivity of the reaction of free radicals with styrene. Macromolecules, 1982,15(3):909-914.
    [31] Georges M.K., Veregin R.P.N., Kazmaier P.M., Hamer GK. Narrow molecular weight resins by a free-radical polymerization process. Macromolecules, 1993,26(20):5316-5320.
    [32] Kazmaier P.M., Moffat K.A., Georges M.K., Veregin R.P.N., Hamer G.K. Free-radical polymeriza tion for narrow-polydispersity resins. Semiempirical molecular orbital calculations as a criterion for selecting stable free-Radical reversible terminators. Macromolecules, 1995, 28(6): 1841-1846.
    [33] Veregin R. P. N., Georges M.K., Kazmaier P.M., Hamer G.K. Free radical polymerizations for narrow polydispersity resins: Electron spin resonance studies of the kinetics and mechanism. Macromolecules, 1993,26(20):5316-5320.
    [34] Veregin R. P. N., Georges M. K., Hamer G. K., Kazmaier P. M. Mechanism of living free radical polymerizations with narrow polydispersity: Electron spin resonance and kinetic studies. Macromolecules, 1995,28( 13):4391 -4398.
    [35] Veregin R.P.N., Odell P.G., Michalak L.M., Georges M.K. The pivotal role of excess nitroxide radical in living free radical polymerizations with narrow polydispersity. Macromolecules, 1996,29(8):2746-2754.
    [36] Veregin R.P.N., Odell P.G, Michalak L.M., Georges M.K. Molecular weight distributions in nitroxide-mediated living free radical polymerization: Kinetics of the slow equilibria between growing and dormant chains. Macromolecules, 1996,29(10): 3346-3352.
    [37] Mansky P., Liu Y., Huang E., Russell T.P., Hawker C.J. Controlling polymer-surface interactions with random copolymer brushes. Science, 1997,275(5305): 1458-1460.
    [38] Mardare D., Matyjaszewski K. "Living" radical polymerization of vinyl acetate. Macromolecules, 1994,27(3):645-649.
    [39] Greszta D., Matyjaszewski K. Mechanism of controlled/"living" radical polymerization of styrene in the presence of nitroxyl radicals. Kinetics and simulations. Macromolecules, 1996,29(24): 7661-7670.
    [40] Wan X., Tu Y., Zhang D., Zhou Q., Wu C. Self-assembled nanostructure of a novel coil-rod diblock copolymer in dilute solution. J Am Chem Soc, 2000, 122(41): 10201 -10205.
    [41] Tu Y., Wan X., Zhang H., Fan X., Chen X., Zhou Q.F., Chau K. Self-assembled nanostructures of rod-coil diblock copolymers with different rod lengths. Macromolecules, 2003,36(17): 6565-6569.
    [42] Kato M., Kamigaito M., Sawamoto M., Higashimura T. Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris-(triphenylphosphine)ruthenium(Ⅱ)/methylaluminum bis(2,6-di-tert-butylphenoxide) initiating system: Possibility of living radical polymerization. Macromolecules, 1995, 28:1721-1723.
    [43] Wang J. S., Matyjaszewski K. Controlled/"living" radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes. J Am Chem Soc, 1995, 117: 5614-5615.
    [44] Percec V., Barboiu B. "Living" radical polymerization of styrene initiated by arenesulfonyl chlorides and CuI(bpy)nCl. Macromolecules, 1995, 28(23):7970-7972.
    [45] Oh J. K., Perineau F., Matyjaszewski K. Preparation of nanoparticles of well-controlled water-soluble homopolymers and block copolymers using an inverse miniemulsion ATRP. Macromolecules, 2006, 39(23):8003-8010.
    [46] Zhao Y. L., Shuai X., Chen C. F., Xi F. Synthesis of novel dendrimer-like star block copolymers with definite numbers of arms by combination of ROP and ATRP. Chem Commun, 2004, (14): 1608-1609.
    [47] Li M., Jahed N. M., Min K., Matyjaszewski K. Preparation of linear and star-shaped block copolymers by ATRP using simultaneous reverse and normal initiation process in bulk and miniemulsion. Macromolecules, 2004, 37(7):2434-2441.
    [48] Cheng Z. P., Zhu X. L., Kang E. T., Neoh K. G. Brush-type amphiphilic diblock copolymers from "living"/controlled radical polymerizations and their aggregation behavior. Langmuir, 2005, 21(16):7180-7185.
    [49] Cheng Z., Zhu X., Fu G. D., Kang E. T., Neoh K. G. Dual-brush-type amphiphilic triblock copolymer with intact epoxide functional groups from consecutive RAFT polymerizations and ATRP. Macromolecules, 2005, 38(16):7187-7192.
    [50] 朱健.苯乙烯和(甲基)丙烯酸酯类的可逆加成—断裂链转移(RAFT)聚合反应.苏州大学博士论文.
    [51] Millard P. E., Bamer L., Stenzel M. H., Davis T. P., Barner-Kowollik C., Muller A. H. E. RAFT polymerization of N-isopropylacrylamide and acrylic acid under gamma-irradiation in aqueous media. Macromol Rapid Comm, 2006, 27(11):821-828.
    [52] Yin X., Hoffman A. S., Stayton P. S. Poly(N-isopropylacrylamide-co-propylacrylic acid) copolymers that respond sharply to temperature and pH. Biomacromolecules, 2006, 7(5): 1381-1385.
    [53] Zhai G. Q., Yu W. H., Kang E. T., Neoh K. G., Huang C. C., Liaw D. J. Functionalization of hydrogen-terminated silicon with polybetaine brushes via surface-initiated reversible addition- fragmentation chain-transfer (RAFT) polymerization. Ind Eng Chem Res, 2004,43(7): 1673-1680.
    [54] Le T.P., Moad G., Rizzardo E., Thang S.H. Int Pat 9801478 (Chem Abstr 1998,128,1153900.)
    [55] Chiefari J., Chong Y.K., Ercole R, Krstina J., Jeffery J., Le T.P.T., Mayadunne R.T.A., Meijs G.F., Moad C.L., Moad G., Rizzardo E., Thang S.H. Living free-radical polymerization by reversible addition-fragmentation chain transfer: The RAFT process. Macromolecules,1998,31(16):5559- 5562.
    [56] Plummer R., Hill D.J.T., Whittaker A.K. Solution properties of star and linear poly(N- isopropyl acrylamide). Macromolecules,2006,39(24):8379-8388.
    [57] Krasia T.C., Patrickios C.S. Amphiphilic polymethacrylate model co-networks: Synthesis by RAFT radical polymerization and characterization of the swelling behavior. Macromolecules, 2006,39(7):2467-2473.
    [58] Sumerlin B.S., Lowe A.B., Thomas D.B., McCormick C.L. Aqueous solution properties of pH-Responsive AB diblock acrylamido copolymers synthesized via aqueous RAFT. Macro- molecules,2003,36(16):5982-5987.
    [59] Hou S., Chaikof E.L., Taton D., Gnanou Y. Synthesis of water-soluble star-block and dendrimer- like copolymers based on poly(ethylene oxide) and poly(acrylic acid). Macromolecules,2003,36: 3874-3881.
    [60] Khanal A., Li Y., Takisawa N., Kawasaki N., Oishi Y., Nakashima K. Morphological change of the micelle of poly(styrene)-b-poly(2-vinylpyridine)-b-poly(ethylene oxide) induced by binding of sodium dodecyl sulfate. Langmuir, 2004, 20:4809-4812
    [61] Iyengar D.R., Perutz S.M., Dai C.A., Ober C.K., Kramer E.J. Surface segregation studies of fluorine-containing diblock copolymers. Macromolecules, 1996,29(4): 1229-1234.
    [62] Thaler W A. Hydrocarbon-soluble sulfonating reagents. Sulfonation of aromatic polymers in hydrocarbon solution using soluble acyl sulfates.Macromolecules,1983,16:623-628
    [63] Lazzari M., Lopez-Quintela M.A. Block copolymers as a tool for nanomaterial fabrication. Adv Mater,2003,15:1583-1594.
    [64] Zhang L.F., Eisenberg A. Multiple morphologies of "crew-cut" aggregates of polystyrene-b- poly(acrylic acid) block copolymers. Science, 1995,268:1728-1731.
    [65] Zhang L.F., Eisenberg A. Ion-induced morphological changes in "crew-cut" aggregates of amphiphilic block copolymers. Science, 1996,272:1777-1779.
    [66] Desbaumes L., Eisenberg A. Single-solvent preparation of crew-cut aggregates of various morphologies from an amphiphilic diblock copolymer. Langmuir, 1999,15 (1): 36-38.
    [67] Zhang L.F., Eisenberg A. Formation of crew-cut aggregates of various morphologies from amphiphilic block copolymers in solution. Polym Advan Technol, 1998,9(10-11): 677-699.
    [68] Zhang L.F., Eisenberg A.Thermodynamic vs kinetic aspects in the formation and morphological transitions of crew-cut aggregates produced by self-assembly of polystyrene-b-poly(acrylic acid) block copolymers in dilute solution. Macromolecules, 1999,32 (7): 2239-2249.
    [69] Zhang L.F., Eisenberg A. Crew-cut aggregates from self-assembly of blends of polystyrene- b-poly(acrylic acid) block copolymers and homopolystyrene in solution. J Polym Sci Part B: Polym Phys, 1999,37(13): 1469-1484.
    [70] Bronich T.K., Popov A.M., Eisenberg A., Kabanov V.A., Kabanov A.V. Effects of block length and structure of surfactant on self-assembly and solution behavior of block ionomer complexes. Langmuir, 2000,16 (2): 481-489.
    [71]Terreau O., Luo L.B., Eisenberg A. Effect of poly(acrylic acid) block length distribution on polystyrene-b-poly(acrylic acid) aggregates in solution. 1. Vesicles. Langmuir, 2003,19(14): 5601-5607.
    [72] Solomatin S.V., Bronich T.K., Bargar T.W., Eisenberg A., Kabanov V.A., Kabanov A.V. Environmentally responsive nanoparticles from block ionomer complexes: Effects of pH and ionic strength. Langmuir, 2003, 19(19): 8069-8076.
    [73] Terreau O., Bartels C, Eisenberg A. Effect of poly(acrylic acid) block length distribution on polystyrene-b-poly(acrylic acid) block copolymer aggregates in solution. 2. A partial phase diagram. Langmuir, 2004,20 (3): 637-645.
    [74] Soo P.L., Eisenberg A. Preparation of block copolymer vesicles in solution. J Polym Sci Part B: Polym Phys, 2004,42 (6): 923-938.
    [75] Liu X.Y., Kim J.S., Wu J., Eisenberg A. Bowl-shaped aggregates from the self-assembly of an amphiphilic random copolymer of poly(styrene-co-methacrylic acid). Macromolecules, 2005,38 (16): 6749-6751.
    [76] Liu X.Y., Wu J., Kim J.S., Eisenberg A. Self-assembly of mixtures of block copolymers of poly(styrene-b-acrylic acid) with random copolymers of poly(styrene-co-methacrylic acid). Langmuir, 2006,22 (1): 419-424.
    [77] Liu F.T., Eisenberg A. Synthesis of poly(tert-butyl acrylate)-block-polystyrene block- poly(4-vinylpyridine) by living anionic polymerization. Angew Chem Int Ed,2003,42: 1404-1407
    [78] Liu F.T., Eisenberg A. Preparation and pH triggered inversion of vesicles from poly(acrylicAcid)-block-polystyrene-block-poly(4-vinyl Pyridine). J Am Chem Soc, 2003,125:15059- 15064.
    [79] Rodn'guez-Herna'ndez J., Lecommandoux S. Reversible inside-out micellization of pH- responsive and water-soluble vesicles based on polypeptide diblock copolymers. J Am Chem Soc, 2005,127:2026-2027.
    [80] Jiang G.H., Wang L., Chen T., Yu H.J. Synthesis and self-assembly of poly(benzyl ether)- b-poly(methyl methacrylate) dendritic-linear polymers. Polymer,2005,46:81-87
    [81] Yao X.M., Chen D.Y., Jiang M. Micellization of PS-b-P4VP/formic acid in chloroform without or with the premixing of the copolymer with decanoic acid. Macromolecules,2004,37(11): 4211-4217.
    [82] Talingting M.R., Munk P., Webber S.E., Tuzar Z. Onion-type micelles from polystyrene-block- poly(2-vinylpyridine) and poly(2-vinylpyridine)-block-poly(ethylene oxide). Macromolecules, 1999,32:1593-1601.
    [83] Lin T.F., Ho R.M., Sung C.H., Hsu C.S. Helical morphologies of thermotropic liquid-crystalline chiral schiff-based rod-coil amphiphiles. Chem Mater,2006,18 (23):5510- 5519.
    [84] Rahman M.S., Samal S., Lee J.S. Synthesis and self-assembly studies of amphiphilic poly(n- hexyl isocyanate)-block-poly(2-vinylpyridine)-block-poly(n-hexyl isocyanate) rod-coil-rod tri- block copolymer. Macromolecules,2006,39(15): 5009-5014.
    [85] Jin L.Y., Bae J., Ryu J.H., Lee M. Ordered nanostructures from the self-assembly of reactive coil-rod-coil molecules. Angew Chem Int Ed,2006,45(4):650-653.
    [86] Olsen B.D., Segalman R.A. Structure and thermodynamics of weakly segregated rod-coil block copolymers. Macromolecules,2005,38(24): 10127-10137.
    [87] Wldawskl G, Rawiso M., Francois B. Self-organized honeycomb morphology of star-polymer polystyrene films. Nature,1994,369:387-389.
    [88] Stupp S.I., LeBonheur V., Walker K., Li L.S., Huggins K.E., Keser M., Amstutz A. Supramolecular materials: Self-organized nanostructures. Science, 1997,276:384-389
    [89] Zubarev E.R., Pralle M.U., Li L., Stupp S.I. Conversion of supramolecular clusters to macromolecular objects. Science, 1999,283:523-526
    [90] Price C., Chan E.K.M., Hudd A.L., Stubbersfield R.B. Worm-like micelle formation by a polystyrene-b-polyisoprene block copolymer in N,N-dimethylacetamide. Polym Comm,1986, 27: 196-198.
    [91] Park J.W., Thomas E.L. Multiple ordering transitions: Hierarchical self-assembly of rod-coil block copolymers. Adv Mater,2003,15:7-8.
    [92] Ryu J.H., Oh N.K., Lee M. Tubular assembly of amphiphilic rigid macrocycle with flexible dendrons. Chem Commun,2006,1770-1772.
    [93] Raez J., Manners I., Winnik M.A. Fiberlike Structures from the self-assembly of a highly asymmetric poly(ferrocenyldimethylsilane-b-dimethylsiloxane) in dilute solution. Langmuir, 2002,18:7229-7239.
    [94] Wang X.S., Winnik M.A., Manners I. Synthesis and solution self-assembly of coil-crystalline-coil polyferrocenylphosphine-b-polyferrocenylsilane-b-polysiloxane triblock copolymers. Macro- molecules,2002,35(24):9146-9150.
    [95] Cao L., Manners 1., Winnik M.A. Influence of the interplay of crystallization and chain stretching on micellar morphologies: Solution self-assembly of coil-crystalline poly(isoprene-block- ferrocenylsilane). Macromolecules,2002,35(22):8258-8260.
    [96] Massey J.A., Temple K., Cao L., Rharbi Y., Raez J., Winnik M.A., Manners I. Self-assembly of organometallic block copolymers: The role of crystallinity of the core-forming polyferrocene block in the micellar morphologies formed by poly(ferrocenylsilane-b-dimethylsiloxane) in n-alkane solvents. J Am Chem Soc,2000,122:11577-11584.
    [97] Massey J., Power K.N., Manners I., Winnik M.A. Self-assembly of a novel organometailic- inorganic block copolymer in solution and the solid state: Nonintrusive observation of novel wormlike poly(ferrocenyldimethylsilane)-b-poly(dimethylsiloxane) micelles. J Am Chem Soc, 1998,120:9533-9540.
    [98] Frankowski D. J., Raez J., Manners I., Winnik M.A., Khan S.A., Spontak R.J. Formation of dispersed nanostructures from poly(ferrocenyldimethylsilane-b-dimethylsiloxane) nanotubes upon exposure to supercritical carbon dioxide. Langmuir, 2004, 20(21): 9304-9314.
    [99] Kim K.T., Vandermeulen G.W.M., Winnik M.A., Manners I. Organometallic-polypeptide block copolymers: Synthesis and properties of poly(ferrocenyldimethylsilane)-b-poly(γ-benzyl- L-glutamate). Macromolecules, 2005,38(12):4958-4961.
    [100] Kalsani V., Ammon H., Jackel F., Rabe J.P., Schmittel M. Synthesis and self-assembly of a rigid exotopic bisphenanthroline macrocycle: Surface patterning and a supramolecular nanobasket. Chem-Eur J.2004,10:5481 -5492.
    [101] Ikkalal O., Brinke G.T. Functional materials based on self-assembly of polymeric supramolecules. Science, 2002, 295, 2407-2409.
    [102] Basu S., Vutukuri D.R., Shyamroy S., Sandanarai B.S., Thayumanavan S. Invertible amphiphilic homopolymers. J Am Chem Soc, 2004, 126, 9890-9891.
    [103]Riegel I.C., Eisenberg A. Novel bowl-shaped morphology of crew-cut aggregates from amphiphilic block copolymers of styrene and 5-(N,N-Diethylamino)isoprene. Langmuir, 2002, 18:3358-3363.
    [104] Huson S.D., Jung H.T., Percec V., Cho W.D., Johansson G., Ungar G., Balagurusamy V.S.K. Direct visualization of individual cylindrical and spherical supramolecular dendrimers. Science, 1997,278:449-452.
    [105] Zhou Y.F., Yan D., Hou J. Supramolecular self-assembly of macroscopic tubes. Science, 2004, 303:65-67.
    [106] Zhou Y.F., Yan D. Supramolecular self-assembly of giant polymer vesicles with controlled sizes. Angew Chem Int Ed, 2004, 43:4896-4899.
    [107] Li G, Fudickar W., Skupin M., Klyszcz A., Draeger C, Lauer M., Fuhrhop J. Rigid lipid membranes and nanometer clefts: Motifs for the creation of molecular landscapes. Angew Chem Int Ed,2002,41:1828-1852.
    [108] Thurmond 1I.K.B., Kowalewski T., Wooley K.L. Water-soluble knedel-like structures: The preparation of shell-cross-linked small particles. J Am Chem Soc, 1996,118:7239-7240.
    [109] Thurmond II.K.B., Kowalewski T., Wooley K.L. Shell cross-linked knedels: A synthetic study of the factors affecting the dimensions andproperties of amphiphilic core-shell nanospheres. J Am Chem Soc,1997,l 19:6656-6665.
    [110] Liu S.Y., Weaver J.V.M., Tang Y.Q., Billingham N.C., Armes S.P., Tribe K. Synthesis of shell cross-linked micelles with pH-responsive cores using ABC triblock copolymers. Macromolecules, 2002,35:6121-6131
    [111] Stewart S., Liu G. Hollow nanospheres from polyisoprene-block-poly(2-cinnamoylethyl meth acrylate)-block-poly(tert-butyl acrylate). Chem Mater,1999,11:1048-1054.
    [112] Zhang Z., Liu G., Bell S. Synthesis of poly(solketal methacrylate)-block-poly(2-(dimethyl amino)ethyl methacrylate) and preparation of nanospheres with cross-linked shells. Macro- molecules,2000,33:7877-7883.
    [113] Zhou J.Y., Li Z., liu G.J. Diblock copolymer nanospheres with porous cores. Macromolecules, 2002,35:3690-3696.
    [114] Zhang Q., Remsen E.E., Wooly K.L. Shell cross-linked nanoparticles containing hydrolytically degradable, crystalline core domains. J Am Chem Soc,2000,122,3642-3651.
    [115] Remsen E.E., Thurmond II.K.B., Wooley K.L. Solution and surface charge properties of shell cross-linked knedel nanoparticles. Macromolecules, 1999,32:3685-3689
    [116] Ma Q., Remsen E.E., Kowalewski T., Schaefer J., Wooley K.L. Environmentally-responsive, entirely hydrophilic, shell cross-linked (SCK) nanoparticles. Nano Lett,2001,1:651-655.
    [117] Ma Q., Wooley K.L. The preparation of t-butyl acrylate, methyl acrylate, and styrene block copolymers by atom transfer radical polymerization: Precursors to amphiphilic and hydrophilic block copolymers and conversion to complex nanostructured materials. J Polym Sci Part A: Polym Chem, 2000,38: 4805-4820.
    [118] Underhill R.S., Liu G. Triblock nanospheres and their use as templates for inorganic nanoparticle preparation. Chem Mater,2000,12:2082-2091.
    
    [119] Stewart S., Liu G. Block copolymer nanotubes. Angew Chem Int Ed,2000,39:340-344.
    [120] Kuang M., Duan H., Wang J., Jiang M. Structural factors of rigid-coil polymer pairs influencing their self-assembly in common solvent. J Phys Chem B, 2004,108(41):16023-16029.
    [121] Liu G. J. Nanostructures of functional block copolymers. Curr Opin Colloid Interface Sci, 1998, 3:200-208.
    [122] Henselwood F., Liu G. J. Water-soluble nanospheres of poly(2-cinnamoylethyl methacrylate)-block-poly(acrylic acid). Macromolecules, 1997, 30(3):488-493.
    [123] Tao J., Stewart S., Liu G. J., Yang M. L. Star and cylindrical micelles of polystyrene-block-poly(2-cinnamoylethyl methacrylate) in cyclopentane. Macromolecules, 1997, 30(9):2738-2745.
    [124] Tao J., Liu G., Ding J., Yang M. Cross-linked nanospheres of poly(2-cinnamoylethyl methacrylate) with immediately attached surface functional groups. Macromolecules, 1997, 30:4084-4089.
    [125] Maskos M., Harris J. R. Double-shell vesicles, strings of vesicles and filaments found in crosslinked micellar solutions of poly(1, 2-budadiene)-block-poly(ethylene oxide) diblock copolymers. Macromol Rapid Commun, 2001, 22:271-273.
    [126] Discher B. M., Bermudez H., Hammer D. A., Discher D. E., Won Y. Y., Bates F. S. Cross-linked polymersome membranes: Vesicles with broadly adjustable properties. J Phys Chem B, 2002, 106(11):2848-2854.
    [127] Won Y. Y., Davis H. T., Bates F. S. Giant wormlike rubber micelles. Science, 1999, 283:960-963.
    [128] Du J. Z., Chen Y. M, Zhang Y. H., Han C. C., Fischer K., Schmidt M. Organic/inorganic hybrid vesicles based on a reactive block copolymer. J Am Chem Soc, 2003, 125(48): 14710-14711.
    [129] Du J. Z., Chen Y. M. Preparation of poly(ethylene oxide) star polymers and poly(ethylene oxide)-polystyrene heteroarm star polymers by atom transfer radical polymerization. J Polym Sci Part A: Polym Chem, 2004, 42 (9):2263-2271.
    [130] Du J. Z., Chen Y. M. Preparation of organic/inorganic hybrid hollow particles based on gelation of polymer vesicles. Macromolecules, 2004, 37(15):5710-5716.
    [131] Du J. Z., Chen Y. M. Atom-transfer radical polymerization of a reactive monomer: 3-(Trimethoxy-silyl)propyl methacrylate. Macromolecules, 2004, 37(17):6322-6328.
    [132] Du J. Z., Chen Y. M. Hairy nanospheres by gelation of reactive block copolymer micelles. Macromol Rapid Comm, 2005, 26(6):491-494.
    [133] Du J. Z., Chen Y. M. Gelation inside block copolymer aggregates and organic/inorganic nanohybrids. Macromol Rapid Comm, 2006, 27(10):741-750.
    [134] Du J. Z., Chen Y. M. Organic-inorganic hybrid nanoparticles with a complex hollow structure. Angew Chem Int Ed, 2004, 43(38):5084-5087.
    [135] Kataoka K., Harada A., Nagasaki Y. Block copolymer micelles for drug delivery: Design, characterization and biological significance. Adv Deliv Rev, 2001, 47:113-131.
    [136] 韩丽妹,方晓玲.生物可降解嵌段共聚物在药剂学中的应用.中国药学杂志,2004,39:167-169.
    [137] 胡兴,邹国林.生物可降解嵌段共聚物在给药载体中的应用.氨基酸和生物资源,2004, 26(3):61-64.
    [138] Li Y.Y., Zhang X.Z., Cheng H., Kim G.C., Cheng S.X., Zhuo R.X. Novel stimuli-responsive micelle self-assembled from Y-shaped P(UA-Y-NIPAAm) copolymer for drug delivery. Biomacromolecules,2006,7( 11 ):2956-2960.
    [139] Choi C, Chae S.Y., Nah J.W. Thermosensitive poly(N-isopropylacrylamide)-b-poly(epsilon- caprolactone) nanoparticles for efficient drug delivery system. Polymer,2006,47(13):4571-4580.
    [140] Li Y.Y., Zhang X.Z., Kim G.C., Cheng H., Cheng S.X., Zhuo R.X. Thermosensitive Y-shaped micelles of poly(oleic acid-Y-N-isopropylacrylamide) for drug delivery. Small,2006,2(7):917- 923.
    [141] Zhang Z., Grijpma D.W., Feijen J. Thermo-sensitive transition of monomethoxy poly(ethylene glycol)-block-poly(trimethylene carbonate) films to micellar-like nanoparticles. J Control Release, 2006,112(1):57-63.
    [142] Bae Y., Jang W.D., Nishiyama N., Fukushima S., Kataoka K. Multifunctional polymeric micelles with folate-mediated cancer cell targeting and pH-triggered drug releasing properties for active intracellular drug delivery. Mol Biosyst,2005,1(3):242-250.
    [143] Hruby M., Konak C., Ulbrich K. Polymeric micellar pH-sensitive drug delivery system for doxorubicin. J Control Release,2005,103(1): 137-148.
    [144] Bae Y., Fukushima S., Harada A., Kataoka K. Le Garrec D., Taillefer J., Van Lier J.E., Lenaerts V, Leroux J.C. Optimizing pH-responsive polymeric micelles for drug delivery in a cancer photodynamic therapy model. J Drug Target,2002,10(5):429-437.
    [145] Bae Y., Fukushima S., Harada A., Kataoka K. Design of environment-sensitive supramolecuiar assemblies for intracellular drug delivery: Polymeric micelles that are responsive to intracellular pH change. Angew Chem Int Ed, 2003,42(38):4640-4643.
    [146] Chung J.E., Yokoyama M., Okano T. Inner core segment design for drug delivery control of thermo-responsive polymeric micelles. J Control Release, 2000,65(1-2):93-103.
    [147] Wei H., Zhang X.Z., Zhou Y, Cheng S.X., Zhuo R.X. Self-assembled thermoresponsive micelles of poly(N-isopropylacrylamide-b-methyl methacrylate). Biomaterials,2006,27(9): 2028-2034.
    [148] Wei H., Zhang X.Z., Cheng C, Cheng S.X., Zhuo R.X. Self-assembled, thermosensitive micelles of a star block copolymer based on PMMA and PNIPAAm for controlled drug delivery. Bio materials,2007,28( 1 ):99-107.
    [149] Li Y.Y., Zhang X.Z., Cheng H., Zhu J.L., Cheng S.X., Zhuo R.X. Self-assembled, thermosensitive PCL-g-P(NIPAAm-co-HEMA) micelles for drug delivery. Macromol Rapid Comm,2006,27(22): 1913-1919.
    [150] Qin S.H., Geng Y, Discher D.E., Yang S. Temperature-controlled assembly and release from polymer vesicles of poly(ethylene oxide)-block-poly(N-isopropylacrylamide). Adv Mater, 2006, 18, 2905-2909.
    [151] 江明,A.艾森伯格,刘国军,张希.大分子自组装.北京:科学出版社,2006.9.
    [152] 曹渊,陶长元,杜军,张丙怀.模板法组装纳米有序阵列的研究进展.化学研究与应用,2006,18(1),1-4.
    [153] 朱林佩,王英,张亚非.基于无机纳米粒子模板刻蚀的纳米阵列.纳米科技,2006,3:23-26.
    [154] Aizawa M., Buriak J. M. Block copolymer-templated chemistry on Si, Ge, InP, and GaAs surfaces. J Am Chem Soc, 2005, 127:8932-8933.
    [155] Cheng K. W., Chan W. K. Morphology of rhenium complex-containing polystyrene-block-poly (4-vinylpyridine) and its use as self-assembly templates for nanoparticles. Langmuir, 2005, 21 (12):5247-5250.
    [156] Zehner R. W., Sita L. R. Electroless deposition of nanoscale copper patterns via microphase-separated diblock copolymer templated self-assembly. Langmuir, 1999, 15(19):6139-6141.
    [157] Shin K., Leach K. A., Goldbach J. T., Kim D. H., Jho J. Y., Tuominen M., Hawker C. J., Russell T. P. A simple route to metal nanodots and nanoporous metal films. Nano lett, 2002, 2(9):933-936.
    [158] Haupt M., Miller S., Glass R., Arnold M., Sauer R., Thonke K., Moller M., Spatz J. P. Nanoporous gold films created using templates formed from self-assembled structures of inorganic-block copolymer micelles. Adv Mater, 2003, 15(10):829-831.
    [159] Shi Z. T., Han M., Zhao S. F., Zhang L., Li X. F., Wan H. G., Wang G. H. Self-assembly of silver nanoclusters triblock copolymer templates. Int J Mod Phys B, 2005, 19(15-17):2792-2797.
    [160] Xuan Y., Pan D. C., Zhao N., Ji X. L., Ma D. G. White electroluminescence from a poly(N-vinylcarbazole) layer doped with CdSe/CdS core-shell quantum dots. Nanotechnology, 2006, 17(19):4966-4969.
    [161] Yang J. X., Hu D. D., Fang Y., Bai C. L., Wang H. Y. Novel method for preparation of structural microspheres poly(N-isopropylacrylamide-co-acrylic acid)/SiO_2. Chem Mater, 2006, 18(20): 4902-4907.
    [162] Maliakal A., Katz H., Cotts P. M., Subramoney S., Mirau P. Inorganic oxide core, polymer shell nanocomposite as a high K gate dielectric for flexible electronics applications. J Am Chem Soc, 2005, 127(42): 14655-14662.
    [163] Bae K. H., Choi S. H., Park S. Y., Lee Y., Park T. G. Thermosensitive pluronic miceiles stabilized by shell cross-linking with gold nanoparticles. Langmuir, 2006, 22(14):6380-6384.
    [164] Amalvy J. I., Percy M. J., Armes S. P., Leite C. A. P., Galembeck F. Characterization of the nano-morphology of polymer-silica colloidal nanocomposites using electron spectroscopy imaging. Langmuir, 2005, 21(4): 1175-1179.
    [165] Rusa M., Whitesell J.K., Fox M.A. Controlled fabrication of gold/polymer nanocomposites with a highly structured poly(N-acylethylenimine) shell. Macromolecules,2004,37(8):2766- 2774.
    [166] Kang Y.J., Taton T.A. Core/shell gold nanoparticles by self-assembly and crosslinking of micellar, block-copolymer shells. Angew Chem Int Ed,2005,44(3):409-412.
    [167] Kang Y., Taton, T.A. Controlling shell thickness in core-shell gold nanoparticles via surface- templated adsorption of block copolymer surfactants. Macromolecules, 2005,38(14): 6115-6121.
    [168] Kim B.S., Qiu J.M., Wapg J.P., Taton T.A. Magnetomicelles: Composite nanostructures from magnetic nanoparticles and cross-linked amphiphilic block copolymers. Nano Lett,2005,5(10): 1987-1991.
    [169] Zheng P.W., Jiang X.W., Zhang X., Zhang W.Q., Shi L.Q. Formation of gold@polymer core-shell particles and gold particle clusters on a template of thermoresponsive and pH-responsive coordination triblock copolymer. Langmuir,2006,22(22):9393-9396.
    [170] Wu X.Y., Liu H.J., Liu J.Q., Haley K.N., Treadway J.A., Larson J.P., Ge N.F., Peale F., Bruchez M.P. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nature Biotech,2003,21(l):41-46.
    [171] Dubertret B., Skourides P., Norris D.J., Noireaux V., Brivanlou A.H., Libchaber A. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science,2002,298:1759-1762.
    [172] Boulmedais F., Bauchat P., Brienne M.J., Arnal I., Artzner F., Gacoin T, Dahan M., Marchi-Artzner V. Water-soluble pegylated quantum dots: From a composite hexagonal phase to isolated micelles. Langmuir,2006,22(23):9797-9803.
    [1] Desbaumes L., Eisenberg A. Single-solvent preparation of crew-cut aggregates of various morphologies from an arnphiphilic diblock copolymer. Langmuir, 1999, 15 (1):36-38.
    [2] Stoykovich M. P., Muller M., Kim S. O., Solak H. H., Edwards E. W., de Pablo J. J., Nealey P. F. Directed assembly of block copolymer blends into nonregular device-oriented structures. Science, 2005, 308:1442-1446.
    [3] Zubarev E. R., Sone E. D., Stupp S. I. The molecular basis of self-assembly of dendron-rod-coils into one-dimensional nanostructures. Chem-Eur J, 2006, 12(28):7313-7327.
    [4] Stubenrauch K., Moitzi C., Fritz G., Glatter O., Trimmel G., Stelzer F. Precise tuning of micelle, core, and shell size by the composition of amphiphilic block copolymers derived from ROMP investigated by DLS and SAXS. Macromolecules, 2006, 39(17):5865-5874.
    [5] Zhang J. X., Qiu L. Y., Wu X. L., Jin Y. Temperature-triggered nanosphere formation through self-assembly of amphiphilic polyphosphazene. Macromol Chem Phys, 2006, 207(14):1289-1296.
    [6] An Z. H., Lu G., Mohwald H., Li J. B. Self-assembly of human serum albumin (HSA) and L-alpha-dimyristoylphosphatidic acid (DMPA) microcapsules for controlled drug release. Chem-Eur J, 2004, 10(22): 5848-5852.
    [7] Lin Y., Boker A., He J. B., Sill K., Xiang H. Q., Abetz C., Li X. F., Wang J., Emrick T., Long S., Wang Q., Balazs A., Russell T. P. Self-directed self-assembly of nanoparticle/copolymer mixtures. Nature, 2005, 434:55-59.
    [8] Corma A., Rey F., Rius J., Sabater M. J., Valencia S. Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites. Nature, 2004, 431:287-290.
    [9] Li G. Y., Shi L. Q., Ma R. J., An Y. L., Huang N. Formation of complex micelles with double-responsive channels from self-assembly of two diblock copolymers. Angew Chem Int Ed, 2006, 45(30):4959-4962.
    [10] Kros A., Jesse W., Metselaar G. A., Cornelissen J. J. L. M. Synthesis and self-assembly of rod-rod hybrid poly(gamma-benzyl L-glutamate)-block-polyisocyanide copolymers. Angew Chem Int Ed, 2005, 44(28):4349-4352.
    [11] Chitanu G. C., Rinaudo M., Desbrieres J., Milas M., Carpov A. Behavior of nonaltemating maleic acid copolymers in aqueous solution. Langmuir, 1999, 15(12):4150-4156.
    [12] Ladaviere C., Delair T., Domard A., Pichot C., Mandrand B. Covalent immobilization of bovine serum albumin onto (maleic anhydride-alt-methyl vinyl ether) copolymers. J Appl Polym Sci, 1999, 72(12): 1565-1572,
    [13] Mayadunne R. T. A., Rizzardo E., Chiefari J., Krstina J., Moad G., Postma A., Thang S. H. Living polymers by the use of trithiocarbonates as reversible addition-fragmentation chain transfer (RAFT) agents: ABA triblock copolymers by radical polymerization in two steps. Macromolecules, 2000, 33(2):243-245.
    [14] Leiva A., Gargallo L., Radic D. Maleic anhydride-co-stearyl methacrylate copolymers. Synthesis, characterization, and some aspects of the solution behavior. J Macromol Sci Phys, 1998, B37:45-57.
    [15] Chiefari J., Chong Y. K., Ercole F., Krstina J., Le T. P. T., Mayadunne R. T. A., Meijs G. F., Moad C. L., Moad G., Rizzardo E., Thang S. H. Living free-radical polymerization by reversible addition-fragmentation chain transfer: The RAFT process. Macromolecules, 1998, 31(16): 5559-5562.
    [16] Rzayev J., Penelle J. HP-RAFT: A free-radical polymerization technique for obtaining living polymers of ultrahigh molecular weights. Angew Chem Int Ed, 2004, 43(13):1691-1694.
    [17] Hong J., Wang Q., Fan Z. Q. Synthesis of multiblock polymer containing narrow polydispersity blocks. Macromol Rapid Commun, 2006, 27:57-62.
    [18] Qin S., Saget J., Pyun J., Jia S., Kowalewski T., Matyjaszewski K. Synthesis of block, statistical, and gradient copolymers from octadecyl (meth)acrylates using atom transfer radical polymerization. Macromolecules, 2003, 36:8969-8977.
    [19] Jackson R. A., Ingold K. U., Griller D., Nazran A. S. Anchimeric assistance in carbon-hydrogen bond homolysis. Reaction of tert-butoxyl radicals with tetraethyl Group Ⅳ compounds. J Am Chem Soc, 1985, 107(1):208-211.
    [20] 何卫东.高分子化学实验.合肥:中国科学技术大学出版社,2003.1.
    [21] Stewart Thomas L., Patricia M., A'mma E. L., Anton G. Leather treatment selected amphiphilic copolymers. U S Patent, 1994, 5316860.
    [22] El-Gamal I. M., Khidr T. T., Ghuiba F. M. Nitrogen-based copolymers as wax dispersants for paraffinic gas oils. Fuel, 1998, 77(5):375-385.
    [23] Moad G., Chiefari J., Chong J. K., Kristina J., Mayadunne R. T. A., Rizzardo E., Thang S. H. Living free radical polymerization with reversible addition-fragmentation chain transfer (the life of RAFT). Polym Int, 2000, 49:993-1001.
    [24] 朱明强,魏柳荷,周鹏,杜福胜,李子臣,李福绵.苯甲酸乙烯酯与受电子单体的可逆 加成—断链链转移共聚合.化学学报,2002,60(3):551-554.
    [25] Zhu M. Q., Wei L.H., Li M., Jiang L., Du F.S., Li Z.C., Li F.M. A unique synthesis of a well-defined block copolymer having alternating segments constituted by maleic anhydride and styrene and the self-assembly aggregating behavior thereof. Chem Comm, 2001, (4), 365-366.
    [26] 荣国斌,朱士正.波谱数据表—有机化合物的结构解析.上海:华东理工大学出版社,2002.
    [27] 潘祖仁.高分子化学(第三版).北京:化学工业出版社,2003.
    [28] 林尚安,陆耘,梁兆熙.高分子化学.北京:科学出版社,2000.
    [29] Zhang L., Mei M. Self-assembly of polyaniline - from nanotubes to hollow microspheres. Adv Funct Mater, 2003, 13(10): 815-820.
    [30] Moghimi S. M., Hunter A. C., Murray J.C., Szewczyk A., Savic R., Luo L., Eisenberg A., Maysinger D. Cellular distribution of nonionic micelles. Science, 2004, 303: 626-627.
    [31] Discher D. E., Eisenberg A. Polymer vesicles. Science,2002,297:967-973.
    [32] Discher B.M., Won Y.Y., Ege D.S., Lee J.M., Bates F.S., Discher D.E., Hammer D. A., Discher D.E., Hammer D.A. Polymersomes: Tough vesicles made from diblock copolymers. Science, 1999, 284: 1143-1146.
    [33] Zhang L., Eisenberg A. Formation of crew-cut aggregates of various morphologies from amphiphilic block copolymers in solution. Polym Adv Technol, 1998, 9: 677-699.
    [34] Terreau O., Luo L., Eisenberg A. Effect of poly(acrylic acid) block length distribution on polystyrene-b-poly(acrylic acid) aggregates in solution: 1. Vesicles. Langmuir, 2003, 19: 5601-5607.
    [35] Shen H.W., Eisenberg A. Block length dependence of morphological phase diagrams of the ternary system of PS-b-PAA/dioxane/H_2O. Macromolecules, 2000, 33(7): 2561-2572.
    [36] Shen H., Eisenberg A. Morphological phase diagram for a ternary system of block copolymer PS_(310)-b-PAA_(52)/dioxane/H_2O. J Phys Chem B, 1999,103:9473-9487.
    [37] Soo P.L., Eisenberg A. Preparation of block copolymer vesicles in solution. J Polym Sci Part B: Polym Phys, 2004,42:923-938.
    [38] Yan D., Zhou Y., Hou J. Supramolecular self-assembly of macroscopic tubes. Science,2004, 303:65-67.
    [39] Zhou Y., Yan D. Supramolecular self-assembly of giant polymer resides with controlled sizes. Angew Chem Int Ed, 2004,43: 4896-4899.
    [40] Mai Y.Y., Zhou Y.E, Yan D.Y. Synthesis and size-controllable self-assembly of a novel amphiphilic hyperbranched multiarm copolyether. Macromolecules,2005,38(21):8679-8686.
    [41] Song Y., Ren T., Fu X., Xu X. Study on the relationship between the structure and activities of alkyl methacrylate-maleic anhydride polymers as cold flow improvers in diesel fuels. Fuel Process Technol, 2005, 86: 641-650.
    [42] Hall H.K., Padias A.B. "Charge transfer" polymerization-and the absence thereof!. J Polym Sci Part A: Polym Chem, 2001, 39: 2069-2077.
    [43] Neugebauer D., Zhang Y., Pakula T., Sheiko S.S., Matyjaszewski K. Densely-grafted and double-grafted PEO brushes via ATRP. A route to soft elastomers. Macromolecules, 2003, 36(18): 6746-6755.
    [44] 董宇平,封麟先,杨士林,沈家骢.苯乙烯—马来酸酐自由基共聚反应(Ⅰ)苯乙烯—马来酸酐电荷转移络合反应.高分子通报,1998,6:46-50.
    [45] Zhang L., Shen H., Eisenberg A. Phase separation behavior and crew-cut micelle formation of polystyrene-b-poly(acrylic acid) copolymers in solutions. Macromolecules, 1997, 30(4): 1001-1011.
    [1] Weng W.G., Beck J.B., Jamieson A.M., Rowan S.J. Understanding the mechanism of gelation and stimuli-responsive nature of a class of metallo-supramolecular gels. J Am Chem Soc,2006,128: 11663-11672.
    [2] Dong L., Agarwal A.K., Beebe D.J., Jiang H.R. Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature,2006,442:551-554.
    [3] Lecommandoux S., Sandre O., Checot F., Perzynski R. Smart hybrid magnetic selfassembled micelles and hollow capsules. Prog Solid State Ch,2006,34 (2-4):171-179.
    [4] 辛晓晶.智能高分子材料的应用现状及研究进展.甘肃石油与化工,2006,2:6-9.
    [5] Dincer S., Tuncel A., Piskin E. A potential gene delivery vector: N-isopropylacryl amideethyleneimine block copolymers. Macromol Chem Phys, 2002, 203: 1460-1465.
    [6] Wu C., Wang X. Globule-to-coil transition of a single homopolymer chain in solution. Phys Rev Lett, 1998, 80: 4092-4094.
    [7] Maeda T., Takenouchi M., Yamamoto K., Aoyagi T. Analysis of the formation mechanism for thermoresponsive-type coacervate with functional copolymers consisting of N-isopropylacrylamide and 2-hydroxyisopropylacrylamide. Biomacromolecules,2006,7 (7):2230-2236.
    [8] Kwon I.K., Matsuda T. Photo-iniferter-based thermoresponsive block copolymers composed of poly(ethylene glycol) and poly(N-isopropylacrylamide) and chondrocyte immobilization. Biomaterials, 2006, 27(7): 986-995.
    [9] Qin J., Jo Y.S., Ihm J. E., Kim D. K., Muhammed M. Thermosensitive nanospheres with a gold layer revealed as low-cytotoxic drug vehicles. Langmuir, 2005, 21 (20): 9346-9351.
    [10] Li Y.Y., Zhang X.Z., Kim G.C., Cheng H., Cheng S.X., Zhuo R.X. Thermosensitive Y-shaped micelles of poly(oleic acid-Y-N-isopropylacrylamide) for drug delivery. Small, 2(7): 917-923.
    [11] Kulkarni S., Schilli C., Grin B., Muller A.H.E., Hoffman A.S., Stayton P.S. Controlling the aggregation of conjugates of streptavidin with smart block copolymers prepared via the RAFT copolymerization technique. Biomacromolecules,2006,7(10):2736-2741.
    [12] Li Y.Y., Zhang X.Z., Cheng H., Kim G.C., Cheng S.X., Zhuo R.X. Novel stimuli-responsive micelle self-assembled from Y-shaped P(UA-Y-NIPAAm) copolymer for drug delivery. Biomacromolecules,2006, 7(11): 2956-2960.
    [13] Kim Y.S., Gil E.S., Lowe T.L. Synthesis and characterization of thermoresponsive-co-biode gradable linear-dendritic copolymers. Macromolecules, 2006, 39(23):7805-7811.
    [14] Ebara M., Hoffman J. M., Hoffman A.S., Stayton P.S. Switchable surface traps for injectable bead-based chromatography in PDMS microfluidic channels. Lab on A Chip, 2006,6(7): 843-848.
    [15] Chen X.R., Ding X.B., Zheng Z.H., Peng Y.X.Thermosensitive cross-linked polymer vesicles for controlled release system. New J Chem, 2006, 30(4): 577-582.
    [16] 袁金芳,张锡兰,刘瑞雪,高青雨.两亲性聚异丙基丙烯酰胺的合成及其温敏性研究.胶体与聚合物,2004,22(3):18-21.
    [17] Yang L.P., Pan C.Y. One-pot synthetic strategy to core cross-linked micelles with pH-sensitive cross-linked cores and temperature-sensitive shells through RAFT polymerization. Aust J Chem, 2006, 59(10): 733-736.
    [18] Zhang J.X., Qiu L.Y., Zhu K.J. Solvent controlled multi-morphological self-assembly of amphiphilic graft copolymers. Macromol Rapid Comm, 2005, 26(21): 1716-1723.
    [19] Zhang J.X., Qiu L.Y., Wu X.L., Jin Y., Zu K.J. Temperature-triggered nanosphere formation through self-assembly of amphiphilic polyphosphazene. Macromol Chem Phys,2006,207(14): 1289-1296.
    [20] Schilli C.M., Zhang M.E, Rizzardo E., Thang S.H., Chong Y.K., Edwards K., Karlsson G., Muller A.H.E. A new double-responsive block copolymer synthesized via RAFT poly merization: Poly(N-isopropylacrylamide)-block-poly(acrylic acid). Macromolecules,2004, 37(21):7861-7866.
    [21] Zhang W.Q., Jiang x.w., He Z.P., Xiong D., Zheng P.W., An Y.L., Shi L.Q. Thermoresponsive core-shell-corona micelles of poly(ethyleneglycol)-b-poly(N-isopropylacrylamide)-b-polystyrene. Polymer,2006,47(24):8203-8209.
    [22] Yu H.Q., Feng Z.G., Zhang A.Y., Hou D.D., Sun L.G. Novel triblock copolymers synthesized via radical telomerization of N-isopropylacrylamide in the presence of polypseudorotaxanes made from thiolated PEG and alpha-CDs. Polymer,2006,47(17):6066-6071.
    [23] Wei H., Zhang X.Z., Zhou Y., Cheng S.X., Zhuo R.X. Self-assembled thermoresponsive micelles of poly(N-isopropylacrylamide-b-methyl methacrylate). Biomaterials,2006,27(9): 2028-2034.
    [24] Couet J., Biesalski M. Surface-initiated ATRP of N-isopropylacrylamide from initiator- modified self-assembled peptide nanotubes. Macromolecules, 2006, 39(21): 7258-7268.
    [25] Moad G., Chiefari J., Chong J.K., Kristina J., Mayadunne R.T.A., Rizzardo E., Thang S.H. Living free radical polymerization with reversible addition-fragmentation chain transfer (the life of RAFT). Polym Int, 2000, 49: 993-1001.
    [26] 朱明强,魏柳荷,周鹏,杜福胜,李子臣,李福绵.苯甲酸乙烯酯与受电子单体的可逆加成—断链链转移共聚合.化学学报,2002,60(3):551-554.
    [27] Lai J.T., Fiila D., Shea R. Functional polymers from novel carboxyl-terminated trithiocarbonates as highly efficient RAFT agents. Maeromolecules, 2002, 35(18): 6754-6756.
    [28] 荣国斌,朱士正.波谱数据表—有机化合物的结构解析.上海:华东理工大学出版社,2002。
    [29] 洪健.制备多嵌段聚合物的新方法—环状三硫代碳酸酯开环及RAFT聚合的研究.浙江大学博士论文,2006.1.
    [30] Shen H.W., Eisenberg A. Block length dependence of morphological phase diagrams of the ternary system of PS-b-PAA/dioxane/H_2O. Macromolecules, 2000, 33 (7):2561-2572.
    [31] Yu K., Eisenberg A. Bilayer morphologies of self-assembled crew-cut aggregates of amphiphilic PS-b-PEO diblock copolymers in solution. Macromolecules, 1998, 31(11):3509-3518.
    [32] Menger F.M., Keiper J.S. Giant vesicles: Micromanipulation of membrane bilayers. Adv Mater, 1998,10:888-890.
    [33] Kim Y.H., Rahman M.M., Zhang Z.L., Misawa N., Tero R., Urisu T. Supported lipid bilayer formation by the giant vesicle fusion induced by vesicle-surface electrostatic attractive interaction. Chem Phys Lett, 2006, 420(4-6):569-573.
    [34] Morigaki K., Walde P. Giant vesicle formation from oleic acid/sodium oleate on glass surfaces induced by adsorbed hydrocarbon molecules. Langmuir,2002,18(26): 10509-10511.
    [35] Menger F.M., Keiper J.S., Caran K.L. Depth-profiling with giant vesicle membranes. J Am Chem Soc,2002,124(40): 11842-11843.
    [36] Zhou Y.F., Yan D.Y. Supramolecular self-assembly of giant polymer vesicles with controlled sizes. Angew Chem Int Ed,2004,43:4896-4899.
    [37] Discher B.M., Won Y.Y., Ege D.S., Lee J.C.M., Bates F.S., Discher D.E., Hammer D.A. Polymersomes: Tough vesicles made from diblock copolymers. Science, 1999,284:1143-1146.
    [38] Zhang L. F., Eisenberg A. A morphogenic effect of added ions on crew-cut aggregates of polystyrene-b-poly(acrylic acid) block copolymers in solutions. Macromolecules,1996,29: 8805-8815.
    [39] Du J. Z., Chen Y.M. Organic-inorganic hybrid nanoparticles with a complex hollow structure. Angew Chem Int Ed,2004,43:5084-5087.
    [40] Menger F.M., Balachander N. Chemically-induced aggregation, budding, and fusion in giant vesicles: Direct observation by light microscopy. J Am Chem Soc,1992,114(14):5862-5863.
    [41] Liang Y.Z., Li Z.C., Li F.M. Multiple morphologies of molecular assemblies formed by polystyrene-block-poly[2-(P-D-glucopyranosyloxy)ethyl acrylate] in water. New J Chem, 2000,24:323-328.
    [42] Zhang W.Q., Shi L.Q., Wu K., An Y.G. Thermoresponsive micellization of poly(ethylene glycol)-b-poly(N-isopropylacrylamide) in water. Macromolecules,2005,38(13):5743-5747.
    [43] Motokawa R., Morishita K., Koizumi S., Nakahira T., Annaka M. Thermosensitive diblock copolymer of poly(N-isopropylacrylamide) and poly(ethylene glycol) in water: Polymer preparation and solution behavior. Macromolecules,2005,38(13):5748-5760.
    [44] Li G.Y., Shi L.Q., An Y.L., Zhang W.Q., Ma R.J. Double-responsive core-shell-corona micelles from self-assembly of diblock copolymer of poly(t-butyl acrylate-co-acrylic acid)-b-poly (N-isopropylacrylamide). Polymer,2006,47(13):4581-4587.
    [45] Zhu J.T., Jiang Y., Liang H.J., Jiang W. Self-assembly of ABA amphiphilic triblock copolymers into vesicles in dilute solution. J Phys Chem B,2005,109:8619-8625.
    [46] Mai Y.Y., Zhou Y.F., Yan D.Y. Synthesis and size-controllable self-assembly of a novel amphiphilic hyperbranched multiarm copolyether. Macromolecules,2005,38:8679-8686.
    [47] Zhang L., Esenberg A. Multiple morphologies of "crew-cut" aggregates of polystyrene-b- poly(acrylic acid) block copolymers. Science,1995,268:1728-1731.
    [48] Riegel I.C., Samios D., Petzhold C.L., Eisenberg A. Self-assembly of amphiphilic di and triblock copolymers of styrene and quaternized 5-(N,N-diethylamino) isoprene in selective solvents. Polymer,2003,44:2117-2128.
    [49] Yu K., Bartels C., Eisenberg A. Vesicles with hollow rods in the walls: A trapped Intermediate morphology in the transition of vesicles to inverted hexagonally packed rods in dilute solutions of PS-b-PEO. Macromolecules,1998,31(26):9399-9402.
    [50] Zhang L.F., Eisenberg A. Formation of crew-cut aggregates of various morphologies from amphiphilic block copolymers in solution. Polym Adv Technol, 1998,9:677-699.
    [51] Yu Y.S., Eisenberg A. Control of morphology through polymer-solvent interactions in crew-cut aggregates of amphiphilic block copolymers. J Am Chem Soc,1997,119:8383- 8384.
    [52] Adams D.J., Butler M.F., Weaver A.C. Effect of block length, polydispersity, and salt concentration on PEO-PDEAMA block copolymer structures in dilute solution. Langmuir 2006,22:4534-4540.
    [53] Liu X.Y., Wu J., Kim J.S., Eisenberg A. Self-assembly of mixtures of block copoiymers of poly(styrene-b-acrylic acid) with random copoiymers of poly(styrene-co-methacrylic acid). Langmuir,2006,22( 1) :419-424.
    
    [54] Zhang L.F., Eisenberg A. Multiple morphologies and characteristics of "crew-cut" micelle- like aggregates of polystyrene-b-poly(acrylic acid) diblock copoiymers in aqueous solutions. J Am Chem Soc, 1996,118:3168-3181.
    
    [55] You Y.Z., Hong C.Y., Pan C.Y., Wang P.H. Synthesis of a dendritic core-shell nanostructure with a temperature-sensitive shell. Adv Mater,2004,16:1953-1957.
    
    [56] Ravi P., Dai S., Tan C.H., Tam K.C. Self-assembly of alkali-soluble [60]fullerene containing poly(methacrylic acid) in aqueous solution. Macromolecules,2005,38(3):933-939.
    [1] 许鑫华,傅英松,陈强,姚康德.聚合物荧光型纳米微粒传感器的研究进展.化学通报,2003.12:815-820.
    [2] 于淼,邹明强,何昭阳.高分子荧光微球在生物医学领域中的某些应用.分析测试学报,2006,25:115-119.
    [3] Rounds R.M., Ibey B.L., Beier H.T., Pishko M.V., Cote G.L. Microporated PEG spheres for fluorescent analyte detection. J Fluoresc, 2007, 17(1): 57-63.
    [4] 汪地强,刘白玲,胡杰,林晓琴,张敏.荧光微球的制备及应用.高分子材料科学与工程,2004,4:42-45.
    [5] Chu M.Q., Sun Y., Liu G.J. Preparation and characterization of fluorescent polystyrene spheres coated with different sized quantum dots. Mater Sci Tech-lond, 2006,22(10): 1240-1244.
    [6] Savic R., Luo L., Eisenberg A., Maysinger D. Micellar nanocontainers distribute to defined cytoplasmic organelles. Science, 2003, 300, 615-618.
    [7] Tsimelzon A., Deamer D., Braslau R. Synthesis and self-assembly of amphiphilic diblock copolymers using a fluorescently labeled N-alkoxyamine initiator. Macromol Rapid Commun, 2005, 26: 1872-1877.
    [8] Moad G., Chiefari J., Chong J.K., Kristina J., Mayadunne R.T.A., Rizzardo E., Thang S. H. Living free radical polymerization with reversible addition-fragmentation chain transfer (the life of RAFT). Polym Int, 2000, 49: 993-1001.
    [9] 朱明强,魏柳荷,周鹏,杜福胜,李子臣,李福绵.苯甲酸乙烯酯与受电子单体的可逆加成—断链链转移共聚合.化学学报,2002,60(3):551-554.
    [10] You Y.Z., Hong C.Y., Wang W.P., Lu W.Q., Pan C.Y. Preparation and characterization of thermally responsive and biodegradable block copolymer comprised of PNIPAAM and PLA by combination of ROP and RAFT methods. Macromolecules, 2004, 37(26): 9761-9767.
    [11] Ma Q., WooleyK.L. The preparation of t-butyl acrylate, methyl acrylate, and styrene block copolymers by atom transfer radical polymerization: Precursors to amphiphilic and hydrophilic block copolymers and conversion to complex nanostructured materials. J Polym Sci Part A: Polym Chem, 2000, 38: 4805-4820.
    [12] Hong C.Y., Pan C.Y. Direct Synthesis of biotinylated stimuli-responsive polymer and diblock copolymer by RAFT polymerization using biotinylated trithiocarbonate as RAFT agent. Macromolecules, 2006, 39(10): 3517-3524.
    [13] Yan F., Chen L., Tang Q., Wang R. Synthesis and characterization of a photocleavable cross-linker and its application on tunable surface modification and protein photodelivery. Bioconjugate Chem, 2004, 15(5): 1030-1036.
    [14] Krishnan R., Srinivasan K.S.V. Homo and block copolymers of tert-butyl methacrylate by atom transfer radical polymerization. Eur Polym J, 2004, 10: 2269-2276.
    [15] Yu H.Q., Feng Z.G., Zhang A.Y., Dandan Hou D.D., Sun L.G. Novel triblock copolymers synthesized via radical telomerization of N-isopropylacrylamide in the presence of poly pseudorotaxanes made from thiolated PEG and α-CDs. Polymer, 2006, 47: 6066-6071.
    [16] 荣国斌,朱士正.波谱数据表—有机化合物的结构解析.上海:华东理工大学出版社,2002.
    [17] 黄量,于德泉.紫外光谱在有机化学中的应用.北京:科学出版社,1988.10.
    [18] Sumeet J., Frank S.B. On the origins of morphological complexity in block copolymer surfactants. Science, 2003, 300: 460-464.
    [19] 江明,A.艾森伯格,刘国军,张希.大分子自组装.北京:科学出版社,2006.9.
    [20] Wu C., Wang X. Globule-to-coil transition of a single homopolymer chain in solution. Phys Rev Lett, 1998, 80: 4092-4094.
    [21] 耿同谋,吴文辉.荧光探针研究P(AM/NaAA/DiC6AM)在水溶液中的缔合行为.华东理工大学学报:自然科学版,2006,32(2):150-154.
    [1] Sun D., Zhang R., Liu Z., Huang Y., Wang Y., He J., Han B., Yang G. Polypropylene/silica nanocomposites prepared by in-situ sol-gel reaction with the aid of CO_2. Macromolecules, 2005, 38(13): 5617-5624.
    [2] 柯昌美,汪厚植,赵惠忠,强敏,刘兴重,李轩科.聚合物基有机—无机杂化材料的制备研究.武汉科技大学学报:自然科学版,2005,28:231-234.
    [3] Cheetham A.K., Rao C.N.R., Feller R.K. Structural diversity and chemical trends in hybrid inorganic-organic framework materials. Chem Comm, 2006, (46): 4780-4795.
    [4] Wang L., Yoon M.H., Lu G., Yang Y., Facchetti A., Marks T.J. High-performance transparent inorganic-organic hybrid thin-film n-type transistors. Nat Mater, 2006, 5(11): 893-900.
    [5] Olguin J., Gomez-Vidal V., Munoz E., Toscano R.A., Castillo I. Self-assembly of a hybrid organic-inorganic dicopper(Ⅱ) coordination polymer with a calix[4]arene-derived nitrogenous ligand. Inorg Chem Commun, 2006, 9(11): 1096-1098.
    [6] El-Gamel N. E. A., Schwarz M., Brendler E., Kroke E. s-Triazine and tri-s-triazine based organic-inorganic hybrid gels prepared from chlorosilanes by exchange reactions. Chem Comm, 2006, (45): 4741-4743.
    [7] 刘传绍,张冬梅,赵波,焦锋,高国富。纳米材料的制备与加工技术进展.新技术新工艺,2006.4:119-123.
    [8] 唐辉,李玲玲.纳米材料的制备方法研究进展.科技资讯,2006,22:6-7.
    [9] Lee S.J., Lee S.S., Lah M.S., Hong J.M., Jung J.H. Organic-inorganic hybrid nanomaterial as a new fluorescent chemosensor and adsorbent for copper ion. Chem Comm, 2006,(43): 4539-4541.
    [10] Aparicio M., Mosa J., Duran A. Hybrid organic-inorganic nanostructured membranes for high temperature proton exchange membranes fuel cells (PEMFC). J Sol-Gel Sci Techn, 2006, 40(2-3):309-315.
    [11] Yilmaz O.F., Chaudhary S., Ozkan M. A hybrid organic-inorganic electrode for enhanced charge injection or collection in organic optoelectronic devices. Nanotechnology, 2006,17 (15):3662-3667.
    [12] 张志强,马琦,张宝柱,张智敏.有机—无机杂化材料的制备技术和应用前景.应用化 工,2005,34:389-393.
    [13] 易昌凤,朱严瑾,徐祖顺.有机—无机杂化材料的制备方法.材料导报,2004,18:2-5.
    [14] Armelao L., Barreca D., Bottaro G., Gasparotto A., Leonarduzzi D., Maragno C., Tondello E., Sada C. Tailored synthesis of ZnO: Er(Ⅲ) nanosystems by a hybrid rf-sputtering/sol-gel route. J Vac Sci Technol A, 2006, 24(5): 1941-1947.
    [15] 刘冰,强亮生.溶胶—凝胶法制备光学杂化功能材料.化学进展,2005,17:85-90.
    [16] 刘晓蕾,刘孝波.溶胶—凝胶法制备有机/无机杂化材料研究进展.高分子材料科学与工程,2004,20:28-31.
    [17] 江明,A.艾森伯格,刘国军,张希等.大分子自组装.北京:科学出版社,2006.9.
    [18] Du J.Z., Chen Y.M., Zhang Y.H., Han C.C., Fischer K., Schmidt M. Organic/inorganic hybrid vesicles based on a reactive block copolymer. J Am Chem Soc, 2003,125(48): 14710-14711.
    [19] Xue L., Agarwal U.S., Lemstra P. J. High molecular weight PMMA by ATRP. Macromolecules,2002,35(22):8650-8652.
    [20] Fang J., Jin Z., Liu W. Preparation, characterization and biological activities of novel ferrocenyl-substituted azaheterocycles compounds. Appl Organomet Chem, 2003, 17: 145-153.
    [21] Shipp D.A., Wang J.L., Matyjaszewski K. Synthesis of acrylate and methacrylate block copolymers using atom transfer radical polymerization. Macromolecules,1998,31:8005-8008.
    [22] Muhlebach A., Gaynor S.G., Matyjaszewski K. Synthesis of amphiphilic block copolymers by atom transfer radical polymerization (ATRP). Macromolecules, 1998, 31 (18): 6046-6052.
    [23] Matyjaszewski K., Miller P.J., Pyun J., Kickelbick G., Diamanti S. Synthesis and characteriza tion of star polymers with varying arm number, length, and composition from organic and hybrid inorganic/organic multifunctional initiators. Macromolecules, 1999,32(20): 6526-6535.
    [24] 陈涛.线型及支化二茂铁基聚合物的合成、自组装及性能研究.浙江大学博士学位论文,2006.
    [25] Chen T., Wang L., Jiang G.H., Wang J.J., Wang X.J., Zhou J.F., Wang W. Self-assembly of poly(ferrocenyldimethylsilane)-poly(benzyl ether) linear-dendritic organometallic polymer. Eur Polym J, 2006,42(3): 687-693.
    [26] Chen T., Wang L., Jiang G.H., Wang J.J., Wang X.J., Zhou J.F., Wang W., Gao H.Q. Large-size bamboo-shape nanotube from self-assembly of poly (ferrocenyldimethyl silane-b-dimethyl siloxane) block copolymer. Polymer,2005,46(18):7585-7589.
    [27] Cameron N.S., Eisenberg A., Brown G.R. Amphiphilic block copolymers as bile acid sorbents: 2. Polystyrene-b-poly(N,N,N-trimethylammoniumethylene acrylamide chloride): Self-assembly and application to serum cholesterol reduction. Biomacromolecules, 2002, 3:124-132.
    [28] Zhang L., Eisenberg A. Multiple morphologies and characteristics of "crew-cut" micelle-like aggregates of polystyrene-b-poly(acrylic acid) diblock copolymers in aqueous solutions. J Am Chem Soc,1996,118(13):3168-3181.
    [29] Ravi P., Dai S., Tan C.H., Tarn K.C. Self-assembly of akali-soluble [60]fullerene containing poly(methacrylic acid) in aqueous solution. Macromolecules,2005,38(3):933-939.
    [30] Discher D.E., Eisenberg A. Polymer Vesicles. Science,2002,297:967-973.
    [31] Soo P.L., Eisenberg A. Preparation of block copolymer vesicles in solution. J Polym Sci Part B: Polym Phys,2004, 42:923-938.
    [32] Du J.Z., Chen Y.M. Organic/inorganic hybrid nano-particles with complex hollow structure. Angew Chem Int Ed,2004, 43:5084-5087.
    [33] Harris J.K., Rose G.D., Bruening M.L. Spontaneous generation of multilamellar vesicles from ethylene oxide/butylene oxide diblock copolymers. Langmuir,2002,18(14):5337-5342.
    [34] Choucair A., Lavigueur C., Eisenberg A. Polystyrene-b-poly(acrylic acid) vesicle size control using solution properties and hydrophilic block length. Langmuir,2004,20(10):3894-3900.
    [35] Won Y.Y., Brannan A.K., Davis H.T., Bates F.S. Cryogenic transmission electron microscopy (Cryo-TEM) of micelles and vesicles formed in water by poly(ethylene oxide)-based block copolymers. J Phys Chem B,2002,106(13):3354-3364.
    [36] Mai Y., Zhou Y., Yan D. Synthesis and size-controllable self-assembly of a novel amphiphilic hyperbranched multiarm copolyether. Macromolecules,2005,38(21):8679-8686.
    [37] Xuan Y, Pan D.C., Zhao N., Ji X.L., Ma D.G White electroluminescence from a poly(N- vinylcarbazole) layer doped with CdSe/CdS core-shell quantum dots. Nanotechno logy,2006,17( 19):4966-4969.
    [38] Yang J.X., Hu D.D., Fang Y, Bai C.L., Wang H.Y. Novel method for preparation of structural microspheres poly(N-isopropylacrylamide-co-acrylic acid)/SiO_2. Chem Mater,2006,18(20): 4902-4907.
    [39] Maliakal A., Katz H., Cotts P.M., Subramoney S., Mirau P. Inorganic oxide core, polymer shell nanocomposite as a high K gate dielectric for flexible electronics applications. J Am Chem Soc,2005,127(42):14655-14662.
    [40] Bae K.H., Choi S.H., Park S.Y., Lee Y., Park T.G. Thermosensitive pluronic micelles stabilized by shell cross-linking with gold nanoparticles. Langmuir,2006,22(14):6380-6384.
    [41] Amalvy J.I., Percy M.J., Armes S.P., Leite C.A.P., Galembeck F. Characterization of the nanomorphology of polymer-silica colloidal nanocomposites using electron spectroscopy imaging. Langmuir,2005,21 (4): 1175-1179.
    [42] Rusa M., Whitesell J.K., Fox M.A. Controlled fabrication of gold/polymer nanocomposites with a highly structured poly(N-acylethylenimine) shell. Macromolecules,2004,37(8):2766- 2774.
    [1] Bohannon J. 'Smart coatings' research shows the virtues of superficiality. Science, 2005, 309: 376-377.
    [2] Richard C., Balavoine F., Schultz P., Ebbesen T.W., Mioskowski C. Supramolecular selfassembly of lipid derivatives on carbon nanotubes. Science,2003,300:775-778.
    [3] Helveg S., Lopez-Cartes C., Sehested J., Hansen P. L., Clausen B.S., Rostrup-Nielsen J.R., Abild-Pedersen F., Norskov J.K. Atomic-scale imaging of carbon nanofibre growth. Nature, 2004,427:426-429.
    [4] Kumar N., Hahm J.I. Nanoscale protein patterning using self-assembled diblock copolymers. Langmuir,2005, 21(15): 6652-6655.
    [5] Chart V.Z.H., Hoffman J., Lee V.Y., Iatrou H., Avgeropoulos A., Hadjichristidis N., Miller R.D., Thomas E.L. Ordered bicontinuous nanoporous and nanorelief ceramic films from self assembling polymer precursors. Science, 1999, 286: 1716-1719.
    [6] Ham ley I.W. Nanotechnology with soft materials. Angew Chem Int Ed,2003,42:1692-1712.
    [7] Lopes W.A., Jaeger H.M. Hierarchical self-assembly of metal nanostructures on diblock copolymer scaffolds. Nature, 2001, 414: 735-738.
    [8] Thurn-Albrecht T., Schotter J., Kastle C.A., Emley N., Shibauchi T., Krusin-Elbaum L., Guarini K., Black C.T., Tuominen M.T., Russell T.P. Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates. Science,2000,290:2126-2129.
    [9] Cheng J.Y., Ross C.A., Chan V.Z.H., Thomas E.L., Lammertink R.G.H., Vancso G.J. Formation of a cobalt magnetic dot array via block copolymer lithography. Adv Mater, 2001,13(15): 1174-1178.
    [10] Zehner R.W., Sita L.R. Electroless deposition of nanoscale copper patterns via microphaseseparated diblock copolymer templated self-assembly. Langmuir, 1999, 15(19): 6139-6141.
    [11] Shin K., Leach K.A., Goldbach J.T., Kim D.H., Jho J.Y., Tuominen M., Hawker C.J., Russell T.P. A simple route to metal nanodots and nanoporous metal films. Nano lett,2002,2(9):933-936.
    [12] Shi Z.T., Han M., Zhao S.E, Zhang L., Li X.F., Wan H. G., Wang G.H. Self-assembly of silver nanoclusters on triblock copolymer templates. Int J Mod Phys B, 2005,19(15-17):2792-2797.
    [13] Aizawa M., Buriak J.M. Block copolymer-templated chemistry on Si, Ge, InP, and GaAs surfaces. J Am Chem Soc, 2005, 127(25): 8932-8933.
    [14] Feng X.S., Yan L.F., Wen J., Pan C.Y, Synthesis and self-assembly study of two-armed polymers containing crown ether core. Polymer,2002,43(10):3131-3137.
    [15] 荣国斌,朱士正.波谱数据表—有机化合物的结构解析.上海:华东理工大学出版社,2002.
    [16] 徐寿昌.有机化学(第二版).北京:高等教育出版社,1993.4.
    [17] 唐新德,范星河,陈小芳,周其凤.基于ATRP技术的多嵌段共聚物研究进展.高分子通报,2006,6:36-43.
    [18] Li G.Y., Shi L.Q., Ma R.J., An Y.L., Huang N. Formation of complex micelles with doubleresponsive channels from self-assembly of two diblock copolymers. Angew Chem Int Ed, 2006, 45(30): 4959-4962.
    [19] Kros A., Jesse W., Metselaar G.A., Cornelissen J.J.L.M. Synthesis and self-assembly of rod-rod hybrid poly(gamma-benzyl L-glutamate)-block-polyisocyanide copolymers. Angew Chem Int Ed, 2005, 44(28): 4349-4352.
    [20] Stoykovich M. P., Muller M., Kim S.O., Solak H. H., Edwards E.W., de Pablo J.J., Nealey P. F. Directed assembly of block copolymer blends into nonregular device-oriented structures. Science, 2005, 308: 1442-1446.
    [21] Stubenrauch K., Moitzi C., Fritz G., Glatter O., Trimmel G., Stelzer F. Precise tuning of micelle, core, and shell size by the composition of amphiphilic block copolymers derived from ROMP investigated by DLS and SAXS. Macromolecules, 2006, 39(17): 5865-5874.
    [22] Zhang X.j., Qiu L.Y., Zhu K.J. Solvent controlled multi-morphological self-assembly of amphiphilic graft copolymers. Macromol Rapid Comm, 2005,26:1716-1723.
    [23] Du J.Z., Chen Y.M., Zhang Y.H., Han C.C., Fischer K., Schmidt M. Organic/inorganic hybrid vesicles based on a reactive block copolymer. J Am Chem Soc, 2003, 125(48): 14710-14711.
    [24] Lin Y., Boker A., He J.B., Sill K., Xiang H.Q., Abetz C., Li X.F., Wang J., Emrick T., Long S., Wang Q., Balazs A., Russell T.P. Self-directed self-assembly of nanoparticle/copolymer mixtures. Nature,2005,434(7029):55-59.
    [25] Fu J., Cong Y., Yu X., Pan C.Y., Yang Y.M., Li B.Y., Han Y.C. Ordered macroporous films from self-assembly of two-armed polymer with a crown ether core. Polymer,2004,45(22): 7389-7394.
    [26] Fu J., Fen X.S., Han Y.C., Pan C.Y., Yan Y.M., Li B.Y. Fabrication of a metal particle array based on a self-assembled template from a two-armed polymer. Macromol Rapid Comm, 2003, 24(8): 487-491.
    [27] Massey J. A., Temple K., Cao L., Rharbi Y., Raez J., Winnik M. A., Manners I. Self-assembly of organometallic block copolymers: The role of crystallinity of the core-forming polyferrocene block in the micellar morphologies formed by poly(ferrocenylsilane-b-dimethylsiloxane) in n-alkane solvents. J Am Chem Soc, 2000, 122(47): 11577-11584.
    [28] Zhou Y. F., Yan D.Y. Supramolecular self-assembly of giant polymer vesicles with controlled sizes. Angew Chem Int Ed, 2004, 43: 4896-4899.
    [29] Minelli C., Geissbuehler I., Hinderling C., Heinzelmann H., Vogel H., Pugin R., Liley M. Organization of nanoparticles on hard substrates using block copolymer films as templates. J Nanosci Nanotechno, 2006, 6(6): 1611-1619.
    [30] Arumugam P., Shinozaki S.S., Wang R.M., Mao G.Z., Brock S.L. From ribbons to nanodot arrays: Nanopattern design through reductive annealing. Chem Comm, 2006,(10): 1121-1123.
    [31] 刘传绍,张冬梅,赵波,焦锋,高国富.纳米材料的制备与加工技术进展.新技术新工艺,2006.4:119-123.
    [32] 唐辉,李玲玲.纳米材料的制备方法研究进展.科技资讯,2006,22:6-7.
    [33] Komori F., Ohno S., Nakatsuji K. Arrays of magnetic nanodots on nitrogen-modified Cu(001) surfaces. J Phys-condens mat, 2002, 14(35): 8177-8197.
    [34] Hu X.Y., Cahill D.G., Averback R.S. Dewetting and nanopattern formation of thin Pt films on SiO_2 induced by ion beam irradiation. J Appl Phys, 2001, 89(12): 7777-7783.
    [35] 曹渊,陶长元,杜军,张丙怀.模板法组装纳米有序阵列的研究进展.化学研究与应用,2006,18(1):1-4.
    [36] Azzaroni O., Fonticelli M., Schilardi P.L., Benitez G., Caretti I., Albella J.M., Gago R., Vazquez L., Salvarezza R.C. Surface nanopatterning of metal thin films by physical vapour deposition onto surface-modified silicon nanodots. Nanotechnology,2004,15(4):S197-S200.
    [37] Nezhad M.R.H., Aizawa M., Porter L.A., Ribbe A.E., Buriak J.M. Synthesis and patterning of gold nanostructures on InP and GaAs via galvanic displacement. Small,2005,1(11):1076-1081.
    [38] Aizawa M., Buriak J.M. Nanoscale patterning of two metals on silicon surfaces using an ABC triblock copolymer template. J Am Chem Soc, 2006, 128(17): 5877-5886.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700