聚丙烯酸型两亲接枝共聚物的合成、表征及其水溶液中自组装行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
两亲性共聚物能在水溶液中自组装形成以亲水链段为壳,疏水链段为核的胶束结构。这些特性和功能使得两亲性共聚物在纳米材料、高分子表面活性剂、生物医药材料、石油化工等领域都受到了日益广泛的关注,其基础研究和实际应用得到了不断的发展。为了研究分子结构对自组装行为的影响,从而实现对胶束形态和大小的控制,人们希望制备得到结构规整可控的聚合物,这也是现代高分子合成化学的主要发展方向。
     到目前为止,对两亲性共聚物胶束行为的研究大多集中在两亲嵌段共聚物,并且几乎都是在非极性溶剂中,而对结构规整可控的两亲性接枝共聚物虽然有关合成的报道较多,但对其在水溶液中的自组装行为和表面性质的研究报道很少,水溶液中两亲接枝共聚物形态仍然是聚合物科学的困难课题之一。基于上述研究现状和发展要求,本论文设计并合成了结构规整的以聚丙烯酸为主链的两亲性接枝共聚物,并对其在水溶液中的自组装行为进行了详细的研究。具体的工作及结果如下:
     1.以甲苯为溶剂,在氯化亚铜、三乙胺存在下,辛基酚聚氧乙烯醚(C_8PhEO_(10))与丙烯酰氯反应合成了辛基酚聚氧乙烯醚丙烯酸酯活性大单体(C_8PhEO_(10)Ac),通过色谱柱对粗产品进行分离提纯。同时探讨了丙烯酰氯用量、反应温度、反应时间以及加料次序对辛基酚聚氧乙烯醚转化率的影响。采用红外光谱(FT-IR)、核磁共振(~1H-NMR)、紫外光谱(UV)、荧光光谱对大分子单体结构进行了表征,测试结果表明C_8PhEO_(10)与丙烯酰氯进行反应生成了目标产物。
     2.以水为溶剂,过硫酸钾为引发剂,通过自由基共聚合成了以聚丙烯酸(PAA)为主链、C_8PhEO_(10)Ac为支链的水溶性两亲接枝共聚物(PAA-g-C_8PhEO_(10)Ac)。同时探讨了单体配比、引发剂用量、聚合温度、聚合时间对共聚物分子量及其分布、单体转化率、接枝率的影响。通过FT-IR、1H-NMR、UV、荧光、凝胶渗透色谱(GPC)、热重分析(TG)和差热分析(DTA)对共聚物进行了详细的表征,证明了这种合成以聚丙烯酸为主链的接枝共聚物的方法是可行的。
     3.用表面张力法测定了水溶液中共聚物的临界胶束浓度(CMC)及其相应的表面张力(γCMC),并考察了大单体的含量和无机盐对CMC及γCMC的影响;通过粘度法探讨了共聚物浓度、无机盐对PAA-g-C_8PhEO_(10)Ac溶液比浓粘度的影响;应用紫外光谱法研究了水溶液中共聚物PAA-g-C_8PhEO_(10)Ac的胶束化行为对吸收光谱的影响。结果表明,随着大单体含量的提高,CMC及γCMC依次下降,无机盐NaCl、MgCl_2的加入可以进一步降低共聚物溶液的CMC和γCMC,该类聚合物在较低浓度下具有很好的水溶性和高表面活性。
     4.分别采用2-(p-甲苯胺基)-6-萘磺酸钠(TNS)、8-苯胺基-1-萘磺酸铵盐(ANS)、芘极性探针研究了水溶液中PAA-g-C_8PhEO_(10)Ac的胶束化行为,考察了大单体含量、共聚物浓度、pH值、无机盐NaCl、MgCl_2对探针荧光光谱的影响。结果表明,随着PAA-g-C_8PhEO_(10)Ac浓度的增大,探针荧光强度逐渐提高,探针所处微环境的极性降低,在共聚物浓度达到CMC时这种变化更为显著;NaCl和MgCl_2的加入使探针分子所处微环境的极性更低,有利于TNS、ANS分子产生更强的分子内扭转电荷转移(TICT)荧光,有利于芘第一振动峰强度I1与第三振动峰强度I3之比I1/I3值降低;pH值大于6.2时,随着pH值的增大,探针所处微环境极性增强。通过三种探针荧光光谱变化所得PAA-g-C_8PhEO_(10)Ac的CMC与表面张力的结果基本一致。
     5.采用水杨酸-2'-乙基己基酯(EHS)氢键探针研究了PAA-g-C_8PhEO_(10)Ac两亲接枝共聚物在水溶液中的胶束化行为,探讨了共聚物浓度、pH值、NaCl、MgCl_2对EHS荧光光谱的影响。结果显示,PAA-g-C_8PhEO_(10)Ac的加入使源于分子内氢键的长波长荧光强度显著提高,且随共聚物浓度的增大而增强。达到CMC时长波长荧光强度和峰位都发生了突变;pH值pH>6.2时,随着pH值的增加,长波长荧光强度降低、短波长荧光加强;加入NaCl后长波长荧光强度略有下降;MgCl_2对EHS光谱的影响与NaCl的结果完全不同,随着PAA-g-C_8PhEO_(10)Ac浓度的提高,长波长荧光强度快速减弱,并伴有波长红移现象。通过EHS探针荧光光谱变化所得PAA-g-C_8PhEO_(10)Ac的CMC与表面张力的结果一致。
     6.采用扫描电子显微镜(SEM)法和透射电子显微镜(TEM)法研究了大单体含量、共聚物浓度、pH值以及无机盐对PAA-g-C_8PhEO_(10)Ac表面形貌以及水溶液中共聚物胶束粒径和形状的影响。结果表明,PAA-g-C_8PhEO_(10)Ac的表面形貌以及水溶液中胶束的粒径和形状与共聚物浓度、pH值、离子强度等有关。浓度增大,胶束的粒径有增大的趋势,形状由球状到柱状与球状共存,再到球状的变化;NaCl的加入使胶束粒径增大,pH值增大使胶束粒径减小。这些信息使得对两亲接枝共聚物自组装的研究更为丰富,且有助于对共聚物胶束形貌和大小的控制。
In water, the amphiphilic copolymer is energetically favorable to form micelles with its hydrophobic groups forming the core and the hydrophilic groups forming the outer shell through the self-assembly. Intensive interests on the self-assembly of amphiphilic copolymers in solution have been risen due to its potential applications in nano-materials, polymeric surfactants, biomedical substances and petrochemical technology. In order to study the effect of molecular structure on self-assembly, which can help people to reality for the controlling of micellar morphology and size, people expect to get the well-defined and controlled copolymers which is the main developing direction of modern synthetic high polymer Chemist.
     So far, much attention has been focused on the self assembly of amphiphilic block copolymer and most studies are performed in organic solvents. There are more reports about the synthesis of amphiphilic graft copolymer, but little descriptions were presented for the self-assembly of amphiphilic graft copolymers in aqueous solution in detail, the morphology of amphiphilic graft copolymers is till one of the dificults in polymer science. According to the state and trend , a well-defined amphiphilic graft copolymer of PAA as main chain were designed and synthesized by free radical copolymerization in our work, and the micellar formation of the amphiphilic graft copolymer in water were investigated in detail. This thesis consists of six parts.
     1. A surface-active macromonomer of C_8PhEO_(10)Ac was prepared with C_8PhEO_(10) and acrylol chloride using toluene as solution in the presence of copper(I) chloride and triethylamine. The residue was further purified by column chromatography. The effects of acrylol chloride concentration, reaction temperature, reaction time and feeding order on the percentage of C_8PhEO_(10) conversion have been discussed. The copolymer exhibited the expected structure as indicated by the results of detailed characterization with FT-IR, 1H-NMR, UV and fluorescence.
     2. A series of well-defined and water-soluble PAA-g-C_8PhEO_(10)Ac of PAA as main chain and C_8PhEO_(10)Ac as graft chains were synthesized by free radical copolymerization using K2S2O8 as initiator in water. The effects of monomer ratio,initiator concentration, reaction temperature, reaction time on the molecular weight and its distributions, the percentage of monomer conversion, grating and grating efficiency have been discussed. The copolymers obtained were characterized by FT-IR, 1H-NMR, UV, fluorescence, GPC, TG, DTA, the synthesis method of graft copolymer of PAA as main chain was feasible and successful.
     3. The CMC and correspondingγCMC values of the graft copolymer were obtained by surface tension measurements in aqueous solution. Influences of macromonomer and inorganic salt on CMC andγCMC have been investigated. Effects of the copolymer concentration and inorganic salts on the reduced viscosity of PAA-g-C_8PhEO_(10)Ac have been discussed. Dependence of absorption spectra on the micellar behavior of PAA-g-C_8PhEO_(10)Ac in aqueous solution on was studied. It was found that the CMC andγCMC decreased with the increase in the copolymer concentration. The presence of sodium chloride and magnesium chloride results in the lower CMC andγCMC. The graft copolymer is readily soluble in water and highly surface active at much lower concentration.
     4. The micellar behavior of PAA-g-C_8PhEO_(10)Ac in aqueous solution were studied by fluorescence technique using ANS, TNS and pyrene as probes. Influences of macromonomer, copolymer concentration, pH, NaCl and MgCl_2 on their fluorescence spectra were studied. The experimental results indicate that the fluorescence intensity increases with increasing concentration of AA-C_8PhEO_(10)Ac. these changes became sharper at CMC. The presence of NaCl and MgCl_2 results in the weaker polarity in micellar core and the fluorescence intensity of TICT of TNS and ANS sharply increases. The I1/I3 values of the pyrene decreases with the addition of inorganic salt; the microenvironmental polarity of the probes decreases with the rise in pH value in the range pH 6.2-8.0. The CMC of PAA-g-C_8PhEO_(10)Ac obtained by the fluorescence measurements is in a good agreement with those obtained by surface tension measurements.
     5. The micellization of PAA-g-C_8PhEO_(10)Ac in water have been monitored by fluorescent technique using EHS as a probe. Influences of the copolymer concentration, pH, NaCl and MgCl_2 on the fluorescence spectrum of EHS were investigated. The addition of PAA-g-C_8PhEO_(10)Ac resultes in sharply increased emission intensity with long wavelength for EHS with intramolecular hydrogen bonding and decreased emission intensity with short wavelength for EHS with intermolecular hydrogen bonding,the fluorescence intensity increases with increasing concentration of PAA-g-C_8PhEO_(10)Ac. Great changes in the long wavelength emission intensity and the peak position were made at CMC. The short wavelength emission intensity increased and the long wavelength emission intensity decreased from pH pH6.2 to pH8.0. The long wavelength emission intensity slightly decreases in the presence of NaCl. However, the effect of MgCl2 on the fluorescence of EHS is very different from that of NaCl. The long wavelength emission intensity of EHS begins to rapidly decrease with increasing concentration of AA-C_8PhEO_(10)Ac. Furthermore the bathochromic shift appears. The CMC of PAA-g-C_8PhEO_(10)Ac obtained by fluorescence measurements of EHS is in a good agreement with that obtained by surface tension measurements.
     6. The influences of copolymer concentration, pH, inorganic salts on surface topography and the shapes and sizes of PAA-g-C_8PhEO_(10)Ac micelles in water have been discussed using SEM and TEM. The results show that the micellar shapes and the sizes were dependent on copolymer concentration, pH and ionic strength. As the copolymer concentration increases, the micellar sizes became larger. The micellar shapes undergo spherical micelles, the spherical and columnar micelles and the spherical micelles again. The sizes of micelles increased with the addition of NaCl to water and decreased at high pH values. These findings are favorable for better understanding of the self-assembly of amphiphilic graft copolymer and were helpful for control of micellar shapes and sizes.
引文
[1] V.C. Malshe, S. Elango, S.S. Bhagwat and S.S. Maghrabi. Fluorinated acrylic copolymers: Part II: Polymeric surfactants. Progress in Organic Coatings, 2005, 53:212-216.
    [2] M.Y. Lee, K.J. Hong, T. Kajiuchi, J.W. Yang. Synthesis of chitosan-based polymeric surfactants and their adsorption properties for heavy metals and fatty acids. International Journal of Biological Macromolecules, 2005, 36:152-158.
    [3] R. Pons. Polymeric surfactants as emulsion stabilizers. Amphiphilic Block Copolymers, 2000:409-422.
    [4] Y. Cao, H.L. Li. Interfacial activity of a novel family of polymeric surfactants. European Polymer Journal, 2002, 38:1457-1463.
    [5] R. Sedev, Z. Németh, R. Ivanova, D. Exerowa. Surface force measurement in foam films from mixtures of protein and polymeric surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 149: 141-144.
    [6] T.H. Chieng, L.M. Gan, C.H. Chew, K.L. Pey. Microporous polymeric materials by polymerization of microemulsions containing different alkyl chain lengths of cationic surfactants. Polymer, 1996, 37:2801-2809.
    [7] A.G. A. Coombes, P.D. Scholes, M.C. Davies, L. Illum, S.S. Davis. Resorbable polymeric microspheres for drug delivery-production and simultaneous surface modification using PEO-PPO surfactants. Biomaterials, 1994, 15:673-680.
    [8] G. Riess. Block copolymers as polymeric surfactants in latex and microlatex technology. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 153:99-110.
    [9] R. Pons. Polymeric Surfactants as Emulsion Stabilizers. Amphiphilic Block Copolymers, 2000:409-422.
    [10] I.D. Robb. Polymeric surfactants. Polymer, 1993, 34:3966-3967.
    [11] M. Fernández-García, J.D.L. Fuente, M.L. Cerrada , E.L. Madruga. Preparation of poly(tert-butyl acrylate-g-styrene) as precursors of amphiphilic graft copolymers 1. Kinetic study and thermal properties. Polymer, 2002, 43:3173-3179.
    [12] X.C. Pang, R.K. Jing, J.L. Huang. Synthesis of amphiphilic macrocyclic graftcopolymer consisting of a poly(ethylene oxide) ring and multi-poly(-caprolactone) lateral chains. Polymer, 2008, 49:893-900.
    [13] S.K. Peace and R.W. Richards. Capillary wave fluctuations of spread films of an amphiphilic graft copolymer at the air-water interface. Polymer, 1996, 37:4945-4951.
    [14] H.C. Chiu, C.S. Chern, C.K. Lee , H.F. Chang. Synthesis and characterization of amphiphilic poly(ethylene glycol) graft copolymers and their potential application as drug carriers. Polymer, 1998, 39:1609-1616.
    [15] D. Rutot, E. Duquesne, I. Ydens, P. Degée , P. Dubois. Aliphatic polyester-based biodegradable materials: new amphiphilic graft copolymers. Polymer Degradation and Stability, 2001, 73:561-566.
    [16] Y.X. Zhou, S.L. Li, H.L. Fu, S.X. Cheng, X.Z. Zhang , R.X. Zhuo. Fabrication and in vitro drug release study of microsphere drug delivery systems based on amphiphilic poly-α,β-[N-(2-hydroxyethyl)-l-aspartamide]-g-poly(l-lactide) graft copolymers. Colloids and Surfaces B: Biointerfaces, 2008, 61:164-169.
    [17] R. Arshady. Beaded polymer supports and gels : I. Manufacturing techniques. Journal of Chromatography A, 1991, 586:181-197.
    [18] M. Tomoi, Y. Shibayama, H. Kakinchi. Polymerization of methyl and ethyl methacrylates initiated with alkai-metal alkoxide derivatives of poly (ethylene oxide). Polymer J, 1976, 8:190-195.
    [19] F. Candau, F. Afchar-Taromi , P. Rempp. Synthesis and characterization of polystyrene-poly(ethylene oxide) graft copolymers. Polymer, 1977, 18:1253-1257.
    [20] I. Piirma , J R. Lenzotti.Synthesis of Poly( P - Methylstyrene - Graft Polyoxy- ethylene) and Application as a Polymeric Surfactant in Emulsion Polymerization. British Polymer Journal, 1989, 21:45-51.
    [21]张洁辉,郑邦乾,张莉蓉.烷基酚聚氧乙烯醚丙烯酸酯共聚物表面活性剂的合成与性质.精细石油化工, 1998, 3:14-19.
    [22] J.L. Fuente, M. Wilhelm, H.W. Spiess. Thermal, morphological and rheological characterization of poly(acrylic acid-g-styrene) amphiphilic graft copolymers . Polymer, 2005, 46:4544-4553.
    [23] Z.Y. Li, P.P. Li , J.L. Huang. Synthesis and characterization of amphiphilic graft copolymer poly(ethylene oxide)-graft-poly(methyl acrylate). Polymer, 2006, 47:791-5798.
    [24] G. Carrot, J. Hilborn, D.M. Knauss. Synthesis, characterization and micelle formation of amphiphilic graft copolymers. Polymer ,1997, 38:6401-6407.
    [25] J. Yang, H. Li. Micellar behavior of acrylamide-octylphenylpoly(oxyethylene) axrylate copolymer in aqueous solution. Colloid And Polymer Science, 1999, 277:1098-1103.
    [26] J. Ji, L.X. Feng, Y.X. Qiu. Self-Assembly and Surface Structure of an Amphiphilic Graft Copolymer, Polystyrene-graft-ω-Stearyl–Poly(ethylene oxide). Journal of Colloid and Interface Science, 2000, 224:255-260.
    [27]陈永春,程时远,曹红燕,徐祖顺.两亲接枝共聚物PMMA-g-PEO溶液性质及在反相乳液聚合中的应用.高分子材料科学与工程, 2003, 5:182-189.
    [28] D.J. Hu, Z.P. Cheng, J. Zhu, X.L. Zhu. Brush-type amphiphilic polystyrene-g-poly(2-(dimethylamino)ethyl methacrylate)) copolymers from ATRP and their self-assembly in selective solvents. Polymer, 2005, 46:7563-7571.
    [29] H.L. Kang, W.Y. Liu, B.Q. He, D. Shen, L. Ma, Y. Huang. Synthesis of amphiphilic ethyl cellulose grafting poly(acrylic acid) copolymers and their self-assembly morphologies in water. Polymer, 2006, 47:7927-7934.
    [30] S.Y. Liu, P.S. Armes. Recent advances in the synthesis of polymeric surfactants. Current Opinion in Colloid & Interface Science , 2001, 6:249-256.
    [31] I. CaPek, S.H. Nguyen, D. Berek. Polystyrene-graft-poly(ethylene oxede) copolymers prepared by macromonomer technique in dispersion. 2. Mechanism of dipersion copolymerization. Polymer, 2000, 41:7011-7016.
    [32] M.A. Twaik, M. Tahan, A. Zilkha. Grafting of poly(ethylene oxide) on poly(methy-l methylate) by transesterification. Journal of Polymer Science,Part A, 1969, 7:2469-2480.
    [33] M. Akashi, S. Sakuma, N. Suzuki, H. Kikuchi, K. Hiwatari, K. Arikawa, A. Kishida . Oral peptide delivery using nanoparticles composed of novel graft copolymers having hydrophobic backbone and hydrophilic branches.International Journal of Pharmaceutics, 1997, 149:93-106.
    [34] M. Tomoi, O. Abe, M. Ikeda, K. Kihara ,H. Kakiuchi. Syntheses of hydroxy group-containing crown ethers and polymer-supported crown ethers. Tetrahedron Letters, 1978, 19:3031-3034.
    [35] K. Kimura , Y. Inaki. The synthetic methods of amphipathic graft copolymer is discussed in detail. Makromol chem, 1977, 178:317-328.
    [36] R.B. Grubbs, C.J. Hawker, J. Dao, J.M.J. Frechet. A tandem approach to graft and dendritic graft copolymers based on living free radical polymerizations. Angewandte Chemie International Edition, 1997, 36:270-272.
    [37] J. Huang, Z.Y. Li, X.W. Xu, Y. Ren, J.L. Huang. Preparation of novel poly(ethylene oxide-co-glycidol)-graft poly(epsilon-caprolactone) copolymers and inclusion compelxation of the grafted chains with alpha-cyclodextrin. Journal of Polymer Science, Part A, 2006, 44:3684-3691.
    [38] H.J. Jiang, J.P. He, J.P. Liu, Y.L. Yang. Synthesis and characterization of poly(ethylene-co-vinyl alcohol)-graft-poly(epsilon-caprolactone). Polymer, 2002, 34:682-686.
    [39] I.J. Park, S.B. Lee , C.K. Choi. Synthesis of fluorine-containing graft copolymers of poly(perfluoroalkylethyl methacrylate)-g-poly(methyl methacrylate) by the macromonomer technique and emulsion copolymerization method. Polymer, 1997, 38:2523-2527.
    [40] I. Capek, S.H. Nguyen, D. Berek. Polystyrene-graft-poly(ethylene oxide) copolymers prepared by macromonomer technique in dispersion. 2. Mechanism of dispersion copolymerization. Polymer, 2000, 41:7011-7016.
    [41] A. Laukkanen, L. Valtola, F.M. Winnik , H.Tenhu. Thermosensitive graft copolymers of an amphiphilic macromonomer and N-vinylcaprolactam: synthesis and solution properties in dilute aqueous solutions below and above the LCST. Polymer, 2005, 46:7055-7065.
    [42] Y. Matsuno, T. Adachi , N. Numa. Application of graft copolymers using macromonomer method to two-component polyurethane coatings. Progress in Organic Coatings, 1999, 35:117-127.
    [43] R. Pempp, P. Lutz, P. Masson, E. Franta. Macromonomers a new class ofpolymericintermediates in macromolecular synthesis I synthesis and characterization. Makro Chem, 1984, 8:3-15.
    [44] Y. Tsukahara, S. Namba, K. Kaeriyama, K. Okamoto, M. Takahashi. Bulk properties of multibranched polystyrenes from polystyrene macromonomers: rheological behavior I. Polymer, 2000, 41:5165-5171.
    [45] R. Pempp, E. Franta. Synthesis and applications of macromonomers. Polymer, 1986, 27:181-185.
    [46] H.Tobita. Molecular weight distribution of graft copolymers prepared from macromonomers. Polymer, 1999, 40:3565-3573.
    [47]谢洪泉.含聚氧乙烯链段的两亲嵌段共聚物及接枝共聚物的分子设计、合成及性能.高分子通报, 1999, 4:17-24.
    [48]邱永兴,封麟先,俞小洁,杨士林.利用大分子单体技术合成接枝共聚物.功能高分子学报, 1991, 4:81-95. [49 ]李岭.表面活性剂与纳米技术.化学工业出版社, 2004, 1:252-259.
    [50] J.O. Sung, C.J. Jin, C.Z. Wang. Synthesis and surface property variation of polypropylene-graft-poly(ethylene glycol). Journal of Colloid and Interface Science, 2001,238:43-47.
    [51] T. Owen, L.B. Luo. Effect fo poly(acrylic acid) block length distribution on polystyrene-b-poly(acrylic acid) aggregates in solution. Langmuir, 2003, 19: 5601-5607.
    [52] G.S. Kwon, K. Kataoka. Block copolymer micelles as long-circulating drug vehicles. Advanced Drug Delivery Review, 1996, 6:295-309.
    [53] Y. Zhang, Y.M. Lam. Poly(ethylene oxide)-b-poly(propylene oxide)-b-poly-(ethylene oxide)-g-poly(vinyl pyrrolidone): Synthesis and characterization. Journal of Colloid and Interface Science, 2005, 285:80-85.
    [54] B.J. Ringrose, E. Kronfli. Preirradiation grafting of ethylene vinyl acetate copolymer resins. Radiation Physics and Chemistry, 1999, 55:451-460.
    [55] I.V. Yannas. Tissue regeneration by use of collagen-glycosaminoglycan copolymers. Clinical Materials, 1992, 9:179-187.
    [56] M.T. Razzak, K. Otsuhata, Y. Tabata, F. Ohashi, A. Takeuchi. Blood compatibility assessment of graft copolymer (NR-g-DMAA) tubes.International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry, 1992, 39:547-551.
    [57] G. Punshon, D.S. Vara, K.M. Sales, A.G. Kidane, H.J. Salacinski, A.M. Seifalian. Interactions between endothelial cells and a poly(carbonate-silsesquioxane- bridge-urea) urethane. Biomaterials, 2005, 26:6271-6279.
    [58] B.J. Ringrose, E. Kronfli. Preparation of hydrophilic materials by radiation grafting of poly(ethylene-co-vinyl acetate). European Polymer Journal, 2000, 36:591-599.
    [59] A.A. Bogdanov, R. Weissleder, T.J. Brady. Long-circulating blood pool imaging agents. Advanced Drug Delivery Reviews, 1995, 16:335-348.
    [60] C. Schaller, T. Schauer, K. Dirnberger, C.D. Eisenbach. Synthesis and properties of hydrophobically modified water-borne polymers for pigment stabilization. Progress in Organic Coatings, 1999, 35:63-67.
    [61] N. Bulychev, O. Confortini, P. Kopold, K. Dirnberger, T. Schauer, F.E. Du Prez, V. Zubov, C.D. Eisenbach. Application of thermo-responsive poly(methyl vinyl ether) containing copolymers in combination with ultrasonic treatment for pigment surface modification in pigment dispersions. Polymer, 2007, 48:2636-2643.
    [62] B. Müller, C. Oughourlian , M. Schubert. Amphiphilic copolymers as corrosion inhibitors for zinc pigment. Corrosion Science, 2000, 42:577-584.
    [63] H. Liu, H.Q. Ye, X.D. Tang. Aluminum pigment encapsulated by in situ copolymerization of styrene and maleic acid. Applied Surface Science, 2007, 254:616-620.
    [64] L. Shao, J.F. Chen. Synthesis and application of nanoparticles by a high gravity method. China Particuology, 2005, 3:134-135.
    [65] S. Farrokhpay, G.E. Morris, D. Fornasiero , P. Self. Effects of chemical functional groups on the polymer adsorption behavior onto titania pigment particles. Journal of Colloid and Interface Science, 2004, 274:33-40.
    [66] C. Auschra, E. Eckstein, A. Mühlebach, M.O. Zink, F. Rime. Design of new pigment dispersants by controlled radical polymerization. Progress in Organic Coatings, 2002, 45:83-93.
    [67] S. Silber, E. Reuter, A. Stüttgen , G. Albrecht. New concepts for the synthesis of wetting and dispersing additives for water-based systems. Progress in Organic Coatings, 2002, 45:259-266.
    [68] J. Huybrechts, P. Bruylants, K. Kirshenbaum, J. Vrana , J. Snuparek. New applications of catalytic chain transfer polymerization to waterborne binders for automotive paint systems. Progress in Organic Coatings, 2002, 45:173-183.
    [69] P.A. Steward, J. Hearn , M.C. Wilkinson. An overview of polymer latex film formation and properties. Advances in Colloid and Interface Science, 2000, 86:195-267.
    [70] X.Y. An, J. Yang, M. Wang, H.Y. Zhang, L. Chang, K.D. Yao , F.L. Yao. Preparation of chitosan–gelatin scaffold containing tetrandrine-loaded nano-aggregates and its controlled release behavior. International Journal of Pharmaceutics, 2008, 350:257-264.
    [71] J.M. Bezemer, R. Radersma, D.W. Grijpma, P.J. Dijkstra, C.A. van Blitterswijk , J. Feijen. Microspheres for protein delivery prepared from amphiphilic multiblock copolymers: 1. Influence of preparation techniques on particle characteristics and protein delivery. Journal of Controlled Release, 2000, 67:233-248.
    [72] J.M. Bezemer, D.W. Grijpma, P.J. Dijkstra, C.A. Blitterswijk, J. Feijen. Control of protein delivery from amphiphilic poly(ether ester) multiblock copolymers by varying their water content using emulsification techniques. Journal of Controlled Release, 2000, 66:307-320.
    [73] J.J. Crevecoeur, L. Nelissen, P.J. Lemstra. Water expandable polystyrene (WEPS): Part 2. In-situ synthesis of (block)copolymer surfactants. Polymer, 1999, 40:3691-3696.
    [74] F.T. Meng, G.H. Ma, W. Qiu, Z.G. Su. W/O/W double emulsion technique using ethyl acetate as organic solvent: effects of its diffusion rate on the characteristics of microparticles. Journal of Controlled Release, 2003, 91:407-416.
    [75] A.J. Samson, X.L. Chen. Self-assembly of ordered microporous materials from rod-coil block copolymers. Science, 1999, 283:372-375.
    [76]王强,曹爱丽,黄积涛,孙继友,张嘉琪,王苹.以两亲聚合物为乳化剂研制高固含量乳液.高分子材料科学与工程, 1999, 2:35-37.
    [77]任天斌,张洪涛.可聚合乳化剂的类型及乳液聚合.粘接, 1999, 2:25-27.
    [78] K. Letchford, H. Burt. A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 65:259-269.
    [79] F. Signori, F. Chiellini, R. Solaro. New self-assembling biocompatible-biodegradable amphiphilic block copolymers. Polymer, 2005, 46: 9642-9652.
    [80] J.Z. Jan, B.H. Huang, J.J. Lin. Facile preparation of amphiphilic oxyethylene–oxypropylene block copolymers by selective triazine coupling. Polymer, 2003, 44:1003-1011.
    [81] T.C. Krasia, C.S. Patrickios. Synthesis and aqueous solution characterization of amphiphilic diblock copolymers containing carbazole. Polymer, 2002, 43:2917-2920.
    [82] H.R. Yang, Y.L. Su, H.J. Zhu, H. Zhu, B.Q. Xie, Y. Zhao, Y.M. Chen, D.J. Wang. Synthesis of amphiphilic triblock copolymers and application for morphology control of calcium carbonate crystals. Polymer, 2007, 48:4344-4351.
    [83] X.J. Lu, S.L. Gong, L.Z. Meng, C. Li, F. Liang, Z.Q. Wu , L.F. Zhang. Novel fluorescent amphiphilic block copolymers: Controllable morphologies and size by self-assembly. European Polymer Journal, 2007, 43:2891-2900.
    [84] H.L. Kang, W.Y. Liu, B.Q. He, D. Shen, L. Ma , Y. Huang. Synthesis of amphiphilic ethyl cellulose grafting poly(acrylic acid) copolymers and their self-assembly morphologies in water. Polymer, 2006, 47:7927-7934.
    [85] G. Carrot, J. Hilborn , D.M. Knauss. Synthesis, characterization and micelle formation of amphiphilic graft copolymers. Polymer, 1997, 38:6401-6407.
    [86] M. Jacquin, P. Muller, R. Talingting-Pabalan, H. Cottet, J.F. Berret, T. Futterer, O. Théodoly. Chemical analysis and aqueous solution properties of charged amphiphilic block copolymers PBA-b-PAA synthesized by MADIX. Journal of Colloid and Interface Science, 2007, 316:897-911.
    [87] L. Sun, Y.X. Liu, L. Zhu, B.S. Hsiao, C.A. Avila-Orta. Self-assembly and crystallization behavior of a double-crystalline polyethylene-block-poly- (ethylene oxide) diblock copolymer. Polymer, 2004, 45:8181-8193.
    [88] D. Peng, X.H. Zhang, C. Feng, G.L. Lu, S. Zhang, X.Y. Huang. Synthesis and characterization of amphiphilic graft copolymers with hydrophilic poly(acrylic acid) backbone and hydrophobic poly(methyl methacrylate) side chains. Polymer, 2007, 48:5250-5258.
    [89] R.S. Lee, C.B. Hung. Synthesis and characterization of amphiphilic block copolymers from poly(ethylene glycol)methyl ether and 4-methyl--caprolactone or 4-phenyl- -caprolactone. Polymer, 2007, 48:2605-2612.
    [90] A. Elias, J. Ferrières, J.B. Ruidavets, J. Fauvel, H. Chap, H. Boccalon. L006 Association of angiotensin converting enzyme gene polymorphism with carotid arterial wall thickness. American Journal of Hypertension, 1998, 11:195A.
    [91] D.D. Wang, Z.P. Peng, X.X. Liu, Z. Tong, C.Y. Wang , B. Ren. Synthesis and micelle formation of triblock copolymers of poly(methyl methacrylate)-b-poly(ethylene oxide)-b-poly(methyl methacrylate) in aqueous solution. European Polymer Journal, 2007, 43:2799-2808.
    [92] R. Mendichi, A. Giacometti Schieroni, G. Cavallaro, M. Licciardi, G. Giammona. Molecular characterization ofα,β-poly(N-2-hydroxyethyl)--aspartamide derivatives as potential self-assembling copolymers forming polymeric micelles. Polymer, 2003,44:4871-4879.
    [93] E. Sulman, V. Matveeva, A. Usanov, Y. Kosivtsov, G. Demidenko, L. Bronstein, D. Chernyshov, P. Valetsky. Hydrogenation of acetylene alcohols with novel Pd colloidal catalysts prepared in block copolymers micelles. Journal of Molecular Catalysis A: Chemical, 1999, 146:265-269.
    [94] L.M. Zhu, G. Omar, W. Bengt. An amphiphilc graft copolymer as asurface-modifying additive for poly(methyl methacrylate. Journal of Polymer Science, 1995, 33:1257-1265.
    [95] H.P. Ho, L. Westberg, K. Annerbrink, M. Olsson, J. Melke, S. Nilsson, F. Baghaei, R. Rosmond, G. Holm, P. Bj?rntorp, S. Andersch, C. Allgulander, E. Eriksson. Association between a functional polymorphism in the progesteronereceptor gene and panic disorder in women. Psychoneuroendocrinology, 2004, 29:1138-1141.
    [96] M. Treeby, G.C. Chitanu, K. Kogej. Association of cationic surfactants with maleic acid copolymers: Dependence of binding on the nature of the neutral comonomer unit. Journal of Colloid and Interface Science, 2005, 288:280-289.
    [97] G. Gente, A. Iovino, C.L. Mesa. Supramolecular association of a triblock copolymer in water. Journal of Colloid and Interface Science, 2004, 274:458-464.
    [98] G.J. Brown, R.W. Richards, R.K. Heenan. Organisation and interactions in aqueous dispersions of polystyrene–polyethylene oxide block copolymer micelles. Polymer, 2001, 42:7663-7673.
    [99] E. Girard-Reydet, H. Sautereau, J.P. Pascault. Use of block copolymers to control the morphologies and properties of thermoplastic/thermoset blends. Polymer, 1999, 40:1677-1687.
    [100] X. Li, H. Yang, C.S. Li, L.M. Xu, Z.G. Zhang, D.H. Kim. Effects of additives on the morphologies of thin titania films from self-assembly of a block copolymer. Polymer, 2008, 49:1376-1384.
    [101] Z.G. Xu, S.X. Zheng. Morphology and thermomechanical properties of nanostructured thermosetting blends of epoxy resin and poly(-caprolactone)-block-polydimethylsiloxane-block-poly( -caprolactone) triblock copolymer. Polymer, 2007, 48:6134-6144.
    [102] M.J. van der Schuur, R.J. Gaymans. Influence of morphology on the properties of segmented block copolymers. Polymer, 2007, 48:1998-2006.
    [103] C. Soto-Figueroa, M.R. Rodríguez-Hidalgo, J.M. Martínez-Magadán. Molecular simulation of diblock copolymers; morphology and mechanical properties. Polymer, 2005, 46:7485-7493.
    [104] J.E. Puskas, P. Antony, M. El Fray, V. Altst?dt. The effect of hard and soft segment composition and molecular architecture on the morphology and mechanical properties of polystyrene–polyisobutylene thermoplastic elastomeric block copolymers. European Polymer Journal, 2003, 39: 2041-2049.
    [105] C. Harrats, R. Fayt , R. Jér?me. Effect of block copolymers of various molecular architecture on the phase morphology and tensile properties of LDPE rich (LDPE/PS) blends. Polymer, 2002, 43: 863-873.
    [106] P.G. de Gennes. Academic Press:New York, 1978,14.
    [107] J. Noolandi, K.M. Hong. Theory of block copolymer micelles in solution. Macromolecules, 1982, 15:482-451.
    [108] P.G. de Gennes. Scaling theory of polymer adsorption. Journal of Physics, 1976, 37:1445-1452.
    [109] P.G. de Gennes. Conformations of polymers attached to an interface. Macromolecules, 1980, 13:1069-1075.
    [110] M. Daoud, J.P. Cotton. Star-shaped polymers:a model for the conformation and its concentration dependence. Journal of Physics, 1982, 43:531-538.
    [111] E.B. Zhlina. T.M. Birshtein. Congormantions of molecules of block copolymers in selective solvents(micellar structures). Vysokomolekulyarnye Soedineniya, Seriya A, 1985, 27:511-517.
    [112] J. Noolangdi, K.M. Hong. Interfacial properties of immiscible homopolymer blends in the presence of block copolymers. Macromolecules, 1982,15: 482-492.
    [113] A. Halperin. Polymeric micelled: a star model. Macromolecules, 1987, 20: 2943-2946.
    [114] C. Wu, J. Gao. A simple scaling for the core-shell nanostructure formed by self-assembly of block copolymers in a selective solvent. Macromolecules, 2000, 33:634-646.
    [115] N.P. Shusharina, I.A. Nyrkova, A.R. Khoklov. Diblock copolymers with a charged block in a selective solvent:micellar structure. Macromolecules, 1996, 29:3167-3174.
    [116] P. Linse. Micellization of poly(ethylene oxide)-poly(propylene oxide) block copolymers in aqueous solution. Macuomolecules, 1993, 26:4437-4449.
    [117] L. Leibler, H. Orland, J.C. Wheeler. Theory of critical micelle concentration for solutions of block copolymers. Journal of Physical Chemistry, 1983, 79: 3550- 3557.
    [118] X.L. Chen, S.A. Jenekhe. Solubilization and encapsulation of fullerenes by anphiphilic block copolymers. Langmuir, 1999, 15:8007-8017.
    [119] B.M. Disher, D.A. Hammer, F.S. Bates, D.E. Disher. Polymer vesicles in various media. Curr. Opin. Journal of Colloid and Interface Science, 2000, 5:125-131.
    [120] P.L. Soo, A. Eisenberg. Preparation of block copolymer vesicles in solution. Journal of Polymer Science, Part B, 2004, 42:923-938.
    [121] K.E. Yu,A. Eisenbegr,Bilyaer morphologies of selafssembled crew-cut Aggregates of amphiphilic PS-b-PEO diblock copolymers in solution. Macromolecules,1998, 31:3509-3518.
    [122] K.E. Yu, A. Eisenbegr, Multiple morphologies formed from an amphiphilic ABC triblock copolymer in solution. Macromolecules, 1998, 31:5546-5549.
    [123] G. Liu, L. Qiao, A. Guo. Diblock copolymer nanofibers. Macromolecules, 1996, 29:5508-5510.
    [124] S. Stewart, G. Liu. Hollow nanospheres from polyisoprene-block-Poly (2-cinnamylethyl methacrylate) -block-poly(tert-butyl acrylate). Chemistry of Materials, 1999, 11:1048-1054.
    [125] S. Jain, F.S. Bates. The Origins of morphological complexity in block copolymer surfactants. Science, 2003, 300:460-464.
    [126] Z. Li, E. Kesselman, Y. Talmon, M. Hillmyer, T.P. Lodge. Multicompartment micelles from ABC miktoarm stars in water. Science, 2004, 306:98-101.
    [127] E. Carlier, A. Revillon, J.P. Chauvet. Fluorescence probes as a tool for studying micro-environment of supported species-II. Non-radiative energy transfer and site accessibility. European Polymer Journal, 1993, 29:825-830.
    [128] C.L. McCormick, C.E. Hoyle , M.D. Clark. Water-soluble copolymers: Fluorescence probe studies of hydrophobically modified maleic acid-ethyl vinyl ether copolymers. Polymer, 1992, 33:243-247.
    [129] B. Bednár, J. Deváty, B. Koupalová, J. Králicek, Z. Tuzar. Micellization of three-block copolymer poly[styrene-b-(ethene-co-butene)-b-styrene] in mixed solvents of tetrahydrofuran/ethanol. Polymer, 1984, 25:1178-1184.
    [130] S.A. Tashmukhamedov, E.T. Tsagarayev, R.S. Tillayev, K.U. Usmanov.Electron-microscope study of the structure of acetyl cellulose-polyvinyl pyridine graft copolymers. Polymer Science., 1973, 15:2357-2361.
    [131] F. Candau, J. Boutillier, F. Tripier, J.C. Wittmann. Structure of colloidal particles in water oil mixtures stabilized by polymeric emulsifiers: 1. Phase diagrams and electron microscope studies. Polymer, 1979, 20:1221-1226.
    [132] I.N. Vishnevskaya, K.S. Minsker, V. A. Kargin. Electron microscope study of the supramolecular structures of vinylchloride copolymers with ethylene or propylene. Polymer Scienc., 1966, 8:944-950.
    [133] J.P. Queslel, J.P. Jarry, L. Monnerie. Stationary fluorescence depolarization study of mobility of rigid probes in bulk elastomers: Motion of dimethylanthracene and three trans-diphenylpolyenes inserted in polyisoprene, polybutadiene and random butadiene-styrene copolymers. Polymer, 1986, 27:1228-1234.
    [134] K.Y. Law. Fluorescence probe for microenvironments: effect of solvent vapour on the properties of vapour-swollen polymers. Polymer, 1984, 25:399-402.
    [135] Z.J. Wang, L.X. Ren, Y.Q. Zhao, G.T. Li, A.H. Liang , B.S. Yang. Metal ions-induced conformational change of P23 by using TNS as fluorescence probe Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2007, 66:1323-1326.
    [136] K. Hara, H. Kuwabara, O. Kajimoto, K.Bhattacharyya. Effect of pressure on the critical micelle concentration of neutral surfactant and using fluorescence probe method. Journal of Photochemistry and Photobiology A: Chemistry, 1999, 124:159-162.
    [137] K. Kachel, E. Asuncion-Punzalan , E. London. The location of fluorescence probes with charged groups in model membranes. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1998, 1374:63-76.
    [138] Y. Aoyama, J. Otsuki, Y. Nagai, K. Kobayashi, H. Toi. Host-guest complexation of oligosaccharides: Interaction of maltodextrins with hydrophobic fluorescence probes in water. Tetrahedron Letters, 1992, 33:3775-3778.
    [139] W. Rettig. Charge separation in excited states of decoupled systems TICT compounds and implications regarding the development of new laser dyes andthe primary processes of vision and photosynthesis. Angewandte Chemie International Edition, 1986, 25:971-988.
    [140] W. Rettig, B. Zietz. Do twisting and pyramidalization contribute to the reaction coordinate of charge-transfer formation in DMABN and derivatives. Chemical Physics Letters, 2000, 317:187-196.
    [141] W. Rettig,S. Lutze. Mechanistic considerations for the dual fluorescence of dimetylaminobenzonitrile:a fluorescence anisotropy study. Chemical Physics Letters, 2001, 341:263-271.
    [142] G.R. Fleming, G. Porter, R.J. Robbins, J.A. Synowiec. Excited singlet state decay pathways in the fluorescence probe molecule 1,8-anilinonaphthalene sulphonate(ANS).Chemical Physics Letters, 1977, 52:228-232.
    [143] Y.B. Jiang, X.J. Wang. Cyclodextrin induced micelle formation as studied by TICT fluorescent probe. Acta Physico-Chimica Sinca, 1994, 8:716-718.
    [144]江云宝,王秀娟.离子型胶束中分子内扭转电荷转移的盐效应.科学通报, 1994, 39:799-801.
    [145] N. Kazuo, G.E. Lindenmayer, A. Schwartz. A fluorescence probe analysis of possible conformational changes in the sodium, potassium-adenosine triphosphatase of synoptic membranes induced by nucleotide, sodium, potassium and ouabain. Archives of Biochemistry and Biophysics, 1972, 152:329-338.
    [146] W. Gerhard, H. Dieter, L. Bj?rn, P. Dieter. Membrane effects of beta-adrenergic blocking agents: Investigations with the fluorescence probe 1-anilino-8- naphthalene sulfonate (ANS) and antihemolytic activities. Biochemical Pharmacology, 1973, 22:1437-1449.
    [147] S.M. Dennison, J. Guharay, P.K. Sengupta. Excited-state intramolecular proton transfer (ESIPT) and charge transfer (CT) fluorescence probe for model membranes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 1999, 55:1127-1132.
    [148] J. Guharay, S.M. Dennison, P.K. Sengupta. Influence of different environments on the excited-state proton transfer and dual fluorescence of fisetin. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 1999, 55:1091-1099.
    [149] N.A. Nemkovich, J.V. Kruchenok, A.N. Rubinov, V.G. Pivovarenko, W. Baumann. Site selectivity in excited-state intramolecular proton transfer in flavonols. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 139:53-62.
    [150] S. Lochbrunner, K. Stock, E. Riedle. Direct observation of the nuclear motion during ultrafast intramolecular proton transfer. Journal of Molecular Structure, 2004, 70:13-18.
    [151] M.G. Holler, L.F. Campo, A. Brandelli, V. Stefani. Synthesis and spectroscopic characterisation of 2-(2′-hydroxyphenyl)benzazole isothiocyanates as new fluorescent probes for proteins. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 149:217-225.
    [152] C. Gao, H. Qian, S.J. Wang, D.Y. Yan, W. Chen , G.T. Yu. Self-association of hyperbranched poly(sulfone-amine) in water: studies with pyrene-fluorescence probe and fluorescence label. Polymer, 2003, 44:1547-1552.
    [153] L. Búcsiová, P. Hrdlovi. Spectral characteristics of fluorescence probes based on pyrene in solution and in polymer matrix. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 143:59-68.
    [154] M. Okazaki, Y. Tai, R. Nakagaki, K. Nunome , K. Toriyama. Excimer formation of pyrene as a probe to investigate the recombination of geminate pairs:ODESR and fluorescence study of dilute pyrene in squalane. Chemical Physics Letters, 1990, 166:227-232.
    [155] M.R. Rice , H.S. Gold. Investigation of the surface of a polymeric adsorbent with pyrene as a fluorescence probe. Analytica Chimica Acta, 1984, 164:111-118.
    [156] M.L. Meyers, R. Zellmer, R.K. Sorrell, P.G. Seybold. Room-temperature phosphorescence of anilinonaphthalenesulfonate“fluorescence probe”compounds. Journal of Luminescence, 1979, 20:215-219.
    [157] J.H. Easter, L. Brand. Nanosecond time-resolved emission spectroscopy of a fluorescence probe bound to L-α-EGG lecithin vesicles. Biochemical and Biophysical Research Communications, 1973, 52:1086-1092.
    [158] L. Bokobza, E. Pajot-Augy, L. Monnerie, A. Castellan, H. Bouas-Laurent.Excimer fluorescence as a probe of mobility in bulk polymers. Polymer Photochemistry, 1984, 5:191-207.
    [159] K. Tanaka, A. Okamoto. Design of a pyrene-containing fluorescence probe for labeling of RNA poly(A) tracts. Bioorganic & Medicinal Chemistry, 2008, 16:400-404.
    [1]张洁辉,刘佳林,郑邦乾.丙烯酸酯与丙烯酰胺共聚物表面活性剂的合成.日用化学工业, 1998, 4:13-18.
    [2]张洁辉,郑邦乾,张莉蓉.烷基酚聚氧乙烯醚丙烯酸酯共聚物表面活性剂的合成与性质.精细石油化工, 1998, 3:14-19.
    [3]李艳华,杨军,吴晓艺. AM/AE/AA三元共聚物的合成.沈阳工业大学学报, 2000, 22:535-537.
    [4] P. Radhakrishnan Nair, C.P. Reghunadhan Nair, D.J. Francis. Polyurethanes with polybutyl acrylate grafts via macromonomer technique: thermal and mechanical properties. European Polymer Journal, 1997, 33:89-95.
    [5] S. Sakuma, N. Suzuki, H. Kikuchi, K.I. Hiwatari, K. Arikawa, A. Kishida, M. Akashi. Oral peptide delivery using nanoparticles composed of novel graft copolymers having hydrophobic backbone and hydrophilic branches. International Journal of Pharmaceutics, 1997, 149:93-106.
    [6] J.F. Lahitte, S. Plentz-Meneghetti, F. Peruch, F. Isel, R. Muller, P.J. Lutz. Design of new styrene enriched polyethylenes via coordination copolymerization of ethylene with mono-orα,ω-difunctional polystyrene macromonomers. Polymer, 2006, 47:1063-1072.
    [7] Y.A. Aggour, E.A. Abdel-Razik. Graft copolymerization of end allenoxy polyoxyethylene macuonomomer onto ethyl cellulose in a homogeneous system. European Polymer Journal, 1999, 35:2225-2228.
    [8] S. Zhu, D. Li, W. Zhou, C.M. Crowe. Molecular weight distribution of comb polymers by chain polymerization with macuomonomer. Polymer, 1998, 39:5203-5208.
    [9] R.C. da Silva, W. Loh. Effect of Additives on the Cloud Points of Aqueous Solutions of Ethylene Oxide–Propylene Oxide–Ethylene Oxide Block Copolymers. Journal of Colloid and Interface Science, 1998, 202:385-390.
    [10] F. Becker, M. Buback, H. Latz, G. Sadowski, F. Tumakaka. Cloud-point curves of ethylene-(meth)acrylate copolymers in fluid ethene up to high pressures and temperatures-experimental study and PC-SAFT modeling. Fluid PhaseEquilibria, 2004, 215:263-282.
    [11] X.L. Lin, J. Xu, W.G. Hou , D.J.Sun. Effect of additives on the cloud points of two tri-block copolymers in aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 237:1-6.
    [12] Y. Taniguchi, K. Suzuki, T. Enomoto. The effect of pressure on the cloud point of aqueous polymer solutions. Journal of Colloid and Interface Science, 1974, 46:511-517.
    [1] Z.S. Xu, L.X. Feng, J. Ji, S.Y. Cheng, Y.C. Chen, C.F. Yi. The micellization of amphiphilic graft copolymer PMMA-g-PEO in toluene. European Polymer Journal, 1998, 34:1499-1504.
    [2] T.C. Krasia , C.S. Patrickios. Synthesis and aqueous solution characterization of amphiphilic diblock copolymers containing carbazole. Polymer, 2002, 43:2917-2920.
    [3] A. R?sler, G.W.M. Vandermeulen, H.A. Klok. Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Advanced Drug Delivery Reviews, 2001, 53:95-108.
    [4] M. Svensson, H.O. Johansson, F. Tjerneld. Applications of Amphiphilic Copolymers in Separations. Amphiphilic Block Copolymers, 2000, 35:377-407.
    [5] H.C. Chiu, C.S. Chern, C.K. Lee , H.F. Chang. Synthesis and characterization of amphiphilic poly(ethylene glycol) graft copolymers and their potential application as drug carriers. Polymer, 1998, 39:1609-1616.
    [6] R. Gref, V. Babak, P. Bouillot, I. Lukina, M. Bodorev , E. Dellacherie. Interfacial and emulsion stabilising properties of amphiphilic water-soluble poly(ethylene glycol)–poly(lactic acid) copolymers for the fabrication of biocompatible nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 143:413-420.
    [7] Y. Wu, Y.L. Zheng, W.L. Yang, C. Chu, J.H. Hu, S.K. Fu. Synthesis and characterization of a novel amphiphilic chitosan–polylactide graft copolymer. Carbohydrate Polymers, 2005, 59:165-171.
    [8] X.C. Pang, R.K. Jing , J.L. Huang. Synthesis of amphiphilic macrocyclic graft copolymer consisting of a poly(ethylene oxide) ring and multi-poly(-caprolactone) lateral chains. Polymer, 2008, 49:893-900.
    [9] D. Rutot, E. Duquesne, I. Ydens, P. Degée , P. Dubois. Aliphatic polyester-based biodegradable materials: new amphiphilic graft copolymers. Polymer Degradation and Stability, 2001, 73:561-566.
    [10] J.O. Sung, C.J. Jin, C.Z. Wang. Synthesis and surface property variation of polypropylene- graft-poly(ethylene glycol). Journal of Colloid and InterfaceScience, 2001, 238:43-47.
    [11] J.H. Kim, Y.H. Bae. Albumin loaded microsphere of amphiphilic poly(ethylene glycol)/ poly(α-ester) multiblock copolymer. European Journal of Pharmaceutical Sciences, 2004, 23:245-251.
    [12] G. Carrot, J. Hilborn, D. M. Knauss. Synthesis, characterization and micelle formation of amphiphilic graft copolymers. Polymer, 1997, 38:6401-6407.
    [13] A.T. Holohan, M.H. George, J.A. Barrie , D.G. Parker. Polyhydroxyether-poly- dimethylsiloxane graft copolymers: 2. Properties and morphology. Polymer, 1994, 35:977-982.
    [14] X. Li , R.M. Washenberger, L.E. Scriven. Phase Behavior and Microstructure of Water/Trisiloxane E12 Polyoxyethylene Surfactant/ Silicone Oil Systems. Langmuir, 1999, 15:2267-2277.
    [15] S. Ahn, P. Alexandridis. Phase Behavior and Structural Characterization of Trisiloxane Surfactant-Water-Silicon Oil Systems. Polymer, 2001, 42:169-170.
    [16] M.A. Twaik, M. Tahan, A. Zilkha. Grafting of poly(ethylene oxide) on poly(methyl- methylate) by transesterification. Journal of Polymer Science, Part A, 1969, 7:2469-2480.
    [17] K. ITO. Polymeric desing by macromonomer technique. Progress in Polymer Science, 1998, 23:581-620.
    [18] I.J. Park, S. Lee, C.K. Choi. Synthesis of fluorine-containing graft copolymers of poly(perfluoroalkylethyl met hacrylate) -g- poly(methyl methacrylate) by the macromonomer technique and emulsion copolymerization method. Polymer, 1997, 38:2523-2527.
    [19] K. Endo, K. Senoo, Y. Takakura. Synthesis of polyisoprene macromonomer having terminal vinyl group and copolymerization of the macromonomer with ethylene and propylene. European Polymer Journal, 1999, 35:1413-1417.
    [20] G. Carrot, J. Hilborn, D.M. Knauss. Synthesis, characterization and micelle formation of amphiphilic graft copolymers. Polymer, 1997, 38: 6401-6407.
    [21] R. Milkovich. Synthesis of controlled polymer structures. Polymer Preprints, 1980, 21: 40-41.
    [22] O. Vogl. Developments in Radical Polymerization. Journal of Polymer Science,1978, 64:1-5.
    [23] K. Ishizu, T. Furukawa. Synthesis of functionalized poly(ethylene oxide) macromonomers. Polymer, 2001, 42:7233-7236.
    [24] M.Teodorescu. Synthesis of (vinyl acetate)-terminated polystyrene macromonomers by free-radical polymerization in the presence of vinyl iodoacetate. European Polymer Journal, 2001, 37:1417-1422.
    [25] M. Furch, J.L. Eguiburu, M.J. Fernandez-Berridi , J. San Roman. Synthesis and characterisation of copolymers of methyl acrylate and poly(glycolide) macromonomers. Polymer, 1998, 39:1977-1982.
    [26] I. Cianga , Y. Yagci. Synthesis and characterization of comb-like polyphenylenes via Suzuki coupling of polystyrene macromonomers prepared by atom transfer radical polymerization. European Polymer Journal, 2002, 38:695-703.
    [27] R. Pempp, E. Franta.Macromonomers:synthesis,characterization and application. Advance in Polymer Science, 1984, 58:1-53.
    [28] P. Masson, G. Beinert, E. Franta, R. Pempp. Synthesis of poly(ethylene oxide) macromers. Polym Bull, 1982, 7:17-22.
    [29] Y .Gnanou , R .Pempp. Macromonomers synthesis: new functionalization methods. Makro Chem, 1987, 188:2111-2119.
    [30] K. Ishizu, M. Yasuda , T. Tamura. Synthesis of cross-linked core-shell polymer particles by free-radical dispersion copolymerization of 4-vinylpyridine with polystyrene macromonomers in nonaqueous media. Journal of Colloid and Interface Science, 2003, 267:320-325.
    [31] J.G. Qin, W.P. Guo , Z. Zhang. Modeling of the bulk free radical polymerization up to high conversion—three stage polymerization model. II. Number-average molecular weight and apparent initiator efficiency. Polymer, 2002, 43: 4859-4867.
    [32] M. Asteasuain, A. Brandolin , C. Sarmoria. Molecular weight distributions in styrene polymerization with asymmetric bifunctional initiators. Polymer, 2004, 45:321-335.
    [33] Y.F. Chen, B. M. Boardman, G. Wu , G. C. Bazan. A zwitterionic nickel–olefin initiator for the preparation of high molecular weight polyethylene. Journal ofOrganometallic Chemistry, 2007, 692:4745-4749.
    [34] N.A. Hadjiantoniou, C.S. Patrickios. Synthesis and characterization of amphiphilic conetworks based on multiblock copolymers. Polymer, 2007, 48: 7041-7048.
    [35] X.Z. Cao, T.Z. Zhang, Q.T. Nguyen, Y.Y. Zhang , Z.G. Ping. A novel hydrophilic polymer-ceramic composite membrane 1: Acrylic acid grafting membrane. Journal of Membrane Science, 2008, 312:15-22.
    [36] H. Schott. Comparing the Surface Chemical Properties and the Effect of Salts on the Cloud Point of a Conventional Nonionic Surfactant, Octoxynol 9 (Triton X-100), and of Its Oligomer, Tyloxapol (Triton WR-1339). Journal of Colloid and Interface Science, 1998, 205:496-502.
    [37] J.L. Blin, R. Bleta , M.J. Stébé. Cloud point curve of nonionic surfactant related to the structures of mesoporous materials. Journal of Colloid and Interface Science, 2006, 300:765-773.
    [38] Z.L. Wang, J.H. Xu, W.Z. Zhang, B.H. Zhuang , H.S. Qi. Cloud point of nonionic surfactant Triton X-45 in aqueous solution. Colloids and Surfaces B: Biointerfaces, 2008, 61:118-122.
    [1] H. Suh, Y.S. Hwang, J.E. Lee, C.D. Han, J.C. Park. Behavior of osteoblasts on a type (atelocollagen grafted ozone oxidized poly(L-lactic acid) membrane. Biomaterials, 2001, 22:219-230.
    [2] K. Kataoka, G.S. Kwon, M. Yokoyama, T. Okano, Y. Sakurai. Block copolymer micelles as vehicles for drug delivery. Journal of Controlled Release, 1993, 24: 119-132.
    [3] G.S. Kwon, K. Kataoka. Block copolymer micelles as long-circulating drug vehicles. Advanced Drug Delivery Review, 1996, 6:295-309.
    [4] G. Riess. Block copolymers as polymeric surfactants in latex and microlatex technology.Colloids and Surfaces A: Physicochem. Eng. Aspects, 1999, 153: 99-110.
    [5] C. Rouzes, A. Durand, M. Leonard. Journal of Colloid and Interface Science, 2002, 253:217-223.
    [6] J.D. Hartgerink, E.Beniash, S.I. Stupp. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science, 2001, 294:1684-1688.
    [7] A. Leiva, F.H. Quina, E. Araneda , L. Gargallo , D. Radic. New three-arm amphiphilic and biodegradable block copolymers composed of poly(ε-caprolactone) and poly(N-vinyl-2-pyrrolidone).Synthesis, characterization and self-assembly in aqueous solution. Journal of Colloid and Interface Science , 2007, 310:136-143.
    [8] J.H. Laurer, A. Ash, S.D. Smith, J. Samseth , R.J. Spontak. Macromolecular self-assembly in dilute sequencecontrolled block copolymer/homopolymer blends. Supramolecular Science, 1997, 4:121-126.
    [9] C. Deng, X.S. Chen , H.J. Yu, J. Sun , T.C. Lu , X.B. Jing. A biodegradable triblock copolymer poly(ethylene glycol)-bpoly(L-lactide)-b-poly(L-lysine): Synthesis, self-assembly,and RGD peptide modification. Polymer, 2007, 48: 139-149.
    [10] Z.H. Yang, T.B. Cao, J.Y. Chen, W.X. Cao. Self-assembly of homopolymer and copolymers of N-4-hydroxyphenyl-acrylamide with diazoresin via H-bonding attraction. European Polymer Journal, 2002, 38:2077-2082.
    [11] Y. Wang, J.H. Zhang, Z.H. Wang, Z. Wang, B.Yang. PbS nanoparticles/polymer composite aggregates through self-assembly of amphiphilic copolymer containing cross-linked hydrophilic block. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2007, 292:159-164.
    [12] J.H. Laurer, A. Ash, S.D. Smith, J. Samseth, R.J. Spontak. Macromolecular self-assembly in dilute sequencecontrolled block copolymer/homopolymer blends. Supramolecular Science, 1997, 4:121-126.
    [13]徐祖顺,程时远,陈永春,宋功武.荧光光谱法研究苯乙烯—氧乙烯两亲接枝共聚物溶液的性质.湖北大学学报(自然科学版), 2000, 6:171-180.
    [14]董阳,金勇,魏德卿.高分子表面活性剂的溶液性能.化学通报, 2005, 68:151-156.
    [15] Y. Wu, Y.L. Zheng, W.L. Yang, C.C. Wang, J.H. Hu, S.K. Fu. Synthesis and characterization of a novel amphiphilic chitosan–polylactide graft copolymer. Carbohydrate Polymers , 2005, 59:165-171.
    [16] F .Calderara , Z. Hruska, G. Hurtrez. Investigation of polystyrene - poly(ethylene oxide) block copolymer micelle formation in organic and aqueous solution by nonradiative energy transfer experiments. Macromolecules, 1994, 27:1210-1215. [17 ] Y. Wang, C.M. Kausch, M. Chun. Exchange of chains between micelles of labeled polystyrene - block - poly(oxyethylene) as monitored by nonradiative singlet energy transfer. Macromolecules ,1995, 28:904-911.
    [18] T. Owen,L.B. Luo,A. Eisenberg.Effect fo poly(acrylic acid) block length Distribution on polystyrene-b-poly(acrylic acid) aggregates in solutions. Langmuir, 2003, 19:5601-5607.
    [19] L. Zhang, D.N. Lu , Z. Liu. How native proteins aggregate in solution: A dynamic Monte Carlo simulation. Biophysical Chemistry, 2008, 133:71-80.
    [20] V. Castelletto, I.W. Hamley, L.A. Clifton, R.J. Green. Osmotic pressure and aggregate shape in BSA/poly(ethylene glycol)-lipid/Dextran solutions. Biophysical Chemistry, 2008, 134:34-38.
    [21]陈永春,易昌风,徐祖顺,程时远. PS-g-PEO两亲接枝共聚物溶液的性质.物理化学学报, 2001, 17:471-476.
    [22] X.Z. Tang, Y.C. Hu, C.Y. Pan. Multiple morphologies of self-assembled staraggregates of amphiphilic PEO-b-PNPMA diblock copolymers in solution, synthesis and micellization. Polymer, 2007, 48:6354-6365.
    [23] I. Hidemi, T. Takako, A. Makoto. Charge number effect on the miscibility of inorganic salt and surfactant in adsorbed film and micelle: Inorganic alt–dodecylammonium chloride mixtures. Journal of Colloid and Interface Science, 2006, 302:330-334.
    [24] Y. Zhang, G. Zhou, L. Li, Y. Zhang. Preparatin and microstructure of polymer uniform dispersions of nano-TiO2/methylmethacrylate. Chinese Journal of Materials Research, 1998, 12:291-294
    [1] F.M. Winnik, H. Ringsdorf, J. Venzmer. Interactions of surfactant s with hydrophobically modified poly ( N -isopropylacrylamides) . Langmuir, 1991, 7: 90-911.
    [2] M.A. Fox, W.J. Li, M. Wooten, A. McKerrow, J.K. Whitesell. Fluorescence probes for chemical reactivity at the interface of a self-assembled monolayer. Thin Solid Films, 1998, 327-329:477-480.
    [3] K. Hara, H. Kuwabara, O. Kajimoto, K. Bhattacharyya. Effect of pressure on the critical micelle concentration of neutral surfactant using fluorescence probe method. Journal of Photochemistry and Photobiology A: Chemistry, 1999, 124:159-162.
    [4] H. Evertsson, S. Nilsson. Microstructures formed in aqueous solutions of a hydrophobically modified nonionic cellulose derivative and sodium dodecyl sulfate: a fluorescence probe investigation. Carbohydrate Polymers, 1999, 40:293-298.
    [5] K.D. Branham , D.L. Davis , J.C. Middleton , Investigation of t he effect s of polymer microstructure on the associative behaviour of amphiphilic terpolymers of acrylamide ,acrylic acid and N -[ (4-decyl) phenyl ]acrylamide. Polymer, 1994, 35:4429-4436.
    [6] A.J. Samson,X.L. Chen.Self-assembly of ordered microporous materials from rod-coil block copolymers. Science, 1999, 283:372-375.
    [7] A.J. Samson,X.L. Chen.Self-assembly aggregated of rod-coil block copolymers and their solubilization and encapsulation of fullerenes. Science, 1998, 279: 1903-1907
    [8] N.M. Sommerdijk, S.J. Holder, R.C. Hiorns. Self-assembled structures from an amphiphilic multiblock copolymer containing rigid semiconductor segments. Macromolecules, 2000, 33:8189-8194.
    [9] G. Li, Y.L. Zhuang, Q. Mu, M.Z. Wang, Y. Fang. Preparation, characterization and aggregation behavior of amphiphilic chitosan derivative having poly (l-lactic acid) side chains. Carbohydrate Polymers, 2008, 72:60-66.
    [10] P.P. Li, Z.Y. Li, J.L. Huang. Preparation of star copolymers with three arms of poly(ethylene oxide-co-glycidol)-graft-polystyrene and investigation of their aggregation in water. Polymer, 2007, 48:1557-1566.
    [11] J.H. Jeong, H.S. Kang, S.R. Yang, K. Park, J.D. Kim. Biodegradable poly(asparagine) grafted with poly(caprolactone) and the effect of substitution on self-aggregation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 264:187-194.
    [12] E. Makarewicz, A. Zalewska. The analysis of phenomena and factors having an effect on the sedimentation stability and rheology of water-based dispersions of MMA/BA/MAA copolymer in xylene. Progress in Organic Coatings, 2005, 54: 43-54.
    [13] C.D. Geddes. A halide sensor based on the quenching of fluorescence of an immobilised indolium salt. Journal of Photochemistry and Photobiology A: Chemistry , 2000, 137:145-153.
    [14] F.I. Alaa-Eldin Nassar, F. James Ruling, F. Thomas. Salt and pH effects on electrochemistry of myoglobin in thick films of a bilayer-forming surfactant. Biophysical Chemistry, 1997, 67:107-116.
    [15] A. Durand1, D. Hourdet. Thermoassociative graft copolymers based on poly(N-isopropylacrylamide): effect of added co-solutes on the rheological behaviour. Polymer, 2000, 41:545-557.
    [16] A. Benrebouh, D. Avoce, X.X. Zhu.Thermo- and pH-sensitive polymers containing cholic acid derivatives. Polymer, 2001, 42:4031-4038.
    [17] X.L. Lin, J. Xu, W.G. Hou, D.J. Sun . Effect of additives on the cloud points of two tri-block copolymers in aqueous solution. Colloids and Surfaces A: Physicochem. Eng. Aspects , 2004, 237:1-6.
    [18] P.P. Kundu, M. Kundu. Effect of salts and surfactant and their doses on the gelation of extremely dilute solutions of methyl cellulose. Polymer, 2001, 42:2015-2020.
    [19] H. Iyota, T. Tomimitsu, K. Shimada, N. Ikeda, K. Motomura, M. Aratono. Charge number effect on the miscibility of inorganic salt and surfactant in adsorbed film and micelle: Inorganic salt–octyl methyl sulfoxide mixtures.Journal of Colloid and Interface Science, 2006, 299:428-434.
    [20] Y.Y. Pi, Y.Z. Shang, H.L. Liu, Y. Hu , J.W. Jiang . Salt effect on the interactions between gemini surfactant and oppositely charged polyelectrolyte in aqueous solution. Journal of Colloid and Interface Science, 2007, 306:405-410.
    [21] S. Ahmad, M. Deepa , S.A. Agnihotry. Effect of salts on the fumed silica-based composite polymer electrolytes. Solar Energy Materials and Solar Cells, 2008, 92:184-189.
    [22] C. Niamnuy, S. Devahastin, S. Soponronnarit. Changes in protein compositions and their effects on physical changes of shrimp during boiling in salt solution. Food Chemistry, 2008, 108:165-175.
    [23] Z.R. Grabowski, K. Rotkiewicz, A. Siemiarczuk. Dual fluorescence of donor-acceptor molecules and the Twisted Intramolecular Charge Transfer (TICT) states. Journal of Luminescence, 1979, 18-19:420-424.
    [24] W. Rettig. Application of a simplified microstructural solvent interaction model to the solvatochromism of twisted intramolecular charge transfer (TICT) states. Journal of Molecular Structure, 1982, 84:303-327.
    [25] W. Baumann, H. Bischof, J.C. Fr?hling, C. Brittinger, W. Rettig , K. Rotkiewicz. Considerations on the dipole moment of molecules forming the twisted intramolecular charge transfer state. Journal of Photochemistry and Photobiology A: Chemistry, 1992, 64:49-72.
    [26] M. Dekhtyar, W. Rettig, W. Weigel. Mesomeric and twisted intramolecular-charge-transfer states as a key to polarity-dependent fluorescence of donor–acceptor-substituted aryl pyrenes. Chemical Physics, 2008, 344: 237-250.
    [27] T. Soujanya, G. Saroja , A. Samanta. AM1 study of the twisted intramolecular charge transfer phenomenon in p-(N,N-dimethylamino)benzonitrile. Chemical Physics Letters, 1995, 236:503-509.
    [28] S.K. Saha, P. Purkayastha , A.B. Das. Photophysical characterization and effect of pH on the twisted intramolecular charge transfer fluorescence of trans-2-[4-(dimethylamino) styryl] benzothiazole. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 195:368-377.
    [29] J.Z. Lu, S.L. Wei, Y.B. Jiang, J.G. Xu. Study and application of a novel probe using twisted intramolecular charge transfer fluorescence. Analytica Chimica Acta, 1997, 349:17-21.
    [30] V.L. Guffin. Temperature Effect on Pyrene as a Polarity Probe for Supercritical Fluid and Liquid So lutions. Applied Spectroscopy, 1994, 48 :596-603.
    [31] J. Aguiar, P. Carpena, J.A. Molivar. On the determination of the critical micelle concentration by the pyrene 1:3 ratio method. Journal of Colloid an Interface Science, 2003, 258:116-122.
    [32] E. Szajdzinska-Pietek, M. Wolszczak. Quenching of excited states of pyrene derivatives by amphiphilic nitroxide radicals in cationic micellar solutions. Dynamics and location of the guest molecules in the aggregates. Journal of Photochemistry and Photobiology A: Chemistry, 1998, 112:245-249.
    [33] A. Losi, C. Viappiani. Reaction volume and rate constants for the excited-state proton transfer in aqueous solutions of naphthols. Chemical Physics Letters, 1998, 289:500-506.
    [34] E.D. Wang, P.F. Shi, C.Y. Du. A novel self-humidifying membrane electrode assembly with water transfer region for proton exchange membrane fuel cells. Journal of Power Sources, 2008, 175:183-188.
    [35] Y. Maréchal. Reactivity of Hydrogen Bonds: Transfers of Protons and of H-Atoms. The Hydrogen Bond and the Water Molecule, 2007, 147-172.
    [36] A. Filarowski, A. Koll, A. Karpfen, P. Wolschann. Intramolecular hydrogen bond in molecular and proton-transfer forms of Schiff bases. Chemical Physics, 2004, 297:323-332.
    [37] A. Mandal, A. Koll, A. Filarowski, D. Majumder, S. Mukherjee. Excited state intramolecular proton transfer in a new o-hydroxy Schiff base in non polar solvents at room temperature and 77 K. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 1999, 55:2861-2868.
    [38] R. Thomas, G.U. Kulkarni. Hydrogen bonding in proton-transfer complexes of cytosine with trimesic and pyromellitic acids. Journal of Molecular Structure, 2008, 873:160-167.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700