多孔无机/聚合物复合材料的制备,表征及在制糖工业的中试应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着当今表面科学与复合材料研究的深入,多孔无机/聚合物复合材料由于其独特的性能越来越引起学界的关注,它部分克服了单一材料和传统复合材料性能上的缺陷,使材料既具有无机材料的优点(如刚性和高热稳定性等),又具有聚合物材料的优点(如弹性、介电性、延展性和可加工性等),特别是多孔无机物在聚合物基体中均匀分布,材料表面易于功能化、无机材料孔径可控、无机-有机组成调节范围大等特性,赋予了这类复合材料在生物学、环境和化工等方面的附加性能。
     本文以硫酸铝、多孔硅胶、水玻璃为前驱体制备无机多孔材料,在无机物制备过程中加入海藻酸钠、壳聚糖等有机物,采用直接混合、无机粒子表面改性、原位生成法制备了多种多孔无机/聚合物复合材料,并用于酵母固定化生物催化生产燃料乙醇和脱色净化生产高品质白砂糖产业生产过程。主要开展了以下几个方面的研究工作:
     (1)以硫酸铝为拟薄水铝石前驱体,通过原位生成过程制备拟薄水铝石/海藻酸复合材料。详细研究了复合材料孔道,表面结构和机械性能,并采用吸附与包埋耦合方法在复合材料制备过程中加入酵母细胞,制备拟薄水铝石/海藻酸复合固定化酵母,研究了以甘蔗废糖蜜生产燃料乙醇的酵母固定化发酵性能。通过复合材料固定化酵母增殖机理及SEM、TEM等表征发现固定化酵母细胞密度高,达4.1×10~9 mL~(-1),甘蔗废糖蜜批式发酵初始糖浓度165 g·L~(-1),14 h内乙醇浓度可达77.4 g·L~(-1),总糖利用率90.5%,糖醇转化率98.3%,显示了良好的发酵性能。
     (2)采用无机颗粒表面接枝改性的方法制备表面带有伯氨基反应性功能团的HY、MCM-41等多种分子筛与有机物包埋相结合,借助吸附和包埋耦合方法固定化酵母,制备了多种改性分子筛/海藻酸复合材料。发现介孔MCM-41分子筛对海藻酸改性复合材料(H_2NMCM-41/ALG)在上述分子筛复合材料中具有最高的酵母包埋活性,研究了H_2NMCM-41/ALG复合固定化酵母以甘蔗废糖蜜生产燃料乙醇的发酵性能及复合材料固定化酵母增殖机理,固定化酵母浓度达4.8×10~9 mL~(-1),甘蔗废糖蜜批式发酵初始糖浓度170 g·L~(-1),12 h内乙醇浓度可达78.6 g·L~(-1),总糖利用率89.2%,糖醇转化率96.3%,乙醇发酵过程彻底、速率快、残糖水平低,原料利用率和发酵醪乙醇浓度均超过传统工艺。
     3)在得出拟薄水铝石/海藻酸复合材料具有较好的酵母固定化性能和发酵性能以后,本文使用吸附-包埋耦合的方法以拟薄水铝石/海藻酸复合材料对酿酒酵母进行固定化,并进行了30 L×2和10 M~3×2两种规模的中试连续发酵试验,系统研究了稀释率、温度、pH、填充率、初始糖浓度对拟薄水铝石/海藻酸复合固定化酵母发酵性能的影响。结果表明,甘蔗废糖蜜连续发酵初始糖浓度169g·L~(-1),填充率15%条件下,9.2 h内乙醇浓度可达76.1 g·L~(-1),总糖利用率87.2%,糖醇转化率96.3%。燃料乙醇发酵工艺与传统工艺相比,单位生产成本降低4.85%,同等规模发酵速率提高4.96倍,发酵周期缩短78.1%,设备容积减少76.2%,投资总额减少70.4%。工艺流程短,降低了原料生产成本,适合于糖业界快速改造大规模生产乙醇,可达到投资省,产率高,性能稳定的目的。
     (4)针对于现今白砂糖生产二氧化硫残留量高,生产产品品质波动大的特点,本文以多孔硅胶、水玻璃为硅源前驱体,通过直接混合,无机粒子表面改性和原位生成法制备了多种二氧化硅/壳聚糖复合材料用于赤砂糖回溶糖浆脱色净化实验。发现原位二氧化硅/壳聚糖复合材料具有最佳的脱色净化性能,在脱色温度75℃,体积空速3.0 h~(-1),赤砂糖回溶糖汁浓度30°Bx条件下,脱色率94.2%,简纯度差11.20,脱色容积可达35 BV。通过SEM、TEM等表征发现材料有机-无机相结合紧密,并在吸附有色分子、对压榨蔗汁脱色方面具有优异的性能。
     (5)选取原位生成二氧化硅/壳聚糖复合材料,详细研究了复合材料对甘蔗压榨糖汁和糖浆脱色净化原料、色值,空速等影响条件和寿命、重复再生性能等。与制糖企业合作,进行了12 L规模小试试验,其中以混合汁生产的白砂糖在原料及生产正常情况下可不使用二氧化硫,以澄清汁生产的白砂糖除SO_2含量为优级外,其余指标已达到国家GB317-2006精糖标准。改变了壳聚糖单独使用价格高,生成凝聚物分离困难,恰当的壳聚糖投入量不易掌握的缺点,解决了传统亚硫酸法蔗糖二氧化硫残留含量高,食品安全性低的问题,减少环境污染,吨糖成本预计仅为22.2元。操作工艺和成本分析表明,原位生成二氧化硅/壳聚糖对甘蔗压榨糖汁和糖浆脱色净化生产高品质白砂糖是经济可行的。
     文通过调节多孔无机/聚合物复合材料无机-有机组成范围及工艺过程的研究,采用耦合固定化、原位生成等方法设计固定化酵母多孔无机/聚合物复合材料和脱色净化多孔无机/聚合物复合材料。并以此为基础,开展以甘蔗废糖蜜和甘蔗压榨糖汁和糖浆为原料的中试试验。利用中试结果进行技术经济成本研究,进一步分析制糖企业提高生产效率,降低成本的关键工艺和生产环节,为制糖企业生产可再生能源和提高食品生产质量,降低最终产品制造成本,优化燃料乙醇及高品质白砂糖生产工艺提供理论依据,为实现糖业中燃料乙醇及高品质白砂糖的绿色高效生产新工艺提供技术支持。
With the development of the surface science and research of the composite materials, porous inorganic/polymer composite obtained more and more concerns of the academic because its unique properties. It has overcome some defects of the homogeneous materials and traditional composite materials. The composite not only has the advantages of inorganic material (such as stiffness and heat stability), but also has the advantages of polymer material (such as flexibility, dielectric properties, ductility and machinability). The inorganic porous particles in polymer matrix distributed uniformly, modified easily in the polymer matrix, controlled easily of the particle size, all these features give this kind of composite good performance in biology, environmental and chemical aspects.
     In this paper, aluminum sulfate, porous silica and water glass were used as the precursors of inorganic porous materials. In the preparation process of inorganic porous materials, organic materials, such as sodium alginate and chitosan, were added into inorganic porous materials with the in-situ generation method, and the porous inorganic/polymer composite was obtained at last. The composite was used to immobilize yeast cells as biocatalyst to produce fuel ethanol and to decolorize and purify sugarcane syrup in the process of high quality white sugar production. The research work mainly carried out in the following fields:
     1. Aluminum sulfate was used as the precursor of the pseudo-boehmite, and the pseudo-boehmite/alginate composite was prepared with the in-situ synthetic method. A detailed research of pore size, surface structure and mechanical properties of the pseudo-boehmite/alginate composite was studied. Then the composite was used to immobilize yeast cells with the coupling immobilization method of adsorption and embedment. The ethanol fermentation performance of the pseudo-boehmite/alginate immobilized yeast was studied using sugarcane molasses. With the research of proliferation mechanism, SEM, TEM characterization, pseudo-boehmite/alginate immobilized yeast showed yeast cell immobilized density at 4.1×10~9 mL~(-1), and good fermentation performance.
     2. Through the combining method of inorganic surface modification with a primary amino-reactive functional groups and organic embedding, a variety of modified zeolite/alginate composites were prepared by the coupling immobilization of physical adsorption and embedding. It was found that mesoporous molecular sieve MCM-41/alginate composite showed the highest fermentation activity of the yeast in the production of fuel ethanol with sugar cane molasses as raw stuff. The proliferation mechanism of the MCM-41/alginate immobilized yeast and the SEM of the carriers revealed the composite carrier is porous, which facilitates the transmission of substrates and products between carriers and medium. The experiments show that the composite carrier of MCM-41/alginate immobilized yeast has higher carrier ethanol productivity, lower residual sugar concentration than traditional technology, and can get higher conversion ratio of material and ethanol concentration.
     3. For the pseudo-boehmite/alginate immobilized yeast has the good immobilization and fermentation performance, pseudo-boehmite/alginate immobilized yeast was used in pilot-scale continuous fermentation experiments of 30 L×2 and 10 m~3×2. The experiments showed that the immobilized yeast of pseudo-boehmite/alginate has higher ethanol fermentation rate, lower residual sugar concentration than traditional technology, and can get higher conversion ratio of material and ethanol concentration. The new kind of fermentation process can reduce the production costs of raw materials. It is suitable for the sugar industry to produce the fuel ethanol in the large-scale.
     4. In the current sugar production, the residual sulfur dioxide concentration remains high, and the characteristics of the white sugar product is unsteady. All of these defeats are harmful to human health. In this article, porous silica and water glass was used as the precursor of silica source, with the methods of surface modification of inorganic particles and in-situ synthetic, several types of silica/chitosan composites was prepared and used in the decolorization and purification process of sugarcane juice and syrup. The in-situ synthetic silica/chitosan composites has the best performance in the detreated purification. Through SEM, TEM characterization, the interface of inorganic-organic of the composites was compact, and the in-situ synthetic silica/chitosan composite has excellent performance in the absorption of non-ferrous elements and sugarcane juice and syrup.
     5. In-situ synthetic silica/chitosan composites was studied with detail, such as effect of temperature, LHSV, and duplicate renewable abilities in the red sugar remelting juice. With the help of Yunnan sugar factory, 12 L pilot-scale experiments of in-situ synthetic silica/chitosan composites were carried out, the decolorization ratio of syrup was higher than 80% with easy operation method and low cost, which played an important role in upgrading sugar products and environmental protection.
引文
[1]张以祥.燃料乙醇与车用乙醇汽油,北京:中国石化出版社,2004
    [2]张远欣.燃料乙醇的发展状况.甘肃科技,2005,21(4):117-118
    [3]乙烯工业编辑部.乙烯工业,2008,20(2):35
    [4]黄组新,陈由强,张彦定,等.甘蔗生产燃料乙醇发酵技术进展.酿酒科技,2007,160(10):81-84
    [5]黄治玲.燃料乙醇的生产与利用.化工科技,2003,11(4):44-47
    [6]张君,刘德华.世界燃料酒精工业发展现状与展望.酿酒科技,2004(5):118-121
    [7]Chum H L,Overend R P.Biomass and renewable fuels.Fuel Processing Tech.,2001,71(1-3):187-195
    [8]Kourkoutas Y,Bekatorou A,Banat I M,et al.Immobilization technologies and support materials suitable in alcohol beverages production:a review.Food Microbiology,2004,21(4):377-397
    [9]Pilkington P H,Margaritis A,Mensour N A,et al.Fundamentals of immobilized yeast cells for continuous beer fermentation:a review.J.Inst.Brew.,1998,104(1):19-31
    [10]Honig P.Principles of sugar technology.Vol.Ⅱ.Amsterdam:Elsevier Co.,1963霍汉镇.现代制糖化学与工艺学.北京:化学工业出版社,2008
    [11]Chen J C P,Chou C C,Meade G P.Cane Sugar Handbook:A Manual for Cane Sugar Manufacturers and Their Chemists.John Wiley & Sons,1993
    [12]Huo H Z.Effect of color and ash constituents on cane sugar quality.Sugar Journal,1992,56(5):18-22
    [13]吴凌燕.贸易自由化对中国各地区食糖生产及消费的影响研究:[博士学位论文].北京:中国农业科学院,2008
    [14]庞秋霞.云南糖业发展思路的探讨.甘蔗糖业,2003,(2):35-38
    [15]黎锡流.甘蔗糖厂综合利用.北京:中国轻工业出版社,1998
    [16]吕欣,李永飞,段作营,毛忠贵.固定化酵母研究进展.酿酒,2002,29(1):65-68.
    [17]赵四清.包埋法固定微生物细胞技术的新进展.生物技术通讯,1995,6(1):33-34
    [18]沈宏宇.生物催化剂固定化技术的研究进展.化工进展,2003,22(1):18-21
    [19]耿长江.高效燃料乙醇生物催化剂的设计与制备:[硕士学位论文].天津:南开大学,2007
    [20]何延青.微生物固定化技术与载体结构的研究.环境科学,2004,25(2):101-104
    [21]周广麟,许苏葵,严复.固定化酵母生产乙醇的研究.大连轻工业学院学报,1994,13(1):41-50
    [22]赵东元,余承忠.功能分子筛的合成设计与生命科学.化学世界,2000,41(S1):131-138
    [23]王新,李培军,巩宗强,张海荣.固定化细胞技术的研究进展.农业环境保护,2001,20(2):120-122
    [24]徐农,邢卫红,徐南平.陶瓷膜-生物反应器中微生物载体的应用研究.膜科学与技术,2006,22(6):65-68
    [25]Isono,Yasuyuki,ArayaGen-ichiro.Immobilization of Saccharomyces cerevisiae for ethanol fermentation on γ-alumina particles using a spray-dryer.Process Biochem,1995,30(8):743-746
    [26]Zhang Y M,Kennedy J F,Knill.Kinetic analysis of ethanol production from glucose fermentation by yeast cells immobilized onto ceramic supports.Biomater.Sci.,1996,7(12):1119-1126
    [27]Kovalenko G A,Perminova,L V,Komova O V,et al.Carbon-containing ceramic macro-structured carriers for adsorption immobilization of enzymes and microorganisms.Ⅲ.Biocatalytic characteristics of the adsorbed invertase.Biotekhnologiya,2003,1(4):52-62
    [28]Willaert R G,Baron G V.The dynamic behaviour of yeast cells immobilised in porous glass studied by membrane mass spectrometry.Appl.Microbiol.Biotechnol.,1995,42(3):664-670
    [29]Bekers M,Ventina E,Karsakevich A,et al.Attachment of yeast to modified stainless steel wire spheres growth of cells and ethanol production.Process biochemistry,35(5):523-530
    [30]王连阳.固定化酵母细胞发酵生产酒精的研究.华侨大学学报(自然科学版),1994,15(1):92-96
    [31]黎刚.固定化技术进展.中国生物工程杂志,2002,22(5):45-49
    [32]张明霞.猕猴桃酵母固定化技术研究:[硕士学位论文].陕西:西北农林科技大学,2003
    [33]Smidsrod O,Skjak-Braek G.Alginate as immobilization Jawan,A sustained release drug delivery system using matrix for cells.Tibtech.,1990,8:71-78
    [34]薛伟明,于炜婷,刘秀洞,等.载细胞海藻酸钠/壳聚糖微胶囊的化学破囊方法研究.高等学校化学学报,2004,24(5):1342-1346
    [35]Wang Z,Zhang Q,Konno M.Sol-gel transition of alginate solution by the addition various divalent canon:~(13)C-NMR spectroscopic study.Biopolymers,1993,33(7):703-711
    [36]田小光.海藻酸铝固定化酵母生产高浓度酒精的研究.微生物学通报,1995,22(5):282-284
    [37]宋向阳,徐勇,杨富国,等.海藻酸锰固定化细胞的乙醇发酵.南京林业大学学报,2003,27(4):1-4
    [38]王康.海藻酸基凝胶及其作为缓释载体的研究:[博士学位论文].天津:天津大学,2002
    [39]陆兆新.辐射聚合物固定化酵母.辐射研究与辐射工业学报,1993,11(1):44-48
    [40]邓元修.固定化酵母酒精发酵.华中理工大学学报,1993,21(2):176-180
    [41]Sommariva C,Converti A,Borghi,et al.Atheoretical to the evaluation of the effectiveness factor in an entrapped yeast cell colum.Chem.Eng.,1992,49(2):23-28
    [42]Converti A.Modeling of continuous corn starch hydrolyzate fermentations in immobilized -cell reactors.Starch,1994,46(7):260-265
    [43]Yadav B S,Rani U,Dhamija S S,et al.Process optimization for continuous ethanol fermentation by alginate-immobilized cells of Saccharomyces cerevisiae HAU-1.Basic Microbiol.,1996,36(3):205-210
    [44]Roca E,Flores N,Nunez M J,et al.Ethanolic fermentation by immobilized Saccharomyces cerevisiae in a semipilot pulsing packed-bed bioreactor.Enz.& Micro.Tech.,1996,19(2):132-139
    [45]Arasaratnam V,Balasubramaniam K.The use of monochloroacetic acid for improved ethanol production by immobilized Saccharomyces cerevisiae.World journal of microbiology &biotechnology,1998,14(1):107-111
    [46]Marques L L M,Buzato J B,Celligoi M A P C.Effect of raffinose and ultrasound pulses on invertase release by free and immobilized Saccharomyces cerevisiae in loofa(Luffa cylindrica)sponge.Brazilian Arc.Bio.& Tech.,2006,49(6):873-880
    [47]Pilkington F H,Margaritis A,Mensour N A.Mass transfer characteristics of immobilized cells used in fermentation processes.Critical Rev.in Biotech.,1998,18(2):237-255
    [48]Tyagi R D,Ghose T K.Studies on immobilized Saccharomyces cerevisiae.1.Analysis of continuous rapid ethanol fermentation in immobilized cell reactor.Biotech.& Bioeng.,1982,24(4):781-795
    [49]Nigam J N,Gogoi B K,Bezbaruah R L.Alcoholic fermentation by agar-immobilized yeast cells.Word journal of Microbiology & Biotechnology,1998,14(3):457-459
    [50]Sun M Y,Nghiem N P,Davison B H,et al.Production of ethanol from starch by co-immobilized Zymomonas mobilis-glucoamylase in a fluidized-bed reactor.Appl.Bio.&Biotech.,1998,70(2):429-439
    [51]Birol G,Doruker P,Kirdar B,et al.Mathematical description of ethanol fermentation by immobilised Saccharomyces cerevisiae.Process Biochemistry,1998,33(7):763-771
    [52]Sree N K,Sridhar M,Suresh K,et al.High alcohol production by repeated batch fermentation using an immobilized osmotolerant Saccharomyces cerevisiae.J.Ind.Micro &Biotech.,2000,24(3):222-226
    [53]梁金钟,王建华,刘复军,等.PVA幅膜载体固定化酵母糖蜜酒精连续发酵研究.工业微生物,1993,23(2):19-24
    [54]门学虎,李彦锋,周林成.聚乙烯醇载体的制备及应用研究进展.甘肃科学学报,2004,16(3):30-35
    [55]Phisalaphong M,Budiraharjo R,Bangrak P,et al.Alginate-loofa as cartier matrix for ethanol production.J.Biosci.& Bioeng.,2007,104(2):214-217
    [56]翁庆北,纪黔生,赵维娜.固定化酵母发酵废糖蜜生产酒精.贵州师范大学学报(自然科学板),2000,18(3):49-51
    [57]Fukushima Y,Okamura K,Imai K,et al.A new immobilization technique of whole cells and enzymes with colloidal silica and alginate.Biotech.& Bioeng.,1988,32(5):584-594
    [58]邱广亮,李红,郭健阳,等.具有磁响应性的聚乙二醇载体固定糖化酶的研究.生物学杂志,1997,14(5):20-22
    [59]Hung T C.Binary immobilization of Candida rugosa lipase on chitosan.J.Mol.Cata.B,2003,26(1):69-78
    [60]Leontievsky A A.Transformation of 2,4,6-trichlorophenol by free and immobilized fungal laccaes.Appl.Micro.& Biotech.,2001,57(2):85-91
    [61]Bakoyianis V,Koutinas A A,Agelopoulos K,et al.Comparative study of kissiris,gamma-alumina,and calcium alginate as supports of cells for batch and continuous wine-making at low temperatures.J.Agri.& Food Chem.,1997,45(12):4884-4888
    [62]虞炳均,郑裕国,张福明,等.膜片状填料固定化酵母薯干酒精发酵生物反应器的研究.工业微生物,1995,25(8):24-28
    [63]李彦锋,周林成,马鹏程,等.活性炭复合亲水性聚氨酯泡沫微生物固定化载体.中国专利,02141723.7,2002-08-30
    [64]许苏葵,何秀良.固定化细胞发酵酒精研究的进展.微生物学杂志,1993,15(11):61-64
    [65]傅汝文,傅其军.固定化酵母技术在糖蜜酒精生产中的应用.广西蔗糖,1997,(3):50-52
    [66]王建龙,周定.固定化细胞凝胶内扩散行为研究进展.生物工程进展,1993,14(3):46-52
    [67]王瑞明.燃料乙醇固态发酵生产工艺的研究:[博士学位论文].天津:天津科技大学,2002
    [68]俞俊棠,顾其丰,叶勤.生物化学工程.北京:化学工业出版社,1991
    [69]Webb O F,Davison B H,Scott T C.Design and demonstration of an immobilized cell fluidized bed reactor for the efficient production of ethanol.Appl.Biochem.& Biotech.,1995,52(6):559-568
    [70]谢晓航.固定化酵母连续发酵酒精染菌问题的探讨.酿酒科技,1999,(3):44-46
    [71]周帼萍.生产乙醇的固定化细胞反应器.武汉工业学院学报,2000,45(2):23-25
    [72]赵玲.固定化酵母流化床生物反应器木薯淀粉酒精发酵的研究.可再生能源,2005,(1):16-19
    [73]谢振根.固定化增殖酵母酒精发酵新技术研究.江苏食品与发酵,1995,(2):28-47
    [74]王晓丹.固定化酵母流化床生物反应器发酵玉米淀粉的研究.西南师范大学学报(自然科学版),2004,29(1):98-101
    [75]曹玉瑞.固定化酵母流化床生物反应器生产酒精工业性系统的设计.沈阳农业大学学报,1995,26(3):293-298
    [76]SiJiang W,JianJiang Z.A novel centrifugal impeller bioreactor.Fluid circulation,mixing,and liquid velocity profiles.Biotech.& Bioeng.,1996,51(6):511-519
    [77]Stuart D,Mitcheil D,Johns M,et al.Solid state fermentation in rotating drum bioreactors:operating variables affect performance through their effects on transport phenomena.Biotech.&Bioeng.,1999,63(4):383-391
    [78]克拉克.制糖过程中的色素和脱色.甘蔗糖业,1985,12(2):1-5
    [79]冉艳红.甘蔗制糖过程中颜色的形成,去除和防止.甘蔗糖业,2001,(1):39-42
    [80]Bardorf F.Transfer of cane wax complex in sugar refineries.Ind.And Eng.Chem.,1968:258
    [81]Clarke M.Structure of colorants.Sugar Processing Res.Conf.,1988:183-186
    [82]Carpenter F.原糖中影响精炼的组分.国际甘蔗糖学会第十五届年会论文选集(中译本下集):277-278
    [83]Godshall M.High molecular weight color in refineries.Sugar Processing Res.Conf.,1989:75-78
    [84]Paton N.Sugar cane phenolics and first expressed juice color.International Sugar Journal,1992,99(2):157-170
    [85]卢家炯.糖汁美拉德反应后果消除及抑制研究.甘蔗糖业,2000,28(6):40-43
    [86]康琪.模拟染料废水化学絮凝法脱色的过程分析方法研究:[博士学位论文].山东:山东大学,2006
    [87]Bennett M.Anew industrial process for decoloring sugar.Chem and Ind,1974,24(6):886-889
    [88]黄华章.阳离子表面活性剂脱色新探.广东省制糖协会论文选集,1990,35-36
    [89]熊小兵.一种糖液的脱色方法研究.广西轻工业,2003,18(6):10-13
    [90]杨海耀,赖凤英,林庆生等.阳离子表面活性剂糖浆脱色除浊.中国甜菜糖业,2003,10(2):46-49
    [91]董超平,张永达,陈卓平.一种取代亚硫酸法的甘蔗制糖工艺.中国专利,03118885.0,2003-03-31
    [92]李会娟,刘和清,李洪文等.蔗汁的澄清脱色技术.化工技术与开发,2006,19(11):42-25
    [93]赖凤英,陈焕章,林福兰.离子交换树脂对糖浆脱色效能的评价.中国甜菜糖业,2000,12(2):32-35
    [94]张永达,陈卓平,张宇,等.蔗汁,糖浆提纯脱色剂及其制备方法和在制糖工艺中的应用.中国专利,200510019357.5,2005-08-26
    [95]陆冬梅,杨连生.壳聚糖处理亚硫酸法糖厂混合汁的试验研究及问题探讨.甘蔗糖业,2003,(2):30-33
    [96]古鸣钟.高分子絮凝剂在制糖生产的应用研究.甘蔗糖业,1999,(2):23-25
    [97]肖锦.糖用助剂CGP-A2的絮凝性能及作用机理.甘蔗糖业,1988,(3):30-33
    [98]黄伟干,陈屏刚,杨宜功等.精品分析中使用无毒澄清剂的初步研究.中国甜菜糖业,1980,2(8):22-25
    [99]王诰.现代制糖工业技术.北京:化学工业出版社,1992
    [100]刘和清.聚硅酸锌絮凝剂的制备方法及用途.CN94106231.7
    [101]孙由芳.G409的ζ电位及混凝特性研究.甘蔗糖业,1997,(5):29-32
    [102]郏其庚.活性炭的应用.上海,华东理工大学出版社,2002
    [103]霍汉镇.活性炭-高效的糖液脱色剂.广西轻工业,2003,20(3):16-18
    [104]张志航.氯化锌法蔗渣制备活性炭研究.甘蔗糖业,1998,(4):32-35
    [105]黄文强,李晨曦.吸附分离材料.北京:化学工业出版社,2005
    [106]Bennett M.Exchange capacity and flocculating activity of adsorbents in sugar cane juice.Chem.&Indus.,1959,(2):1380-1382
    [107]郭海蓉.凸凹棒石粘土用于甲原蜜澄清的研究.甘蔗糖业,1996,(4):41-43
    [108]Gomez M.用臭氧精炼糖的方法.国际甘蔗糖学会第十七届年会论文选集(中译本上集),7-10
    [109]梁汉平.糖用化学助剂的发展动态.广东省制糖学会年会论文选集,1996,29-32
    [110]李剑兰.膜过滤法从废糖蜜中分离蔗糖的初步研究:[硕士学位论文].广西:广西大学,2008
    [111]Mokari T,Sertchook H,Aharon A,et al.Nano@micro:general method for entrapment of nanocrystals in sol-gel-derived composite hydrophobic silica spheres.Chem.Mater.,2005,17:258-263
    [112]李峰,丁彩凤,张书圣,等.基于铜离子印迹壳聚糖有机-无机杂化材料的硅胶负载选择性吸附材料的制备和性能。中国专利,200610042152.3,2006-01-06
    [113]黄玉南,黄俊生,徐晓燕,等.制糖用复合型澄清剂及其制备方法.中国专利,200610036837.7,2006-07-31
    [114]陈尧,孙卫东,孙潇,等.BAC-膨润土在蔗汁中的实验研究.广西轻工业,2006,22(2):19-21
    [115]黄祖新,陈由强,黄建忠,等.利用膨润土-壳聚糖复合絮凝剂澄清糖质作物压榨混合汁的方法.中国专利,200510076751.2,2005-06-14
    [116]曾文辉,万云鹏,李江平.硅胶交联壳聚糖合成重金属吸附剂的方法.中国专利,01127897.8,2001-09-25
    [117]门胁利夫,仲原贵生.活性炭组合物和使用该活性炭组合物的液状物的脱色方法.中国专利,200480043139.9,2004-05-26
    [118]杜于民,王小英,罗继文.一种壳聚糖/累托石纳米复合材料及其制备方法.中国专利,200510020062.X.2005-12-16
    [119]Shi Q H,Tian Y,Dong X Y,et al.Chitosan-coated silica beads as immobilized metal affinity support for protein adsorption.Biochem.Eng.J.,2003,16(3):317-322
    [120]袁晓芳.聚氨酯/沸石分子筛有机-无机复合材料的制备及性能研究.太原理工大学硕士学位论文,2003
    [121]Philipp G,Schmidt H.New materials for contact lenses prepared from Si- and Ti-alkoxides by the sol-gel process.J.Non-Cryst.Solids,1984,63(1-2):283-292
    [122]Wilkes G L,Otter B,Huang H.Polymer Prep.J.Non-Cryst.Solids,1985,64(3):557-563
    [123]吴璧耀,张超灿,章文贡,等.有机-无机杂化材料及其应用.北京:化学工业出版社,2005
    [124]徐如人,庞文琴.分子筛与多孔材料化学.北京:科学出版社,2004
    [125]Shen L,Lin Y J,Zhong W,et al.Preparation and rheology of polyamide6/attapulgite nanocomposites and studies on their percolated structure.Polymer,2005,45(6):5758-5766
    [126]Ash B J,Schadler L S,Siegel R W.Glass transition behavior of alumina/polymethylmethacrylate nanocomposites.Mater.Lett.,2002,55(1-2):83-87
    [127]张超灿,何东铭,郝爽.两亲性聚合物改性二氧化硅及其与聚丙烯酸酯乳液复合体系性能研究.武汉理工大学学报,2000,22(6):8-17
    [128]Hsiue G H,Kuo W J,Huang Y P,et al.Microstructural and morphological characteristics of PS-SiO_2 nanocomposites.Polymer,2000,41(8):2813-2825
    [129]Wang S X,Wang M T,Lei Y,et al.“Anchor wrapping” of polymer up nanometer-sized TiO_2.J.Inorg.Mater.,2000,15(1):45-49
    [130]Landry C J T,Coltrain B K,Landry M R,et al.Poly(vinyl-acetate) silica filled materials-material properties of in-situ vs fumed silica particles.Macro.,1993,26(14):3702-3712
    [131]Tamaki R,Chujo Y.Synthesis of chitosan/silica gel polymer hybrids.Compos.Interface,1999,6(3):259-272
    [132]柯扬船.聚合物-无机纳米复合材料.北京:化学工业出版社,2003
    [133]Hajji P,David L,Gerard J F,Pascault J P,et al.Synthesis,structure,and morphology of polymer-silica hybrid nanocomposites based on hydroxyethyl methacrylate.J.Poly.Sci.,PART:Poly.Phy.,1999,37(22):3172-3187
    [134]Caruso F.Nanoengineering of particle surfaces.Adv.Mater.,2001,13(1):11-29
    [135]Li F,Li X M,Zhang S S.One-pot preparation of silica-supported hybrid immobilized metal affinity adsorbent with macroporous surface based on surface imppringting coating technique combined with polysaccharide incorporated sol-gel process.J.Chromatogr.A.,2006,1129(2):223-230
    [136]吕建坤,柯毓才,漆宗能,等.插层聚合制备粘土/环氧树脂纳米复合材料过程中粘土剥离行为的研究.高分子通报,2000,28(1):85-89
    [137]陈光明,马永梅,漆宗能.甲苯-2,4-二异氰酸酯修饰蒙脱土及聚苯乙烯/蒙脱土纳米复合材料的制备与表征.高分子工程,2000,20(5):599-603
    [138]朱军,李毕忠.聚合物无机纳米复合材料研究进展.2000,28(10):3-8
    [139]邝生鲁,陈芬儿,梁启勇.应用电化学.武汉:华中理工大学出版社,1994
    [140]Kotov N A,Magonov S,Tropsha E.Layer-by-layer self-assembly of alumosilicate-polyelectrolyte composites:mechanism of deposition,crack resistance,and perspectives for novel membrane materials.Chem.Mater.,1998,10(3):886-895
    [141]Gao M Y,Richter B,Kirsteins S,et al.Electroluminescence studies on self-assembled films of PPV and CdSe nanoparticles.J.Phys.Chem.,B,1998,102(21):4096-4103
    [142]江明.大分子自组装.北京:科学出版社,2006
    [143]Krishnamoorti R,Vaia R A,Giannelis E P.Structure and dynamics of polymer-layered silicate nanocomposites.Chem.Mater.,1996,8(8):1728-1734
    [144]Ebenstein D M,Pruitt LA.Nanoindentation of soft hydrated materials for application to vascular tissues.J.Biomed.Mater.Res.,2004,69A(2):222-232
    [145]许松伟.海藻酸-二氧化硅杂化凝胶固定化脱氢酶的研究:[博士学位论文].天津:天津大学,2005
    [146]Yano K,Usuki A,Okada A,et al.Synthesis and properties of polyimide clay hybrid.J.Poly.Sci.Part A:Poly.Chem.,1993,31(10):2493-2498
    [147]Kraus G.Reinforcement of Elastomers,Interscience,New York,U.S.A.,1965
    [148]Sternstein S S.Values of Intrinsic diffusion sorption,and permeation coefficients for NBR/EVA blends.J.Macro.Sci-Phy.,1972,B6/1:243-250
    [149]Kojimoto Y,Usuki A,Kawasumi M,et al.Sorption of water in nylon-6 clay hybrid.J.Appl.Poly Sci.,1993,49(7):1259-1264
    [150]金承平.膨润土负载壳聚糖交联型吸附剂的制备和性能评价:[硕士学位论文].重庆:西南石油大学,2006
    [151]邬建敏,陈正贤,阮东梁.以硅胶为载体的交联壳聚糖作为亲和层析填料基质的研究.分析化学,2002,30(9):1063-1066
    [152]张锁秦.有机非线性光学材料的分子设计:[博士学位论文].吉林:吉林大学,2002
    [153]张宏.无机纳米粒子/聚合物复合材料的制备与性能研究:[博士学位论文].甘肃:兰州大学,2007
    [154]游效曾.分子材料-光电功能化合物.上海,上海科学技术出版社,2001
    [1]张君,刘德华.世界燃料酒精工业发展现状与展望.酿酒科技,2004,125(5):118-121
    [2]张子儒.NaCS-PDMDAAC微胶囊固定化红曲霉菌培养的研究:[硕士学位论文].浙江:浙江大学,2004
    [3]林炜铁,崔华平,朱雅楠,等.一种固定化硝化细菌降解养殖废水亚硝酸盐的工艺.200810198302.9,2008-08-31
    [4]张书祥,李宁,谢林.酒精发酵固定化载体的选择.安徽大学学报(自然科学版),2000,24(2):107-110
    [5]李奎日.一种微生物复合载体及其应用.中国专利,200610090590.7,2006-06-30
    [6]田小光,彭万霖,于德永,等.海藻酸铝固定化酵母生产高浓度酒精的研究.微生物学通报,1995,22(5):282-284
    [7]宋向阳,徐勇,杨富国,等.海藻酸锰固定化细胞的乙醇发酵.南京林业大学学报,2003,27(4):1-4
    [8]Jirku V.Whole cell immobliology as a mean of enhancing ethanol tolerance.Journal of Industrial Microbiology and Biotechnology.1999,22(3):147-149
    [9]刘树文,李华.微生物固定化粒子机械强度的研究.微生物学杂志,2005,25(4):32-34
    [10]陈思运,萧熙佩.酵母生物学.济南:山东科学技术出版社,1990
    [11]王娜,梁艳,张军旗,等.硅烷修饰对环氧树脂/纳米介孔MCM-41复合材料性能的影响.材料研究学报,2005,19(1):94-101
    [12]张明霞.猕猴桃酵母固定化技术研究:[硕士学位论文].陕西:西北农林科技大学,2003
    [13]马丽辉,陈卫民.葡萄酒、果酒酒总糖检验方法的改良研究.酿酒,2004,31(3):70-72
    [14]杨惠芬,李明远,沈文.食品卫生理化检验标准手册.北京:中国标准出版社,2002
    [15]王瑞明.燃料乙醇固态发酵生产工艺的研究:[博士学位论文].天津:天津科技大学,2002
    [16]谢振根.固定化增殖酵母酒精发酵新技术研究.江苏食品与发酵,1995,19(2):28-47
    [17]Rose M F.In vivo activation by ethanol of plasma Membrane AT Pase of Sacce.Applied and Environmental Miccrobiology,1991,(57):830-835
    [18]Ohta K,Hamada S.Saccharomyces cerevisiae membrane sterol modifications in response to growth in the presence of ethanol.Applied and Environmental Microbiology,1990,56(9):2853-2857
    [19]杨萍,董家灿.酵母细胞固定化新方法PVA-卡拉胶包埋吸附.工业微生物,1992,22(6):12-15
    [20]张志华,江昌明.酶催化剂耦合固定化技术的研究进展.工业催化,2005.13(1):5-8
    [21]童群义,陈坚,堵国成,等.PVA-卡拉胶混合载体固定化大肠杆菌-酶母菌混合体系生产谷胱甘肽.工业微生物,2000,30(4):7-10
    [22]罗继刚,罗锡辉,何金海.拟薄水铝石和γ-Al_2O_3的研究.抚顺石油化工研究院院报,1989,(3):20-27
    [23]张明海,叶岗,李光辉,等.薄水铝石与拟薄水铝石差异的研究.石油学报(石油加工),1999,15(2):29-32
    [24]赵琰.氧化铝(拟薄水铝石)的孔结构研究.工业催化,2002,10(1):22-25
    [25]高志贤,程昌瑞,谭长瑜,等.拟薄水铝石酸分散性能的研究.石油炼制与化工,1999, 30(2):16-19
    [26]Dejan B,Bojana O,Ida L C,et al.Immobilization of yeast cells in PVA particles for beer fermentation.Process Bio.,2007,42(9):1348-1351
    [27]肖锦,周勤.天然高分子絮凝剂.北京:化学工业出版社.2005
    [28]许松伟.海藻酸-二氧化硅杂化凝胶固定化脱氢酶研究:[博士学位论文].天津:天津大学,2005
    [29]Pilkington P H,Margaritis A,Mensour N A,et al.Fundamentals of immobilized yeast cells for continuous beer fermentation:a review.J.Inst.Brew.,1998,104(1):19-31
    [30]Yu J L,Zhang X,Tan T W.An novel immobilization method of Saccharomyces cerevisiae to sorghum bagasse for ethanol production.J.Biotech.,2007,129(3):415-420
    [31]李晓芬.青霉素酞化酶在介孔分子筛MCM-41上的固定化研究.化学学报,2000,58(2):167-171
    [32]Prakasham R S,Kuriakose B,Ramakrishna S V.The influence of inert solids on ethanol production by Saccharomyces cerevisiae.Appl Biochem Biotechnol,1999,82(3):127-134
    [33]王建龙,周定.固定化细胞凝胶内扩散行为研究进展.生物工程展,1993,14(2):46-48
    [34]王建龙.固定化对微生物生理变化的影响.中国生物工程杂志,2003,23(7):61-66
    [35]张明霞.猕猴桃酒酿酒酵母固定化的研究:[硕士学位论文].陕西:西北农林科技大学,2003
    [36]Dejan B,Bojana O,Ida L C,et al.Immobilization of yeast cells in PVA particles for beer fermentation.Process Bio.,2007,42(9):1348-1351
    [37]Nilsson K,Birnbaum S,Flygare S,et al.A general method for the immobilization of cells with preserved viability.Eur.J.Appl.Microbiol.Biotechnol.,1983,17(6):319-326
    [38]Nedovic V A,Obradovic B,Leskosek-Cukalovic I,et al.Electrostatic generation of alginate microbeads loaded with brewing yeast.Process Biochem.,2001,37(1):17-22
    [39]Coverti A,Borghi M D,Zilli M,et al.Kinetics of alcohol fermentations carried out in rotating biological surface reactors.Biotechnol.Bioeng.,1987,29(1):16-23
    [40]Ani I,Nor A M Z,Mohd S S.Immobilization of Baker's yeast invertase in PVA-alginate matrix using innovative immobilization technique.Pro.Chem.,2008,43(6):331-338
    [41]Kourkoutas Y,Bekatorou A,Banat I M,et al.Immobilization technologies and support materials suitable in alcohol beverages production:a review.Food Microbiology,2004,21(4):377-397
    [42]高志贤,程昌瑞,谭长瑜,等.拟薄水铝石上酸分散性能的研究.石油炼制与化工,1999,30(2):16-19
    [43]Najafpour G,Younesi H,Ku S,et al.Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae.Bioresour.Technol.,2004,92(3):251-260
    [44]Joanna C R,Alexandre L,Hugo S,et al.Photosynthesis within porous silica gel:viability and activity of encapsulated cyanobacteria.J.Mater.Chem.,2008,18(4):2833-2841
    [45]Phisalaphonga M,Budiraharjoa R,Bangraka P,et al.Alginate-loofa as cartier matrix for ethanol production.J.Biosci.Bioeng.,2007,104(3):214-217
    [46]Roukas T.Ethanol production from nonsterilized carob pod extract by free and immobilized Saccharomyces cerevisiae cells using fed-batch culture.Biotechnol.Bioeng.,2004,43(3):189-194
    [47]Valach M,Navratil M,Horvathova V,et al.Efficiency of a fixed-bed and a gas-lift three-column reactor for continuous production of ethanol by pectate-and alginate-immobilized Saccharomyces cerevisiae cells.Chem.Papers,2006,60(2):154-159
    [48]Oztop H N,Oztop A Y,Karadag E,et al.Immobilization of Saccharomyces Cerevisiae on to acrylamide-sodium acrylate hydrogels for production of ethyl alcohol.Enzyme Microb. Technol., 2003, 32(1): 114-119
    
    [49] Joanna C R, Alexandre L, Bao L S. Targeting photobioreactors: Immobilisation of cyanobacteria within porous silica gel using biocompatible methods. J. Mater. Chem., 2008,18(2): 1333-1341
    [1]韩德奇,李伟,张东捧,等.燃料乙醇的生产进展和应用探讨.化工技术经济,2002,20(6):9-15
    [2]张扬建,向威达,周涛,等.我国燃料乙醇发展现状和趋势分析.中国能源,2009,20(1):16-18
    [3]黄治玲.燃料乙醇的生产与利用.化工科技,2003,11(4):44-47
    [4]王传荣,赵辉,翁连海,等.酒精生产技术.北京:科学出版社,2004
    [5]Pilkington P H,Margaritis A,Mensour N A,et al.Fundamentals of immobilized yeast cells for continuous beer fermentation:a review.J.Inst.Brew.,1998,104(1):19-31
    [6]赵四清.包埋法固定微生物细胞技术的新进展.生物技术通讯,1995,6(1):33-34
    [7]唐泉,陈伟军.挥发酸值在糖蜜酒精发酵生产中控制杂菌污染的应用.甘蔗糖业,2000,(1):57-58
    [8]谢振根.固定化增殖酵母酒精发酵新技术研究.江苏食品与发酵.1995,(2):28-47
    [9]Chum H L,Overend R P.Biomass and renewable fuels.Fuel Processing Tech.,2001,71(1-3):187-195
    [10]Kourkoutas Y,Bekatorou A,Banat I M,et al.Immobilization technologies and support materials suitable in alcohol beverages production::a review.Food Microbiology,2004,21(4):377-397
    [11]虞炳均,郑裕国,张福明,等.膜片状填料固定化酵母薯干酒精发酵生物反应器的研究.工业微生物,1995,25(3):24-28
    [12]焦瑞身.微生物工程.北京:化学工业出版社,2003
    [13]王建龙.固定化对微生物生理变化的影响.中国生物工程杂志,2003.23(7):61-66
    [14]Ani I,Nor A M Z,Mohd S S.Immobilization of Baker's yeast invertase in PVA-alginate matrix using innovative immobilization technique.Pro.Biochem.,2008,43(3):331-338
    [15]谢晓航.固定化酵母连续发酵酒精染菌问题的探讨.酿酒科技,1999,(3):44-46
    [16]秦庆军,贾鸿飞,王宇新.发酵法生产乙醇研究进展.化工进展,1998,29(5):31-35
    [17]王连阳.固定化酵母细胞发酵生产酒精的研究.华侨大学学报(自然科学版),1994,15(1):92-96
    [18]周广麟,许苏葵,严复.固定化酵母生产乙醇的研究.大连轻工业学院学报,1994,13(1):41-50
    [19]吕欣,毛忠贵.高浓度酒精发酵研究进展.酿酒科技,2003,(5):58-59
    [1]陈其斌.甘蔗制糖手册.广东:华南理工大学出版社.1993
    [2]霍汉镇.国内外制造高品质白糖和精制糖的主要工艺方法.广西蔗糖,2004,(3):26
    [3]华南工学院.制糖工业分析.北京:轻工业出版社.1981
    [4]赖凤英.降低咸水蔗白砂糖灰分.甘蔗糖业,2001,(1):26-29
    [5]中华人民共和国轻工业部.GB10499-89糖料甘蔗实验方法.北京:中国标准出版社,1989
    [6]阎欲晓.植酸在蔗汁提纯分离中的特性研究:[硕士学位论文].广西:广西大学,2001
    [7]Marshall W.Granular actived carbons from sugar cane bagasse.Inter.Sugar J.,2000,(2):147-150
    [8]黄玉南.离子交换纤维应用于精炼糖厂糖浆脱色.甘蔗糖业,1993,(6):27-30
    [9]陈山.超滤技术在甘蔗制糖的应用研究:[博士学位论文].广西:广西大学,2000
    [10]陆冬梅,杨连生.絮凝剂在甘蔗糖厂中的应用进展.甘蔗糖业,2003,(1):31-35
    [11]霍汉镇.甘蔗直接制造高品质白糖的工艺.中国专利,200510035131.4,2007-10-16
    [12]李素贞,张绪跃.炼糖糖浆亚磷双浮法澄清新工艺的研究与应用.广西轻工业,2006,(5):35-38
    [13]何惠欢,孙卫东,梁欣泉,等.改进亚硫酸法澄清工艺的新方法.广西蔗糖,2003,(3):24-26
    [14]霍汉镇.应用高科技,提高我国白糖的质量与档次.中国甜菜糖业,2005,(1):1
    [15]Nyquist R A,Kagel R O.Infrared Spectra of Inorganic Compounds.New York and London:Academic Press,1971
    [16]叶满红.关于白砂糖灰分问题的研究.甘蔗糖业,1998,(5):49-52
    [17]霍汉镇.现代制糖工业技术.北京:轻工业出版社,1992
    [18]陈树功.现代制糖工艺理论.北京:轻工业出版社,1988
    [19]蚁细苗.浅析白砂糖絮凝产生的原因.甘蔗糖业,2006,(4):30-33
    [20]赖凤英,陈焕章,林福兰.离子交换树脂对糖浆脱色效能的评价.中国甜菜糖业,2000,(6):12-14
    [21]Bento L.Sugar decolorization by ion-exchange resins with regenerant recovery.Inter.Sugar J.,1990,(2):116-119
    [22]Goodacre B.Enzyme catalysed formation of color in cane juice.Inter.Sugar J.,1980,(1):51-54
    [23]黄文强,李晨曦.吸附分离材料.北京:化学工业出版社,2005
    [24]井出哲夫.张自杰等译.水处理工程理论与应用.1978,北京:中国建筑工业出版社.
    [25]何小维,秦慧民,于淑娟,等.四种树脂糖浆脱色效果比较.中国甜菜糖业,2006,(2):20-22
    [26]陆登俊,刘慧霞,李坚斌.影响清汁钙盐量的工艺参数优化研究.甘蔗糖业,2002,(1):34-36
    [27]Sharma S.蔗汁澄清过程中酚的含量.国际甘蔗糖学会第十七届年会论文选集(中译本下集),(17):27-30
    [28]霍汉镇.现代制糖化学与工艺学.北京:化学工业出版社,2008
    [29]Shore M.Factors affecting white sugar colour.Sugar Tech.Rev.,1984,12(1):21-24
    [30]霍汉镇.制糖科技创新,路在何方.甘蔗糖业,2005,(6):41-43

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700