复杂嵌段共聚物相行为与力学性能的自洽场理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代科技的发展日新月异,结构简单、组成单一的高分子材料往往难以满足对性能日益广泛和苛刻的要求。新型高分子材料的分子设计及现有的聚合物材料的共混改性已经成为高分子材料高性能化的研究重点。可以通过改变聚合物分子量、共聚物组成、分子链构型等分子参数和调节温度、剪切等加工工艺获得不同尺寸和形状的新型功能材料。
     聚合物的相行为及其动力学研究与高分子材料内部结构的形态生成与控制密切相关,因而直接影响到材料的最终性能。结构复杂、组成多样的聚合物体系能够赋予新材料优异的结构与性能,但额外增加的分子参数与工艺条件将使材料的设计更为复杂和难以控制。理论研究可以帮助人们理解多组分聚合物体系相分离的控制因素,预测多相复杂结构聚合物体系有序或部分有序结构,设计理想的新型材料。目前为止,高分子理论的研究还没有在复杂嵌段高分子材料结构性能、复合改性、加工成型等方面进行过系统的阐述。本论文试图通过不同的理论方法,包括平衡热力学理论和相分离动力学等,对上述问题给出初步的解答。将聚合物的微观结构与高分子材料的宏观性能与流变行为相联系,重点考察了多组分聚合物体系的相行为和力学性能。在以下几个方面展开研究:剪切场下复杂嵌段高分子的相行为;嵌段高分子相分离动力学机理及流变行为;嵌段高分子的结构与组成对有序无序相转变温度(ODT)的影响;预测共聚物组成与结构对多元共混高分子体系热力学相容性与相分离形态的影响;两亲性嵌段共聚物在选择性溶液中的自组装行为。
     第一章:绪论部分,对本文涉及到的理论方法和研究内容作出了阐述。
     第二章:由于高分子材料的加工不仅仅是为了成型这样一个单纯的物理过程,同时也是一个性能调控过程,因此对温度场、外部流场等导致高分子复杂流体的相结构及其流变学的研究一直是凝聚态物理及高分子科学的前沿领域。本章中利用DSCFT耦合可变形元胞算法描述剪切的边界条件,研究了高分子聚合物的不同链拓扑结构,例如A/B均聚物共混物与AB二嵌段共聚物、线型ABC与星型ABC三嵌段共聚物,在稳态剪切场下的相行为。并考察了具有不同链结构的线型嵌段共聚物嵌段在振荡剪切场下的相行为,分别阐述了线型ABC三嵌段共聚物、(AB)_n型多嵌段共聚物在振荡剪切场中形成三种层状相取向(平行相Parallel,垂直相Perpendicular,纬向垂直相Transverse)所需的剪切条件。
     第三章:材料科学的研究中,一个重要目的就是希望能够通过已知微观结构得到其宏观的力学性能。虽然,已有部分理论工作可以用于材料力学性能的预测,但是关于嵌段共聚物的结构—性能方面的理论研究仍然比较匮乏。我们在动态自洽场理论的基础上,将应变场作为一种外场的影响自然地引入到自洽场理论的单链传播因子q(r,s)中,可以得到体系的应力—应变关系,并且由此计算得到的力学性能包含了高分子链拓扑结构的信息,可以用以考察聚合物的微观结构对材料动态力学性能的影响。首先研究了三嵌段共聚高分子相分离得到有序相结构中的应力分布情况;然后根据单链传播因子q(r,s)解出的应力与应变曲线进行线性拟和得到储能模量G'。利用G'对微相结构的变化很敏感的特点,比较了AB两嵌段共聚物与A/B共混物的的熔体淬冷后的相分离机理,并与先前实验的图案和其他理论结果进行了比较,证实了算法的可靠性;最后,比较了线型ABC和星型ABC三嵌段高分子由于链拓扑结构的不同导致的相分离机理上的差异。
     第四章:研究了共聚物的分子参数与有序无序相转变温度(ODT)之间的关系,对改善材料的加工性能具有潜在的应用价值。因为储能模量G'与相分离微相结构紧密关联,所以可以利用模量G'的改变追踪相转变中形态的细微变化。我们在动态自洽场方法DSCFT的基础上,通过缓慢改变Flory-Huggins相互作用参数X模拟了实验中的温度扫描过程并得到相应的X_(ODT)。研究了共聚物的分子参数对相互作用能X~N_(ODT)的影响。分别就多嵌段共聚物的拓扑结构和多分散指数对体系ODT行为的影响进行了详细的研究和讨论。动态自洽场方法DSCFT比从热力学平衡相形态上判断ODT或OOT更加灵敏,在转变点附近受浓度涨落的影响也较小。
     第五章:聚合物共混改性是实现高分子材料高性能化、精细化、功能化和发展新品种的重要途径之一。随着共混组分数的增加以及高分子链拓扑结构的复杂性增加,共混物内部能够相分离形成各种不同的复杂结构。本章利用Flory-Huggins格子平均场理论和动态自洽场方法DSCFT,研究了聚合物的组成与结构对多元共混高分子体系热力学相容性和平衡相形态的影响。预测了几种聚丙烯/弹性体/塑料三元共混体系的相容性,提出改善体系相容性的建议,并与实验结果进行了比较验证;另外,通过动态自洽场方法DSCFT模拟了聚丙烯多元共混体系的形态,对相分离过程中得到的特殊形态和各形态出现的条件作出阐述。模拟结果表明:体系的形态受共聚物的组成影响很大。通过调节共聚物的组成与嵌段结构,可以得到多种复杂的多相形态。
     第六章,聚合物与溶剂的混合溶液体系可以看做多组分聚合物共混的另一种形式,其涵盖了涂料、胶粘剂、生物降解及医用缓释材料等诸多研究领域而得到人们的广泛关注。木章应用SCFT自洽场理论研究了两亲性嵌段共聚物在选择性溶液中的自组装行为,重点讨论了“crew-cut”型两亲性嵌段高分子中嵌段的多分散指数对自组装形态的影响以及具有复杂拓扑结构如星型(star)、梳形(comb-coil)的两亲性嵌段高分子的稀溶液自组装形态。另一方面,由于合成技术的不断发展,星型、环型、(超)接枝分子结构与常见的线型分子结构在自组装过程中具有明显的区别,验证了分子结构能显著影响自组装过程、自组装体的形态和不同形态间的演变。本章的理论研究为制备和控制两亲性嵌段高分子在溶液中的自组装形态提供了一定的理论依据。
Simply structured and homogeneous macromolecular materials are falling short of the urgent demands of developing advanced materials with excellent properties,as the modern techniques are growing rapidly.Designing novel molecular structure or blending of the existing polymers have become the focus of obtaining advanced materials.It is possible to acquire new function materials,which has diversified sizes and shapes,by tuning molecular parameters such as molecular weight、molecular architecture、copolymer compostion and processing conditions such as temperature、external shear field,etc.
     The study on phase behaviors and rheological properties has close relationship with macromolecular materials' pattern formation and properties,which ultimately linked to the performance of these materials.Complex polymer systems not only provide people with novel materials capable of performing various purposes and possessing excellent properties,but also add extra parameters and conditions to confuse the material design.Therefore,theoretical study which is able to help people understand the governing factors of the behaviors of multicomponent polymer systems,assist in the designing of advanced materials.People are now paying more attention to the set up of appropriate theorectial methods to predict、design and control the process of obtaining ordered multiphase complex polymer systems.Till recently,there is still lack of a systematic description of the relation between complex polymer structure and property、composite modification、processing conditions.In this dissertation,we managed to give a primary answer to the previous questions by combining different theoretical methods,such as equilibrium thermodynamics and phase separation dynamics,etc.The link beween microscopic molecular structures and macroscopic properties and rheological behaviors enables us to study the phase behavior and mechanical properties of complex polymer systems.The results are presented in the following parts:complex block copolymers under external shear;phase separation dynamics and rheological properties of block copolymers;the effect of molecular structure and composition on Order-Disorder Transition temperation;prediction of miscibility and morphology of multicomponent polymer blends;self assembly of amphiphilic copolymers in dilute solutions.
     Chapter 1,gives the overview of the theoretical methods and research purposes.
     Chapter 2,external field effects and their resulting properties have long been studied in the frontier of condensed matter and macromolecular science.For instance, polymers can be oriented in the external flow field.We combine DSCFT scheme with variable cell shape method in the description of boundary conditions,and applied to the study of topological effect,such as differences between A/B blends and AB diblock、linear ABC and star ABC triblock copolymers,on the behavior of these copolymers under simple shear flow.After that,topologically different linear copolymers are treated under the oscillatory shear.The results are able to give the shearing conditions for the appearance of lamellae orientations such as Parallel, Perpendicular and Transverse.
     Chapter 3,one of the most important goals in the material research is to obtain macroscopic properties and rheological behaviors from known micro structures. There are few theoretical methods capable of predicting mechanical properties,yet the researches on the structure-property relation of block copolymers are still fancy. We obtain the stress-strain relations by introducing the deformation field into the DSCFT functions and sinle chain propagator q(r,s).Therefore,the topological information is naturally put into the calculation which enables the study of the relation between micro structures and rheological properties.At first,we give the stress distribution of triblock copolymers.Then,storage modulus G',which is sensitive to the possible structure change,is calculated by linear fit of stress-strain curves,and is used to compare the differences between AB diblock and A/B blend in the phase separation mechanism.Finally,the DSCFT scheme is applied to distinguishing of one step,two step separation mechanism in linear and star ABC triblock copolymers.
     Chapter 4,the study on ODT and OOT of block copolymers is able to help to the design of processing conditions in the industry.Variable cell shape DSCFT proposed in this dissertation not only take into account the relation between storage modulus G' and interaction parameters x~N,but topological and polydispersity effects on the ODT of block copolymers.
     Chapter 5,polymer blends,which exhibit outstanding microstructure and excellent properties,have become more and more important in the advanced material design.In this chapter,Flory-Huggins mean field theory and DSCFT scheme is used to investigate the component and topological structure effects on the miscibility and equilibrium morphologies of polymer blends.Miscibility of ternary blend systems such as PP/Elastomer/Plastic are predicted and verified by previous experimental results.Possible advices are given for the improvement of the miscibility.Then, DSCFT scheme is applied to the study of pattern formation of PP multiphase systems.We give detailed description of the particular morphologies and conditions for these morphologies to occur.The simulation results show that the composition of the copolymers have fundamental impact on the pattern formation of the blend system.
     Chapter 6,polymer and solvent mixtures can be regarded as another type of multicomponent blends,which had covered areas of paints,coatings,adhesives and biodegradable materials.In this chapter,SCFT is applied to study self-assembly of amphiphilic block copolymers in selective solvents.The polydispersity effect of "crew-cut" AB diblock copolymers and different architectures such as star、comb-coil on the self-assembled morphologies in solution has been investigated.The theoretical results provide useful guidance to the synthesis and preparation of various types of aggregates in dilute solutions.
引文
[1]de Gennes,P.G.Soft Matter[J].Reviews of Modem Physics.1992,64(3):645-648.
    [2]de Gennes,P.G.Granular matter:a tentative view[J].Reviews of Modem Physics.1999,71(2):$374-$382.
    [3]de Gennes,P.G.,Flexible polymers in nanopores,in Polymers in Confined Environments.1999.p.91-105.
    [4]Cochran,E.W.;Bates,F.S.Shear-induced network-to-network transition in a block copolymer melt[J].Physical Review Letters.2004,93(8).
    [5]Amundson,K.;Helfand,E.;Davis,D.D.;Quan,X.;Patel,S.S.;Smith,S.D.Effect of an Electric-Field on Block Copolymer Microstructure[J].Macromolecules.1991,24(24):6546-6548.
    [6]Zhang,H.D.;Zhang,J.W.;Yang,Y.L.;Zhou,X.D.Microphase separation of diblock copolymer induced by directional quenching[J].Journal of Chemical Physics.1997,106(2):784-792.
    [7]Hamley,I.W.Nanostructure fabrication using block copolymers[J].Nanotechnology.2003,14(10):R39-R54.
    [8]Tyler,C.A.;Morse,D.C.Orthorhombic Fddd network in triblock and diblock copolymer melts[J].Physical Review Letters.2005,94(20).
    [9]Vlasov,Y.A.;Bo,X.Z.;Sturm,J.C.;Norris,D.J.On-chip natural assembly of silicon photonic bandgap crystals[J].Nature.2001,414(6861):289-293.
    [10]施良和;胡汉杰,高分子科学的今天和明天[M].北京:化学工业出版社,1994.
    [11]何曼君;董西侠,高分子物理(修订版)[M].上海:复旦大学出版社,2001.
    [12]Bates,F.S.Polymer-polymer phase behavior[j].Science.1991,251(4996):898-905.
    [13]何曼群;董西侠,高分子物理(修订版)[M].上海:复旦大学出版社,2001.
    [14]Matsen,M.W.;Bates,F.S.Block copolymer microstructures in the intermediate-segregation regime[J].Journal of Chemical Physics.1997,106(6):2436-2448.
    [15]Qi,S.Y.;Wang,Z.G.Kinetic pathways of order-disorder and order-order transitions in weakly segregated microstructured systems[J].Physical Review Letters.1996,76(10):1679-1682.
    [16]Ren,S.R.;Hamley,I.W.Cell dynamics simulations of microphase separation in block copolymers[J].Macromolecules.2001,34(1):116-126.
    [17]Bates,F.S.;Fredrickson,G.H.Block copolymers - Designer soft materials[J].Physics Today.1999,52(2):32-38.
    [18]Gupta,J.A.;Singh,M.A.;Salomons,G.J.;Foran,W.A.;Capel,M.S.Small-angle X-ray scattering study of the microphase separation transition in asymmetric diblock copolymers:A model "B" kinetic phenomenon[j].Macromolecules.1998,31(9):3109-3115.
    [19]Bates,F.S.Network phases in block copolymer melts[J].Mrs Bulletin.2005, 30(7): 525-532.
    
    [20]Takenaka, M.; Hashimoto, T. Scattering Studies of Self-Assembling Processes of Polymer Blends in Spinodal Decomposition .2. Temperature-Dependence[J].Journal of Chemical Physics. 1992, 96(8): 6177-6190.
    
    [21]Hashimoto, T.; Takenaka, M.; Jinnai, H. Scattering Studies of Self-Assembling Processes of Polymer Blends in Spinodal Decomposition[J]. Journal of Applied Crystallography. 1991,24:457-466.
    
    [22] Bates, F.S.; Schulz, M.F.; Khandpur, A.K.; Forster, S.; Rosedale, J.H.; Almdal,K.; Mortensen, K. Fluctuations, Conformational Asymmetry and Block-Copolymer Phase-Behavior[J]. Faraday Discussions. 1994(98): 7-18.
    
    [23]Matsen, M.W.; Barrett, C. Liquid-crystalline behavior of rod-coil diblock copolymers[J]. Journal of Chemical Physics. 1998,109(10): 4108-4118.
    
    [24]Chiu, H.W.; Kyu, T. Equilibrium Phase-Behavior of Nematic Mixtures[J].Journal of Chemical Physics. 1995,103(17): 7471-7481.
    
    [25]Chiu, H.W.; Kyu, T. Spatio-temporal growth of nematic domains in liquid crystal polymer mixtures[J]. Journal of Chemical Physics. 1999, 110(12):5998-6006.
    
    [26]Jain, S.; Bates, F.S. On the origins of morphological complexity in block copolymer surfactants[J]. Science. 2003,300: 460-464.
    
    [27]Koizumi, S.; Hasegawa, H.; Hashimoto, T. Ordered Structures of Block Copolymer/Homopolymer Mixtures .5. Interplay of Macrophase and Microphase Transitions[J]. Macromolecules. 1994, 27(22): 6532-6540.
    
    [28]Ito, A. Domain patterns in copolymer-homopolymer mixtures[J]. Physical Review E. 1998, 58(5): 6158-6165.
    
    [29] Tang, P.; Qiu, F.; Zhang, H.D.; Yang, Y.L. Morphology and phase diagram of complex block copolymers: ABC linear triblock copolymers[J]. Phys. Rev. E. 2004,69(3): 031803.
    
    [30] Tang, P.; Qiu, F.; Zhang, H.D.; Yang, Y.L. Morphology and phase diagram of complex block copolymers: ABC star triblock copolymers[J]. J. Phys. Chem. B 2004,108(24): 8434-8438.
    
    [31]Stadler, R.; Auschra, C.; Beckmann, J.; Krappe, U.; Voigtmartin, I.; Leibler, L.Morphology and Thermodynamics of Symmetrical Poly(a-BIock-B- Bloch-C) Triblock Copolymers[J]. Macromolecules. 1995,28(9): 3080-3097.
    
    [32]Flory, P.J., Principles of polymer chemistry[M]. New York: Cornell University Press, 1953.
    
    [33] Rubinstein, M.; Colby, R.H., Polymer physics[M]. New York: Oxford University Press, 2005.
    
    [34]de Gennes, P.G, Scaling concepts in polymer physics[M]. New York: Cornell University Press, 1979.
    
    [35]于禄;郝伯林,相变和临界现象[M].北京:科学出版社, 1984.
    
    [36]Flory, P.J. Thermodynamics of high polymer solutions[J]. Journal of Chemical Physics. 1941, 9(8): 660-661.
    
    [37]Flory, P.J. Thermodynamics of high polymer solutions[J]. Journal of Chemical Physics. 1942,10(1): 51-61.
    [38]Huggins,M.L.Solutions of long chain compounds[J].Journal of Chemical Physics.1941,9(5):440-440.
    [39]Huggins,M.L.Theory of solutions of high polymers[J].Journal of the American Chemical Society.1942,64:1712-1719.
    [40]Tompa,H.Phase Relationships in Polymer Solutions[J].Transactions of the Faraday Society.1949,45(12):1142-1152.
    [41]Paul,D.R.;Newman,S.,Polymer B lends[M].New York:Academic Press,1978.
    [42]Zeman,L.;Patterson,D.Effect of the solvent on polymer incompatibility in solution[J].Macromolecules.1972,5(4):513.
    [43]Beret,S.;Prausnitz,J.M.Densities of Amorphous Polymers at High-Pressures[J].Journal of Applied Polymer Science.1974,18(12):3779-3781.
    [44]Olabisi,O.;Robeson,L.M.;Shaw,M.T.,Polymer-polymer miscibility[Ml.London:Academic Press,1978.
    [45]邱枫,剪切流场中聚合物共混物的相分离1998,复旦大学:上海.
    [46]Cahn,J.W.Phase separation by spinodal decomposition in isotropic systems[J].Journal of Chemical Physics.1965,42(1):93-99.
    [47]Binder,K.;Stauffer,D.Theory for the slowing down of the relaxation and spinodal decomposition of binary mixture lJ].Physical Review Letters.1974,33(17):1006-1009.
    [48]McMaster,L.P.Aspects of Polymer-Polymer Thermodynamics[J].Macromolecules.1973,6(5):760-773.
    [49]de Gennes,P.G.Dynamics of fluctuations and spinodal decomposition in polymer blends[J].Journal of Chemical Physics.1980,72(9):4756-4763.
    [50]Flory,P.J.;Orwoll,R.A.;Vrij,A.Statistical Thermodynamics of Chain Molecule Liquids.2.Liquid Mixtures of Normal Paraffin Hydrocarbons[J].Journal of the American Chemical Society.1964,86(17):3515-&.
    [51]Abe,A.;Flory,P.J.Thermodynamic Properties of Mixtures of Small Nonpolar Molecules[J].Journal of the American Chemical Society.1965,87(9):1838-&.
    [52]Sanchez,I.C.;Lacombe,R.H.Theory of Liquid-Liquid and Liquid-Vapor Equilibria[J].Nature.1974,252(5482):381-382.
    [53]Zhang,H.X.;Bhagwagar,D.E.;Graf,J.F.;Painter,P.C.;Coleman,M.M.The Effect of Hydrogen-Bonding on the Phase-Behavior of Temary Polymer Blends[J].Polymer.1994,35(25):5379-5397.
    [54]Bhagwagar,D.E.;Painter,P.C.;Coleman,M.M.Light-Scattering-Studies on Hydrogen-Bonded Polymer Blends[J].Macromolecules.1994,27(24):7139-7145.
    [55]Cochran,E.W.;Garcia-Cervera,C.J.;Fredrickson,G.H.Stability of the gyroid phase in diblock copolymers at strong segregation[J].Macromolecules.2006,39(7):2449-2451.
    [56]Leibler,L.Theory of Microphase Separation in Block Co-Polymers[J].Macromolecules.1980,13(6):1602-1617.
    [57]Helfand,E.Block Copolymer Theory.3.Statistical-Mechanics of Microdomain Structure[J].Macromolecules.1975,8(4):552-556.
    [58]Helfand,E.;Wasserman,Z.R.Block Copolymer Theory.4.Narrow Interphase Approximation[J].Macromolecules.1976,9(6):879-888.
    [59]Helfand, E:; Wasserman, Z.R. Block Copolymer Theory .5. Spherical Domains[J]. Macromolecules. 1978,11(5): 960-966.
    
    [60]Helfand, E.; Wasserman, Z.R. Block Co-Polymer Theory .6. Cylindrical Domains[J]. Macromolecules. 1980,13(4): 994-998.
    
    [61]Ohta, T.; Kawasaki, K. Equilibrium Morphology of Block Copolymer Melts[J].Macromolecules. 1986,19(10): 2621-2632.
    
    [62]Ohta, T.; Kawasaki, K. Comment on the Free-Energy Functional of Block Copolymer Melts in the Strong Segregation Limit[J]. Macromolecules. 1990, 23(8):2413-2414.
    
    [63]Fredrickson, G.H.; Helfand, E. Fluctuation Effects in the Theory of Microphase Separation in Block Copolymers[J]. Journal of Chemical Physics. 1987, 87(1):697-705.
    
    [64]Nakazawa, H.; Ohta, T. Microphase Separation of Abe-Type Triblock Copolymers[J]. Macromolecules. 1993, 26(20): 5503-5511.
    
    [65]Chaikin, P.M.; Lubensky, T.C., Principles of Condensed Matter Physics[M].Cambridge: Cambridge University Press, 1997.
    
    [66]Edwards, S.F. Statistical mechanics of polymers with excluded volume[J].Proceedings of The Physical Society of London. 1965, 85(546p): 613-624.
    
    [67]Helfand, E. Theory of inhomogeneous polymers - fundamentals of gaussian random-walk model[J]. Journal of Chemical Physics. 1975, 62(3): 999-1005.
    
    [68]Noolandi, J.; Hong, K.M. Theory of block copolymer micelles in solution[J].Macromolecules. 1983,16(9): 1443-1448.
    
    [69] Chaudhuri, R.K.; Finley, J.P.; Freed, K.F. Comparison of the perturbative convergence with multireference Moller-Plesset, Epstein-Nesbet, forced degenerate and optimized zeroth order partitionings: The excited BeH2 surface[J]. Journal Of Chemical Physics. 1997,106(10): 4067-4081.
    
    [70]Vilgis, T.A. Polymer theory: Path integrals and scaling[J]. Physics Reports-Review Section of Physics Letters. 2000,336(3): 167-254.
    
    [71]Fredrickson, G.H.; Ganesan, V. Field-theoretic computer simulation methods for polymers and complex fluids[J]. Macromolecules. 2002,35(1): 16-39.
    
    [72]Lee, J.Y.; Balazs, A.C.; Thompson, R.B.; Hill, R.M. Self-assembly of amphiphilic nanoparticle-coil "tadpole" macromolecules[J]. Macromolecules. 2004,37(10): 3536-3539.
    
    [73]Matsen, M.W.; Barrett, C. Liquid-crystalline behavior of rod-coil diblock copolymers[J]. Journal of Chemical Physics. 1998,109(10): 4108-4188.
    
    [74]de Gennes, P.G.; Prost, J., The Physics of Liquid Crystals[M]. Oxford:Clarendon press, 1993.
    
    [75]Morse, D.C.; Fredrickson, G.H. Semiflexible Polymers Near Interfaces[J].Physical Review Letters. 1994, 73(24): 3235-3238.
    
    [76]Liu, A.J.; Fredrickson, G.H. Phase separation kinetics of rod/coil mixtures[J].Macromolecules. 1996,29(24): 8000-8009.
    
    [77]Edwards, S.F. Theory of Polymer Solutions at Intermediate Concentration[J].Proceedings of the Physical Society of London. 1966, 88(560P): 265-&.
    
    [78]Feynman, R.P., Quantum Mechanics and Path Integrals. [M]. New York: McGraw-Hill Book Company Press,1965.
    [79]Matsen,M.W.;Schick,M.Stable and unstable phases of a diblock copolymer melt[J].Physical Review Letters.1994,72(16):2660-2663.
    [80]Drolet,F.;Fredrickson,G.H.Combinatorial screening of complex block copolymer assembly with self-consistent field theory[J].Physical Review Letters.1999,83(21):4317-4320.
    [81]Tzeremes,G.;Rasmussen,K.O.;Lookman,T.;Saxena,A.Efficient computation of the structural phase behavior of block copolymers[J].Physical Review E.2002,65(4).
    [82]Sides,S.W.;Fredrickson,G.H.Parallel algorithm for numerical self-consistent field theory simulations of block copolymer structure[J].Polymer.2003,44(19):5859-5866.
    [83]孙明珠,多嵌段共聚物的相分离和囊泡形状的自洽场理论砚究.2006,复旦大学:上海.
    [84]Sun,M.Z.;Wang,P.;Qiu,E;Tang,P.;Zhang,H.D.;Yang,Y.L.Morphology and phase diagram of ABC linear triblock copolymers:Parallel real-space self-consistent-field-theory simulation[J].Physical Review E.2008,77(1):9.
    [85]Hahn,T.,International Table for Crystallography[M].4th ed.Vol.A.Boston:Kluwer Academic Publishers,1996.
    [86]Shi,A.C.;Noolandi,J.;Desai,R.C.Theory of anisotropic fluctuations in ordered block copolymer phases[J].Macromolecules.1996,29(20):6487-6504.
    [87]Shull,K.R.Interfaciai Phase-Transitions In Block Copolymer Homopolymer Blends[J].Macromolecules.1993,26(9):2346-2360.
    [88]Matsen,M.W.;Bates,F.S.Unifying weak-and strong-segregation block copolymer theories[J].Macromolecules.1996,29(4):1091-1098.
    [89]Thompson,R.B.;Rasmussen,K.O.;Lookman,T.Improved convergence in block copolymer self-consistent field theory by Anderson mixing[J].Journal Of Chemical Physics.2004,120(1):31-34.
    [90]Press,W.H.;Flannery,B.E;Teukolsky,S.A.;Vetterling,W.T.,Numerical Recipes[M].New York:Cambridge University Press,1988.
    [91]Bohbot-Raviv,Y.;Wang,Z.G.Discovering new ordered phases of block copolymers[J].Physical Review Letters.2000,85(16):3428-3431.
    [92]Barrat,J.L.;Fredrickson,G.H.;Sides,S.W.Introducing variable cell shape methods in field theory simulations of polymers[j].Journal of Physical Chemistry B 2005,109(14):6694-6700.
    [93]Hashimoto,T.Dynamics in Spinodal Decomposition of Polymer Mixtures[J].Phase Transitions.1988,12(1):47-119.
    [94]Cross,M.C.;Hohenberg,P.C.Pattern-Formation Outside of Equilibrium[J].Reviews of Modern Physics.1993,65(3):851-1112.
    [95]Hohenberg,P.C.;Halperin,B.I.Theory of Dynamic Critical Phenomena[J].Reviews of Modern Physics.1977,49(3):435-479.
    [96]Tanaka,H.Viscoelastic phase separation[J].Journal of Physics-Condensed Matter.2000,12(15):R207-R264.
    [97]Cahn,J.W.Phase separation by spinodal decomposition in isotropic systems[J]. J.Chem.Phys. 1965, 42(1): 93.
    
    [98]Cahn, J.W.; Hilliard, J.E. Free energy of a nonunifrom system. I. Interfacial free energy[J]. J.Chem.Phys. 1958, 28(2): 258.
    
    [99]Cahn, J.W.; Hilliard, J.E. Free energy of a nonuniform system. III. Nucleation in a two-component incompressible fluid[J]. J.Chem.Phys. 1959, 31(3): 688.
    
    [100] Fraaije, J. Dynamic Density-Functional Theory for Microphase Separation Kinetics of Block-Copolymer Melts[J]. J. Chem. Phys. 1993, 99(11): 9202-9212.
    
    [101] Kyu, T.; Nwabunma, D.; Chiu, H.W. Theoretical simulation of holographic polymer-dispersed liquid-crystal films via pattern photopolymerization-induced phase separation[J]. Physical Review E. 2001, 63(6): art. no.-061802.
    
    [102] Yamazaki, N.; Motoyama, M.; Nonomura, M.; Ohta, T. Morphology of microphase separated domains in rod-coil copolymer melts[J]. Journal of Chemical Physics. 2004,120(8): 3949-3956.
    
    [103] Nakazawa, H.; Fujinami, S.; Motoyama, M.; Ohta, T.; Araki, T.; Tanaka, H.;Fujisawa, T.; Nakada, H.; Hayashi, M.; Aizawa, M. Phase separation and gelation of polymer-dispersed liquid crystals[J]. Computational and Theoretical Polymer Science. 2001,11(6): 445-458.
    
    [104] Oono, Y.; Puri, S. Computationally Efficient Modeling of Ordering of Quenched Phases[J]. Physical Review Letters. 1987, 58(8): 836-839.
    
    [105] Oono, Y.; Puri, S. Study of Phase-Separation Dynamics by Use of Cell Dynamical- Systems .1. Modeling[J]. Physical Review A. 1988, 38(1): 434-453.
    
    [106] Puri, S.; Oono, Y. Study of Phase-Separation Dynamics by Use of Cell Dynamical- Systems .2. Two-Dimensional Demonstrations[J]. Physical Review A.1988,38(3): 1542-1565.
    
    [107] Shinozaki, A.; Oono, Y. Spinodal Decomposition in 3-Space[J]. Physical Review E. 1993, 48(4): 2622-2654.
    
    [108] Koga, T.; Kawasaki, K.; Takenaka, M.; Hashimoto, T. Late-Stage Spinodal Decomposition in Binary Fluids - Comparison between Computer-Simulation and Experimental Results[J]. Physica A. 1993,198(3-4): 473-492.
    
    [109] Bahiana, M.; Oono, Y. Cell dynamical system approach to block copolymers[J]. Phys.Rev.A. 1990, 41(12): 6763.
    
    [110] Ren, S.R.; Hamley, I.W.; Teixeira, P.I.C.; Olmsted, P.D. Cell dynamics simulations of shear-induced alignment and defect annihilation in stripe patterns formed by block copolymers - art. no. 041503[J]. Physical Review E. 2001, 6304(4):1503-+.
    
    [111] Fraaije, J.; vanVlimmeren, B.A.C.; Maurits, N.M.; Postma, M.; Evers, O.A.;Hoffmann, C; Altevogt, P.; GoldbeckWood, G The dynamic mean-field density functional method and its application to the mesoscopic dynamics of quenched block copolymer melts[J]. Journal Of Chemical Physics. 1997,106(10): 4260-4269.
    
    [112] Reister, E.; Muller, M.; Binder, K. Spinodal decomposition in a binary polymer mixture: Dynamic self-consistent-field theory and Monte Carlo simulations[J]. Physical Review E. 2001, 64(4).
    
    [113] Morita, H.; Kawakatsu, T.; Doi, M.; Yamaguchi, D.; Takenaka, M.;Hashimoto, T. Competition between micro- and macrophase separations in a binary mixture of block copolymers. A dynamic density functional study[J].Macromolecules. 2002, 35(19): 7473-7480.
    
    [114] Yeung, C; Shi, A.C. Formation of interfaces in incompatible polymer blends: A dynamical mean field study[J]. Macromolecules. 1999, 32(11):3637-3642.
    
    [115] Morita, H.; Kawakatsu, T.; Doi, M. Dynamic density functional study on the structure of thin polymer blend films with a free surface[J]. Macromolecules. 2001,34(25): 8777-8783.
    
    [116] Zvelindovsky, A.V.; Sevink, G.J.A.; van Vlimmeren, B.A.C.; Maurits, N.M.;Fraaije, J.GE.M. Three-dimensional mesoscale dynamics of block copolymers undershear: The dynamic density-functional approach[J]. Physical Review E. 1998, 57(5):R4879-R4882.
    
    [117] Sevink, G.J.A.; Zvelindovsky, A.V.; van Vlimmeren, B.A.C.; Maurits, N.M.;Fraaije, J.GE.M. Dynamics of surface directed mesophase formation in block copolymer melts[J]. Journal of Chemical Physics. 1999,110(4): 2250-2256.
    
    [118] Maurits, N.M.; Zvelindovsky, A.V.; Sevink, G.J.A.; van Vlimmeren, B.A.C.;Fraaije, J. Hydrodynamic effects in three-dimensional microphase separation of block copolymers: Dynamic mean-field density functional approach[J]. Journal of Chemical Physics. 1998,108(21): 9150-9154.
    
    [119] Maurits, N.M.; Zvelindovsky, A.V.; Fraaije, J. Viscoelastic effects in three-dimensional microphase separation of block copolymers: Dynamic mean-field density functional approach[J]. Journal of Chemical Physics. 1998, 109(24):11032-11042.
    
    [120] Maurits, N.M.; Sevink, G.J.A.; Zvelindovsky, A.V.; Fraaije, J. Pathway controlled morphology formation in polymer systems: Reactions, shear, and microphase separation[J]. Macromolecules. 1999,32(22): 7674-7681.
    
    [121] Fraaije, J.; Zvelindovsky, A.V.; Sevink, G.J.A. Computational soft nanotechnology with mesodyn[J]. Molecular Simulation. 2004,30(4): 225-238.
    
    [122] Maurits, N.M.; Fraaije, J. Mesoscopic dynamics of copolymer melts: From density dynamics to external potential dynamics using nonlocal kinetic coupling[J].Journal Of Chemical Physics. 1997,107(15): 5879-5889.
    
    [123] Velasco, E.; Toxvaerd, S. Phase separation in two-dimensional binary fluids: A molecular dynamics study[J]. Physical Review E. 1996, 54(1): 605-610.
    
    [124] Sariban, A.; Binder, K. Critical properties of the Flory-Huggins lattice model of polymer mixture[J]. J.Chem.Phys. 1987, 86(10): 5859-5872.
    
    [125] Sariban, A.; Binder, K. Phase-Separation of Polymer Mixtures in the Presence of Solvent[J]. Macromolecules. 1988, 21(3): 711-726.
    
    [126] Rodriguez, A.L.; Wittmann, H.P.; Binder, K. Orientational Ordering in 2-Dimensional Polymer-Solutions - Monte-Carlo Simulations of a Bond Fluctuation Model[J]. Macromolecules. 1990, 23(19): 4327-4335.
    
    [127] Schichtel, T.E.; Binder, K. Kinetics of Phase-Separation in Polydisperse Polymer Mixtures[J]. Macromolecules. 1987,20(7): 1671-1681.
    
    [128] Binder, K.; Frisch, H.L.; Jackie, J. Kinetics of Phase-Separation in the Presence of Slowly Relaxing Structural Variables[J]. Journal of Chemical Physics. 1986, 85(3): 1505-1512.
    
    [129] Wagner, A.J.; Yeomans, J.M. Phase separation under shear in two-dimensional binary fluids[J]. Physical Review E. 1999, 59(4): 4366-4373.
    
    [130] Siwft, M.R.; Orlandini, E.; Osborn, W.R.; Yemans, J.M. Lattice boltzmann simulations of liquid-gas and binary fluid systems[J]. Phys. Rev. E. 1996, 54(5):5041.
    
    [131] Flekkoy, E.G; Herrmann, H.J. Lattice Boltzmann Models for Complex Fluids[J]. Physica A. 1993,199(1): 1-11.
    
    [132] Marsh, C.A.; Backx, G.; Ernst, M.H. Static and dynamic properties of dissipative particle dynamics[J]. Physical Review E. 1997, 56(2): 1676-1691.
    
    [133] Boek, E.S.; Coveney, P.V.; Lekkerkerker, H.N.W. Computer simulation of rheological phenomena in dense colloidal suspensions with dissipative particle dynamics[J]. Journal of Physics-Condensed Matter. 1996, 8(47): 9509-9512.
    
    [134] Coveney, P.V.; Novik, K.E. Computer simulations of domain growth and phase separation in two-dimensional binary immiscible fluids using dissipative particle dynamics[J]. Physical Review E. 1996, 54(5): 5134-5141.
    
    [135] Boek, E.S.; Coveney, P.V.; Lekkerkerker, H.N.W.; vanderSchoot, P.Simulating the rheology of dense colloidal suspensions using dissipative particle dynamics[J]. Physical Review E. 1997,55(3): 3124-3133.
    
    [136] Barrat, J.L.; Fredrickson, G.H.; Sides, S.W. Introducing variable cell shape methods in field theory simulations of polymers[J]. J. Phys. Chem. B 2005,109(14):6694-6700.
    
    [137] Li, X.; Tang, P.; Zhang, H.; Qiu, F.; Yang, Y. Mesoscopic Dynamics of Inhomogeneous Polymers Based on Variable Cell Shape Dynamic Self-Consistent Field Theory[J]. J. Chem. Phys. 2008,128(11): 114901.
    [1] Keller, A.; Pedemont.E; Willmout.Fm. Macro-Lattice from Segregated Amorphous Phases of a 3 Block Copolymer[J]. Nature. 1970,225(5232): 538-&.
    
    [2] Hadziioannou, G.; Mathis, A.; Skoulios, A. Synthesis of 3-Block Styrene-Isoprene-Styrene Copolymer Single-Crystals Via Plane Shear-Flow[J].Colloid and Polymer Science. 1979,257(2): 136-139.
    
    [3] Koppi, K.A.; Tirrell, M.; Bates, F.S.; Almdal, K.; Colby, R.H. Lamellae Orientation in Dynamically Sheared Diblock Copolymer Melts[J]. Journal De Physique II. 1992,2(11): 1941-1959.
    
    [4] Zhang, Y.; Wiesner, U.; Spiess, H.W. Frequency dependence of orientation in dynamically sheared diblock copolymers[J]. Macromolecules. 1995,28(3): 778-781.
    
    [5] Patel, S.S.; Larson, R.G.; Winey, K.I.; Watanabe, H. Shear Orientation and Rheology of a Lamellar Polystyrene- Polyisoprene Block-Copolymer[J]. Abstracts of Papers of the American Chemical Society. 1993,206: 409-POLY.
    
    [6] Chen, Z.R.; Kornfield, J.A.; Smith, S.D.; Grothaus, J.T.; Satkowski, M.M.Pathways to macroscale order in nanostructured block copolymers[J]. Science. 1997,277(5330): 1248-1253.
    
    [7] Lee, H.H.; Register, R.A.; Hajduk, D.A.; Gruner, S.M. Orientation of triblock copolymers in planar extension[J]. Polymer Engineering and Science. 1996, 36(10):1414-1424.
    
    [8] Amundson, K.; Helfand, E.; Davis, D.D.; Quan, X.; Patel, S.S.; Smith, S.D.Effect of an Electric-Field on Block Copolymer Microstructure[J]. Macromolecules.1991,24(24): 6546-6548.
    
    [9] Amundson, K.; Helfand, E.; Quan, X.; Smith, S.D. Alignment of Lamellar Block-Copolymer Microstructure in an Electric-Field .1. Alignment Kinetics[J].Macromolecules. 1993,26(11): 2698-2703.
    
    [10]Amundson, K.; Helfand, E.; Quan, X.N.; Hudson, S.D.; Smith, S.D. Alignment of Lamellar Block-Copolymer Microstructure in an Electric-Field .2. Mechanisms of Alignment[J]. Macromolecules. 1994, 27(22): 6559-6570.
    
    [11] Walton, D.G.; Kellogg, G.J.; Mayes, A.M.; Lambooy, P.; Russell, T.P. A free energy model for confined diblock copolymers[J]. Macromolecules. 1994, 27(21):6225-6228.
    
    [12]Koneripalli, N.; Singh, N.; Levicky, R.; Bates, F.S.; Gallagher, P.D.; Satija, S.K.Confined Block-Copolymer Thin-Films[J]. Macromolecules. 1995, 28(8):2897-2904.
    
    [13] Brown, G.; Chakrabarti, A. Ordering of Block-Copolymer Melts in Confined Geometry[J]. Journal of Chemical Physics. 1995,102(3): 1440-1448.
    
    [14]Turner, M.S.; Rubinstein, M.; Marques, C.M. Surface-induced lamellar ordering in a hexagonal phase of diblock copolymers[J]. Macromolecules. 1994, 27(18):4986-4992.
    
    [15]Liu, Y.; Zhao, W.; Zheng, X.; King, A.; Singh, A.; Rafailovich, M.H.; Sokolov,J.; Dai, K.H.; Kramer, E.J.; Schwarz, S.A.; Gebizlioglu, O.; Sinha, S.K.Surface-induced ordering in asymmetric block copolymers [J]. Macromolecules.1994, 27(14): 4000-4010.
    [16] Brown, G.; Chakrabarti, A. Surface-Induced Ordering in Block-Copolymer Melts[J]. Journal of Chemical Physics. 1994,101(4): 3310-3317.
    
    [17]Bates, F.S. Polymer-Polymer Phase-Behavior[J]. Science. 1991, 251(4996):898-905.
    
    [18] Bates, F.S.; Fredrickson, GH. Block Copolymer Thermodynamics - Theory and Experiment[J]. Annual Review of Physical Chemistry. 1990,41: 525-557.
    
    [19]Fredrickson, G.H.; Bates, F.S. Dynamics of block copolymers: Theory and experiment[J]. Annual Review of Materials Science. 1996,26: 501-550.
    
    [20] Fredrickson, G.H. Nonequilibrium Structure of the Homogeneous Phase of Block Copolymers under Steady Flow[J]. Journal of Chemical Physics. 1986, 85(9):5306-5313.
    
    [21]Cates, M.E.; Milner, S.T. Role of Shear in the Isotropic-to-Lamellar Transition[J]. Physical Review Letters. 1989,62(16): 1856-1859.
    
    [22]Marques, C.M.; Cates, M.E. Hexagonal and Lamellar Mesophases Induced by Shear[J]. Journal De Physique. 1990,51(16): 1733-1747.
    
    [23]Nakatani, A.I.; Morrison, F.A.; Douglas, J.F.; Mays, J.W.; Jackson, C.L.;Muthukumar, M. The influence of shear on the ordering temperature of a triblock copolymer melt[J]. Journal of Chemical Physics. 1996,104(4): 1589-1599.
    
    [24] Huang, C.Y.; Muthukumar, M. Effect of shear on order-disorder and order-order transitions in block copolymers[J]. Journal of Chemical Physics. 1997, 107(14):5561-5568.
    
    [25]Morrison, F.A.; Mays, J.W.; Muthukumar, M.; Nakatani, A.I.; Han, C.C.Shear-Induced Morphological Structures in Triblock Copolymers[J].Macromolecules. 1993,26(19):5271-5273.
    
    [26]Hajduk, D.A.; Tepe, T.; Takenouchi, H.; Tirrell, M.; Bates, F.S.; Almdal, K.;Mortensen, K. Shear-induced ordering kinetics of a triblock copolymer melt[J].Journal of Chemical Physics. 1998,108(1): 326-333.
    
    [27]Onuki, A. Phase transitions of fluids in shear flow[J]. Journal of Physics-Condensed Matter. 1997,9(29): 6119-6157.
    
    [28]Imaeda, T.; Onuki, A.; Kawasaki, K. Anisotropic Spinodal Decomposition under Shear-Flow[J]. Progress of Theoretical Physics. 1984,71(1): 16-26.
    
    [29]Ohta, T.; Nozaki, H.; Doi, M. Computer-Simulations of Domain Growth under Steady Shear-Flow[J]. Journal of Chemical Physics. 1990, 93(4): 2664-2675.
    
    [30]Yamamoto, J.; Tanaka, H. Shear-induced sponge-to-lamellar transition in a hyperswollen lyotropic system[J]. Phys.Rev.Lett. 1996, 77(21): 4390.
    
    [31]Goulian, M.; Scott, J.; Milner, T. Shear alignment and instability of semectic phase[J]. Phys.Rev.Lett. 1995, 74(10): 1775-1777.
    
    [32] Almdal, K.; Koppi, K.A.; Bates, F.S. Dynamically Sheared Body-Centered-Cubic Ordered Diblock Copolymer Melt[J]. Macromolecules. 1993,26(15): 4058-4060.
    
    [33]Winey, K.I.; Patel, S.S.; Larson, R.G.; Watanabe, H. Interdependence of Shear Deformations and Block Copolymer Morphology[J]. Macromolecules. 1993, 26(10):2542-2549.
    
    [34]Patel, S.S.; Larson, R.G.; Winey, K.I.; Watanabe, H. Shear Orientation and Rheology of a Lamellar Polystyrene Polyisoprene Block-Copolymer[J].Macromolecules. 1995, 28(12): 4313-4318.
    
    [35]Zhang, Y.M.; Wiesner, U. Symmetric diblock copolymers under large amplitude oscillatory shear flow: Dual frequency experiments[J]. Journal Of Chemical Physics.1997,106(7): 2961-2969.
    
    [36]Maring, D.; Wiesner, U. Threshold strain value for perpendicular orientation in dynamically sheared diblock copolymers[J]. Macromolecules. 1997,30(3): 660-662.
    
    [37] Gupta, V.K.; Krishnamoorti, R.; Chen, Z.R.; Kornfield, J.A.; Smith, S.D.;Satkowski, M.M.; Grothaus, J.T. Dynamics of shear alignment in a lamellar diblock copolymer: interplay of frequency strain amplitude and temperature[J].Macromolecules. 1996,29(3): 875-884.
    
    [38] Gupta, V.K.; Krishnamoorti, R.; Kornfield, J.A.; Smith, S.D. Role of strain in controlling lamellar orientation during flow alignment of diblock copolymers[J].Macromolecules. 1996,29(4): 1359-1362.
    
    [39]Tepe, T.; Hajduk, D.A.; Hillmyer, M.A.; Weimann, P.A.; Tirrell, M.; Bates, F.S.;Almdal, K.; Mortensen, K. Influence of shear on a lamellar triblock copolymer near the order-disorder transition[J]. Journal of Rheology. 1997, 41(5): 1147-1171.
    
    [40]Tepe, T.; Schulz, M.F.; Zhao, J.; Tirrell, M.; Bates, F.S.; Mortensen, K.; Almdal,K. Variable Shear-Induced Orientation of a Diblock Copolymer Hexagonal Phase[J].Macromolecules. 1995, 28(8): 3008-3011.
    
    [41]Riise, B.L.; Fredrickson, G.H.; Larson, R.G.; Pearson, D.S. Rheology and Shear-Induced Alignment of Lamellar Diblock and Triblock Copolymers[J].Macromolecules. 1995, 28(23): 7653-7659.
    
    [42] Fredrickson, G.H. Steady shear alignment of block copolymers near the isotropic-lamellar transition[J]. Journal of Rheology. 1994,38(4): 1045-1067.
    
    [43]Zvelindovsky, A.V.; Zatovsky, A.V. Fluctuations of a fluid inside a pore[J].Nuovo Cimento Delia Societa Italiana Di Fisica D-Condensed Matter Atomic Molecular and Chemical Physics Fluids Plasmas Biophysics. 1997,19(5): 725-745.
    
    [44]Kodama, H.; Doi, M. Shear-induced instability of the lamellar phase of a block copolymer[J]. Macromolecules. 1996,29(7): 2652-2658.
    
    [45]Ohta, T.; Enomoto, Y.; Harden, J.L.; Doi, M. Anomalous Rheological Behavior of Ordered Phases of Block- Copolymers .1[J]. Macromolecules. 1993, 26(18):4928-4934.
    
    [46]Qiu, F.; Zhang, H.D.; Yang, Y.L. Chain stretching effect on domain growth during spinodal decomposition of binary polymer mixtures under simple shear flow[J]. Journal of Chemical Physics. 1998,108(22): 9529-9536.
    
    [47]Qiu, F.; Ding, J.D.; Yang, Y.L. Real-time observation on deformation of bicontinuous phase under simple shear flow[J]. Physical Review E. 1998, 58(2):R1230-R1233.
    
    [48]Zhang, Z.L.; Zhang, H.D.; Yang, Y.L. The effect of shear flow on morphology and rheology of phase separating binary mixtures[J]. Journal of Chemical Physics.2000,113(18): 8348-8361.
    
    [49]Qiu, F.; Zhang, H.D.; Yang, Y.L. Oscillatory shear induced anisotropic domain growth and related rheological properties of binary mixtures[J]. Journal of Chemical Physics. 1998,109(4): 1575-1583.
    
    [50]Fraaije, J. Dynamic Density-Functional Theory for Microphase Separation Kinetics of Block-Copolymer Melts[J]. J. Chem. Phys. 1993, 99(11): 9202-9212.
    
    [51]Fraaije, J.; vanVlimmeren, B.A.C.; Maurits, N.M.; Postma, M.; Evers, O.A.;Hoffmann, C; Altevogt, P.; GoldbeckWood, G The dynamic mean-field density functional method and its application to the mesoscopic dynamics of quenched block copolymer melts[J]. Journal Of Chemical Physics. 1997,106(10): 4260-4269.
    
    [52]Reister, E.; Muller, M.; Binder, K. Spinodal decomposition in a binary polymer mixture: Dynamic self-consistent-field theory and Monte Carlo simulations[J].Physical Review E. 2001,64(4).
    
    [53]Morita, H.; Kawakatsu, T.; Doi, M.; Yamaguchi, D.; Takenaka, M.; Hashimoto,T. Competition between micro- and macrophase separations in a binary mixture of block copolymers. A dynamic density functional study[J]. Macromolecules. 2002,35(19): 7473-7480.
    
    [54] Yeung, C.; Shi, A.C. Formation of interfaces in incompatible polymer blends: A dynamical mean field study[J]. Macromolecules. 1999,32(11): 3637-3642.
    
    [55]Zvelindovsky, A.V.; Sevink, G.J.A.; van Vlimmeren, B.A.C.; Maurits, N.M.;Fraaije, J.GE.M. Three-dimensional mesoscale dynamics of block copolymers under shear: The dynamic density-functional approach[J]. Physical Review E. 1998, 57(5):R4879-R4882.
    
    [56] Sevink, G.J.A.; Zvelindovsky, A.V.; van Vlimmeren, B.A.C.; Maurits, N.M.;Fraaije, J.G.E.M. Dynamics of surface directed mesophase formation in block copolymer melts[J]. Journal of Chemical Physics. 1999,110(4): 2250-2256.
    
    [57]Maurits, N.M.; Zvelindovsky, A.V.; Sevink, G.J.A.; Van Vlimmeren, B.A.C.;Fraaije, J. Hydrodynamic effects in three-dimensional microphase separation of block copolymers: Dynamic mean-field density functional approach[J]. Journal of Chemical Physics. 1998,108(21): 9150-9154.
    
    [58]Maurits, N.M.; Zvelindovsky, A.V.; Fraaije, J. Viscoelastic effects in three-dimensional microphase separation of block copolymers: Dynamic mean-field density functional approach[J]. Journal of Chemical Physics. 1998, 109(24):11032-11042.
    
    [59] Maurits, N.M.; Sevink, G.J.A.; Zvelindovsky, A.V.; Fraaije, J. Pathway controlled morphology formation in polymer systems: Reactions, shear, and microphase separation[J]. Macromolecules. 1999,32(22): 7674-7681.
    
    [60] Fraaije, J.; Zvelindovsky, A.V.; Sevink, G.J.A. Computational soft nanotechnology with mesodyn[J]. Molecular Simulation. 2004,30(4): 225-238.
    
    [61]Barrat, J.L.; Fredrickson, G.H.; Sides, S.W. Introducing variable cell shape methods in field theory simulations of polymers[J]. J. Phys. Chem. B 2005,109(14):6694-6700.
    
    [62]Li, X.; Tang, P.; Zhang, H.; Qiu, F.; Yang, Y. Mesoscopic Dynamics of Inhomogeneous Polymers Based on Variable Cell Shape Dynamic Self-Consistent Field Theory[J]. J. Chem. Phys. 2008,128(11): 114901.
    
    [63]Xia, J.F.; Sun, M.Z.; Qiu, F.; Zhang, H.D.; Yang, Y.L. Microphase ordering mechanisms in linear ABC triblock copolymers. A dynamic density functional study[J]. Macromolecules. 2005,38(22): 9324-9332.
    
    [64]Maniadis, P.; Lookman, T.; Kober, E.M.; Rasmussen, K.O. Stress Distributions in Diblock Copolymers[J]. Phys. Rev. Lett. 2007,99(4): 048302.
    
    [65]Drolet, F.; Fredrickson, GH. Combinatorial screening of complex block copolymer assembly with self-consistent field theory[J]. Phys. Rev. Lett. 1999,83(21): 4317-4320.
    
    [66] Tzeremes, G.; Rasmussen, K.O.; Lookman, T.; Saxena, A. Efficient computation of the structural phase behavior of block copolymers[J]. Phys. Rev. E. 2002, 65(4):041806.
    
    [67] Sides, S.W.; Fredrickson, GH. Parallel algorithm for numerical self-consistent field theory simulations of block copolymer structure[J]. Polymer. 2003, 44(19):5859-5866.
    
    [68]Bates, F.S.; Fredrickson, GH. Block copolymers - Designer soft materials[J].Physics Today. 1999,52(2): 32-38.
    
    [69]Migler, K.B. String formation in sheared polymer blends: Coalescence, breakup,and finite size effects[J]. Physical Review Letters. 2001,86(6): 1023-1026.
    
    [70]Tang, P.; Qiu, F.; Zhang, H.D.; Yang, Y.L. Morphology and phase diagram of complex block copolymers: ABC linear triblock copolymers[J]. Phys. Rev. E. 2004,69(3): 031803.
    
    [71]Tang, P.; Qiu, F.; Zhang, H.D.; Yang, Y.L. Morphology and phase diagram of complex block copolymers: ABC star triblock copolymers[J]. J. Phys. Chem. B 2004,108(24): 8434-8438.
    
    [72]Vigild, M.E.; Chu, C.; Sugiyama, M.; Chaffin, K.A.; Bates, F.S. Influence of shear on the alignment of a lamellae-forming pentablock copolymer[J].Macromolecules. 2001,34(4): 951-964.
    
    [73]Matsen, M.W.; Thompson, R.B. Equilibrium behavior of symmetric ABA triblock copolymer melts[J]. Journal of Chemical Physics. 1999, 111(15):7139-7146.
    
    [74]Wu, L.F.; Cochran, E.W.; Lodge, T.P.; Bates, F.S. Consequences of block number on the order-disorder transition and viscoelastic properties of linear (AB)(n) multiblock copolymers[J]. Macromolecules. 2004,37: 3360-3368.
    [1] Yeung, C.; Shi, A.C.; Noolandi, J.; Desai, R.C. Anisotropic fluctuations in ordered copolymer phases[J]. Macromolecular Theory and Simulations. 1996, 5(2):291-298.
    
    [2] Wang, Z.G Response and Instabilities of the Lamellar Phase of Diblock Copolymers under Uniaxial-Stress[J]. Journal of Chemical Physics. 1994, 100(3):2298-2309.
    
    [3] Kossuth, M.B.; Morse, D.C.; Bates, F.S. Viscoelastic behavior of cubic phases in block copolymer melts[J]. J. Rheol. 1999, 43(1): 167-196.
    
    [4] Tyler, C.A.; Morse, D.C. Linear elasticity of cubic phases in block copolymer melts by self-consistent field theory[J]. Macromolecules. 2003, 36(10): 3764-3774.
    
    [5] Tyler, C.A.; Morse, D.C. Stress in self-consistent-field theory[J].Macromolecules. 2003, 36(21): 8184-8188.
    
    [6] Thompson, R.B.; Rasmussen, K.O.; Lookman, T. Elastic moduli of multiblock copolymers in the lamellar phase[J]. J. Chem. Phys. 2004,120(8): 3990-3996.
    
    [7] Barrat, J.L.; Fredrickson, G.H.; Sides, S.W. Introducing variable cell shape methods in field theory simulations of polymers[J]. J. Phys. Chem. B 2005,109(14):6694-6700.
    
    [8] Maniadis, P.; Lookman, T.; Kober, E.M.; Rasmussen, K.O. Stress Distributions in Diblock Copolymers[J]. Phys. Rev. Lett. 2007, 99(4): 048302.
    
    [9] Doi, M.; Edwards, S.F., The Theory of Polymer Dynamics[M]. Oxford: Oxford University Press, 1986.
    
    [10]Hindawi, I.A.; Higgins, J.S.; Weiss, R.A. Flow-induced mixing and demixing in polymer blends[J]. Polymer. 1992,33(12): 2522.
    
    [11] Fernandez, M.L.; Higgins, J.S.; Horst, R.; Wolf, B.A. Complex miscibility behavior for Polymer, blends in flow[J]. Polymer. 1995,38(1): 149-154.
    
    [12] Larson, R.G. Flow-Induced Mixing, Demixing, and Phase-Transitions in Polymeric Fluids[J]. Rheologica Acta. 1992,31(6): 497-520.
    
    [13]Qiu, F.; Zhang, H.D.; Yang, Y.L. Oscillatory shear induced anisotropic domain growth and related rheological properties of binary mixtures[J]. Journal of Chemical Physics. 1998,109(4): 1575-1583.
    
    [14]Zvelindovsky, A.V.; Sevink, G.J.A.; van Vlimmeren, B.A.C.; Maurits, N.M.;Fraaije, J. Three-dimensional mesoscale dynamics of block copolymers under shear: The dynamic density-functional approach[J]. Physical Review E. 1998, 57(5):R4879-R4882.
    
    [15]Xia, J.F.; Sun, M.Z.; Qiu, F.; Zhang, H.D.; Yang, Y.L. Microphase ordering mechanisms in linear ABC triblock copolymers. A dynamic density functional study[J]. Macromolecules. 2005,38(22): 9324-9332.
    
    [16]Li, X.; Tang, P.; Zhang, H.; Qiu, F.; Yang, Y. Mesoscopic Dynamics of Inhomogeneous Polymers Based on Variable Cell Shape Dynamic Self-Consistent Field Theory[J].J. Chem. Phys. 2008,128(11): 114901.
    
    [17]Zhang, Z.L.; Zhang, H.D.; Yang, Y.L.; Vinckier, I.; Laun, H.M. Rheology and morphology of phase-separating polymer blends[J]. Macromolecules. 2001, 34(5):1416-1429.
    
    [18] Kawasaki, K.; Ohta, T. Phase Hamiltonian in Periodically Modulated Systems[J]. Physica A. 1986,139(2-3): 223-255.
    
    [19]Tang, P.; Qiu, F.; Zhang, H.D.; Yang, Y.L. Morphology and phase diagram of complex block copolymers: ABC linear triblock copolymers[J]. Phys. Rev. E. 2004,69(3): 031803.
    
    [20] Tang, P.; Qiu, F.; Zhang, H.D.; Yang, Y.L. Morphology and phase diagram of complex block copolymers: ABC star triblock copolymers[J]. J. Phys. Chem. B 2004,108(24): 8434-8438.
    
    [21]Takeno, H.; Hashimoto, T. Intermittency of droplet growth in phase separation of off- critical polymer mixtures[J]. Journal of Chemical Physics. 1998, 108(3):1225-1233.
    
    [22]Cochran, E.W.; Morse, D.C.; Bates, F.S. Design of ABC triblock copolymers near the ODT with the random phase approximation[J]. Macromolecules. 2003,36(3): 782-792.
    [1]Bates,F.S.Network phases in block copolymer melts.Mrs Bulletin[J].2005.30(7):p.525-532.
    [2]Hamley,I.W.Nanostructure fabrication using block copolymers.Nanotechnology[J].2003.14(10):p.R39-R54.
    [3]Bates,F.S.;Fredrickson,G.H.Block Copolymer Thermodynamics-Theory and Experiment.Annual Review of Physical Chemistry[J].1990.41:p.525-557.
    [4]Cochran,E.W.;Garcia-Cervera,C.J.;Fredrickson,G.H.Stability of the gyroid phase in diblock copolymers at strong segregation.Macromolecules[J].2006.39(7):p.2449-2451.
    [5]Matsen,M.W.;Schick,M.Stable and unstable phases of a diblock copolymer melt.Phys.Rev.Lett.[J].1994.72(16):p.2660-2663.
    [6]Bates,F.S.;Fredrickson,G.H.Block copolymers-Designer soft materials.Physics Today[J].1999.52(2):p.32-38.
    [7]何曼君;董西侠,高分子物理(修订版)[M].上海:复旦大学出版社,2001.
    [8]Lynd,N.A.;Hillmyer,M.A.Influence of polydispersity on the self-assembly of diblock copolymers.Macromolecules[J].2005.38(21):p.8803-8810.
    [9]Matsen,M.W.;Bates,F.S.Origins of complex self-assembly in block copolymers.Macromolecules[J].1996.29(23):p.7641-7644.
    [10]Almdal,K.;Koppi,K.A.;Bates,F.S.;Mortensen,K.Multiple Ordered Phases in a Block Copolymer Melt.Macromolecules[J].1992.25(6):p.1743-1751.
    [11]Forster,S.;Khandpur,A.K.;Zhao,J.;Bates,F.S.;Hamley,I.W.;Ryan,A.J.;Bras,W.Complex Phase-Behavior of Polyisoprene-Polystyrene Diblock Copolymers near the Order-Disorder Transition.Macromolecules[J].1994.27(23):p.6922-6935.
    [12]Khandpur,A.K.;Forster,S.;Bates,F.S.;Hamley,I.W.;Ryan,A.J.;Bras,W.;Almdal,K.;Mortensen,K.Polyisoprene-polystyrene diblock copolymer phase diagram near the order-disorder transition.Macromolecules[J].1995.28(26):p.8796-8806.
    [13]Kimishima,K.;Koga,T.;Hashimoto,T.Order-order phase transition between spherical and cylindrical microdomain structures of block copolymer.I.Mechanism of the transition.Macromolecules[J].2000.33(3):p.968-977.
    [14]Matsushita,Y.;Noro,A.;Iinuma,M.;Suzuki,J.;Ohtani,H.;Takano,A.Effect of composition distribution on microphase-separated structure from diblock copolymers.Macromolecules[J].2003.36(21):p.8074-8077.
    [15]Ruzette,A.V.;Tence-Girault,S.;Leibler,L.;Chauvin,F.;Bertin,D.;Guerret,O.;Gerard,P.Molecular disorder and mesoscopic order in polydisperse acrylic block copolymers prepared by controlled radical polymerization.Macromolecules[J].2006.39(17):p.5804-5814.
    [16]Bendejacq,D.;Ponsinet,V.;Joanicot,M.;Loo,Y.L.;Register,R.A.Well-ordered microdomain structures in polydisperse poly(styrene)-poly(acrylic acid) diblock copolymers from controlled radical polymerization.Macromolecules[J].2002.35(17):p.6645-6649.
    [17]Lynd,N.A.;Hillmyer,M.A.Effects of polydispersity on the order-disorder transition in block copolymer melts.Macromolecules[J].2007.40(22):p.8050-8055.
    [18] Sides, S.W.; Fredrickson, GH. Continuous polydispersity in a self-consistent field theory for diblock copolymers. Journal of Chemical Physics[J]. 2004. 121(10): p.4974-4986.
    
    [19]Cooke, D.M.; Shi, A.C. Effects of polydispersity on phase behavior of diblock copolymers. Macromolecules[J]. 2006.39(19): p. 6661-6671.
    
    [20]Drolet, F.; Fredrickson, GH. Combinatorial screening of complex block copolymer assembly with self-consistent field theory. Phys. Rev. Lett.[J]. 1999.83(21): p. 4317-4320.
    
    [21]Tang, P.; Qiu, F.; Zhang, H.D.; Yang, Y.L. Morphology and phase diagram of complex block copolymers: ABC linear triblock copolymers. Phys. Rev. E[J]. 2004.69(3): p. 031803.
    
    [22]Tang, P.; Qiu, F.; Zhang, H.D.; Yang, Y.L. Morphology and phase diagram of complex block copolymers: ABC star triblock copolymers. J. Phys. Chem. B [J]. 2004.108(24): p. 8434-8438.
    
    [23]Bohbot-Raviv, Y.; Wang, Z.G Discovering new ordered phases of block copolymers. Phys. Rev. Lett.[J]. 2000. 85(16): p. 3428-3431.
    
    [24]Matsen, M.W. Effect of large degrees of polydispersity on strongly segregated block copolymers. European Physical Journal E[J]. 2006. 21(3): p. 199-207.
    
    [25]Matsen, M.W. Polydispersity-induced macrophase separation in diblock copolymer melts. Physical Review Letters[J]. 2007. 99(14).
    
    [26] Li, X.A.; Tang, P.; Qiu, F.; Zhang, H.D.; Yang, Y.L. Aggregates in solution of binary mixtures of amphiphilic diblock copolymers with different chain length. J.Phys. Chem. B [J]. 2006.110(5): p. 2024-2030.
    
    [27] Jiang, Y.; Chen, T.; Ye, F.W.; Liang, H.J.; Shi, A.C. Effect of polydispersity on the formation of vesicles from amphiphilic diblock copolymers. Macromolecules[J].2005. 38(15): p. 6710-6717.
    
    [28] Jiang, Y.; Huang, R.; Liang, H.J. Effect of polydispersity on the tensile modulus of diblock copolymers in a lamellar phase. Journal Of Chemical Physics[J]. 2005.123(12).
    
    [29] Burger, C.; Ruland, W.; Semenov, A.N. Polydispersity Effects on the Microphase-Separation Transition in Block Copolymers. Macromolecules[J]. 1990.23(13): p. 3339-3346.
    
    [30]Leibler, L. Theory of Microphase Separation in Block Co-Polymers.Macromolecules[J]. 1980.13(6): p. 1602-1617.
    
    [31]Gehlsen, M.D.; Almdal, K.; Bates, F.S. Order-Disorder Transition - Diblock Versus Triblock Copolymers. Macromolecules[J]. 1992. 25(2): p. 939-943.
    
    [32]Fraaije, J. Dynamic Density-Functional Theory for Microphase Separation Kinetics of Block-Copolymer Melts. J. Chem. Phys.[J]. 1993. 99(11): p. 9202-9212.
    
    [33]Xia, J.F.; Sun, M.Z.; Qiu, F.; Zhang, H.D.; Yang, Y.L. Microphase ordering mechanisms in linear ABC triblock copolymers. A dynamic density functional study. Macromolecules[J]. 2005. 38(22): p. 9324-9332.
    
    [34]Li, X.; Tang, P.; Zhang, H.; Qiu, F.; Yang, Y. Mesoscopic Dynamics of Inhomogeneous Polymers Based on Variable Cell Shape Dynamic Self-Consistent Field Theory. J. Chem. Phys[J]. 2008. 128(11): p. 114901.
    
    [35]Fredrickson, G.H.; Ganesan, V.; Drolet, F. Field-theoretic computer simulation methods for polymers and complex fluids. Macromolecules[J]. 2002. 35(1): p. 16-39.
    [36]Barrat, J.L.; Fredrickson, GH.; Sides, S.W. Introducing variable cell shape methods in field theory simulations of polymers. J. Phys. Chem. B [J]. 2005.109(14):p. 6694-6700.
    
    [37] Fredrickson, G.H.; Bates, F.S. Dynamics of block copolymers: Theory and experiment. Annu. Rev. Mater. Sci.[J]. 1996. 26: p. 501-550.
    
    [38]Zhang, Z.L.; Zhang, H.D.; Yang, Y.L.; Vinckier, I.; Laun, H.M. Rheology and morphology of phase-separating polymer blends. Macromolecules[J]. 2001. 34(5): p.1416-1429.
    
    [39]Mayes, A.M.; Delacruz, M.O. Microphase Separation in Multiblock Copolymer Melts. Journal of Chemical Physics[J]. 1989. 91(11): p. 7228-7235.
    
    [40]Matsen, M.W.; Thompson, R.B. Equilibrium behavior of symmetric ABA triblock copolymer melts. Journal of Chemical Physics[J]. 1999.111(15): p. 7139-7146.
    
    [41]Noolandi, J.; Desai, R.C. Reptation Versus Rouse Motion in Entangled Polymer Melts. Makromolekulare Chemie-Rapid Communications[J]. 1984. 5(8): p. 453-458.
    
    [42] Beardsley, T.; Matsen, M. Effects of polydispersity on the order-disorder transition of diblock copolymer melts. European Physical Journal E[J]. 2008. 27(3): p.323-333.
    [1]Weber,M.Polymer blends:Materials with versatile properties[J].Macromolecular Symposia.2001,163:235-250.
    [2]Paul,D.R.;Newman,S.,Polymer Blends[M].New York:Academic Press,1978.
    [3]Utracki,L.A.,Polymer Alloys and Blends[M].New York:Hanser,Munchen,Wien,1989.
    [4]何曼君;董西侠,高分子物理(修订版)[M].上海:复旦大学出版社,2001.
    [5]江明;府寿宽,高分子科学的近代论题[M].上海:复旦大学出版社,1998.
    [6]Koizumi,S.;Hasegawa,H.;Hashimoto,T.Ordered Structures of Block Copolymer/Homopolymer Mixtures.5.Interplay of Macrophase and Microphase Transitions[J].Macromolecules.1994,27(22):6532-6540.
    [7]Bodycomb,J.;Yamaguchi,D.;Hashimoto,T.A small-angle X-ray scattering study of the phase behavior of diblock copolymer/homopolymer blends[J].Macromolecules.2000,33(14):5187-5197.
    [8]Hasegawa,H.;Tanaka,H.;Hashimoto,T.;Han,C.C.Sans and Saxs Study of Block Copolymer Homopolymer Mixtures[J].Journal of Applied Crystallography.1991,24:672-678.
    [9]Koizumi,S.;Hasegawa,H.;Hashimoto,T.Ordered Structure in Blends of Block-Copolymers.3.Self- Assembly in Blends of Sphere-Forming or Cylinder-Forming Copolymers[J].Macromolecules.1994,27(15):4371-4381.
    [10]Ito,A.Domain patterns in copolymer-homopolymer mixtures[J].Physical Review E.1998,58(5):6158-6165.
    [11]Winey,K.I.;Thomas,E.L.;Fetters,L.J.Ordered Morphologies in Binary Blends of Diblock Copolymer and Homopolymer and Characterization of Their Intermaterial Dividing Surfaces[J].Journal of Chemical Physics.1991,95(12):9367-9375.
    [12]Kinning,D.J.;Winey,K.I.;Thomas,E.L.Structural Transitions from Spherical to Nonspherical Micelles in Blends of Poly(Styrene Butadiene) Diblock Copolymer and Polystyrene Homopolymers[J].Macromolecules.1988,21(12):3502-3506.
    [13]Mykhaylyk,T.A.;Mykhaylyk,O.O.;Collins,S.;Hamley,I.W.Ordered structures and phase transitions in mixtures of a polystyrene/polyisoprene block copolymer with the corresponding homopolymers in thin films and in bulk[J].Macromolecules.2004,37(9):3369-3377.
    [14]Matsen,M.W.Phase-Behavior of Block-Copolymer Homopolymer Blends[J].Macromolecules.1995,28(17):5765-5773.
    [15]Matsen,M.W.New fast SCFT algorithm applied to binary diblock copolymer/homopolymer blends[j].Macromolecules.2003,36(25):9647-9657.
    [16]Janert,P.K.;Schick,M.Phase behavior of binary homopolymer/diblock blends:Temperature and chain length dependence[J].Macromolecules.1998,31(4):1109-1113.
    [17]Ohta,T.;Ito,A.Dynamics of Phase-Separation in Copolymer-Homopolymer Mixtures[J].Physical Review E.1995,52(5):5250-5260.
    [18]Morita, H.; Kawakatsu, T.; Doi, M.; Yamaguchi, D.; Takenaka, M.; Hashimoto,T. Competition between micro- and macrophase separations in a binary mixture of block copolymers. A dynamic density functional study[J]. Macromolecules. 2002,35(19): 7473-7480.
    
    [19]Jiang, R.; Jin, Q.H.; Li, B.H.; Ding, D.T.; Shi, A.C. Phase diagram of poly(ethylene oxide) and poly(propylene oxide) triblock copolymers in aqueous solutions[J]. Macromolecules. 2006,39(17): 5891-5896.
    
    [20]He, X.H.; Liang, H.J.; Huang, L.; Pan, C.Y. Complex Microstructures of Amphiphilic Diblock Copolymer in Dilute Solution[J]. J. Phys. Chem. B 2004,108(5): 1931-1735.
    
    [21]Jiang, Y.; Chen, T.; Ye, F.W.; Liang, H.J.; Shi, A.C. Effect of polydispersity on the formation of vesicles from amphiphilic diblock copolymers[J]. Macromolecules.2005,38(15): 6710-6717.
    
    [22]Li, X.A.; Tang, P.; Qiu, F.; Zhang, H.D.; Yang, Y.L. Aggregates in solution of binary mixtures of amphiphilic diblock copolymers with different chain length[J]. J.Phys. Chem. B 2006,110(5): 2024-2030.
    
    [23]Ma, J.W.; Li, X.; Tang, P.; Yang, Y.L. Self-assembly of amphiphilic ABC star triblock copolymers and their blends with AB diblock copolymers in solution:Self-consistent field theory simulations[J]. Journal of Physical Chemistry B. 2007,111(7): 1552-1558.
    
    [24]Kou, D.Z.; Jiang, Y.; Liang, H.J. Microstructures from a mixture of ABC 3-miktoarm star terpolymers and homopolymers in two-dimensional space[J].Journal of Physical Chemistry B. 2006,110(46): 23557-23563.
    
    [25]Aubert, J.H. Structural Coarsening of Demixed Polymer-Solutions[J].Macromolecules. 1990,23(5): 1446-1452.
    
    [26]Kuwahara, N.; Kubota, K. Spinodal Decomposition in a Polymer-Solution[J].Physical Review A. 1992,45(10): 7385-7394.
    
    [27]Tanaka, H. Unusual Phase-Separation in a Polymer-Solution Caused by Asymmetric Molecular-Dynamics[J]. Physical Review Letters. 1993, 71(19):3158-3161.
    
    [28]Tanaka, H. Universality of viscoelastic phase separation in dynamically asymmetric fluid mixtures[J]. Physical Review Letters. 1996, 76(5): 787-790.
    
    [29]Doi, M.; Onuki, A. Dynamic Coupling between Stress and Composition in Polymer- Solutions and Blends[J]. Journal De Physique II. 1992,2(8): 1631-1656.
    
    [30]Tanaka, H.; Araki, T. Phase inversion during viscoelastic phase separation:Roles of bulk and shear relaxation moduli[J]. Physical Review Letters. 1997, 78(26):4966-4969.
    
    [31]Ahluwalia, R. Phase separation in a simple model with dynamical asymmetry[J].Physical Review E. 1999, 59(1): 263-268.
    
    [32]Tanaka, H. Viscoelastic phase separation[J]. Journal of Physics-Condensed Matter. 2000,12(15): R207-R264.
    
    [33]Cao, Y.; Zhang, H.D.; Xiong, Z.; Yang, Y.L. Viscoelastic effects on the dynamics of spinodal decomposition in binary polymer mixtures[J]. Macromolecular Theory And Simulations. 2001,10(4): 314-324.
    [34] Zhang, J.N.; Zhang, Z.L.; Zhang, H.D.; Yang, Y.L. Kinetics and morphologies of viscoelastic phase separation[J]. Physical Review E. 2001, 6405(5).
    
    [35]Fraaije, J. Dynamic Density-Functional Theory for Microphase Separation Kinetics of Block-Copolymer Melts[J]. J. Chem. Phys. 1993, 99(11): 9202-9212.
    
    [36]Fraaije, J.; vanVlimmeren, B.A.C.; Maurits, N.M.; Postma, M.; Evers, O.A.;Hoffmann, C; Altevogt, P.; GoldbeckWood, G The dynamic mean-field density functional method and its application to the mesoscopic dynamics of quenched block copolymer melts[J]. Journal Of Chemical Physics. 1997,106(10): 4260-4269.
    
    [37]Reister, E.; Muller, M.; Binder, K. Spinodal decomposition in a binary polymer mixture: Dynamic self-consistent-field theory and Monte Carlo simulations[J].Physical Review E. 2001, 64(4).
    
    [38]Yeung, C; Shi, A.C. Formation of interfaces in incompatible polymer blends: A dynamical mean field study[J]. Macromolecules. 1999,32(11): 3637-3642.
    
    [39]Zvelindovsky, A.V.; Sevink, G.J.A.; van Vlimmeren, B.A.C.; Maurits, N.M.;Fraaije, J.GE.M. Three-dimensional mesoscale dynamics of block copolymers under shear: The dynamic density-functional approach[J]. Physical Review E. 1998, 57(5):R4879-R4882.
    
    [40] Sevink, G.J.A.; Zvelindovsky, A.V.; van Vlimmeren, B.A.C.; Maurits, N.M.;Fraaije, J.GE.M. Dynamics of surface directed mesophase formation in block copolymer melts[J]. Journal of Chemical Physics. 1999,110(4): 2250-2256.
    
    [41]Maurits, N.M.; Zvelindovsky, A.V.; Sevink, G.J.A.; van Vlimmeren, B.A.C.;Fraaije, J. Hydrodynamic effects in three-dimensional microphase separation of block copolymers: Dynamic mean-field density functional approach[J]. Journal of Chemical Physics. 1998,108(21): 9150-9154.
    
    [42] Maurits, N.M.; Zvelindovsky, A.V.; Fraaije, J. Viscoelastic effects in three-dimensional microphase separation of block copolymers: Dynamic mean-field density functional approach[J]. Journal of Chemical Physics. 1998, 109(24):11032-11042.
    
    [43]Maurits, N.M.; Sevink, G.J.A.; Zvelindovsky, A.V.; Fraaije, J. Pathway controlled morphology formation in polymer systems: Reactions, shear, and microphase separation[J]. Macromolecules. 1999,32(22): 7674-7681.
    
    [44] Fraaije, J.; Zvelindovsky, A.V.; Sevink, G.J.A. Computational soft nanotechnology with mesodyn[J]. Molecular Simulation. 2004, 30(4): 225-238.
    
    [45]Tompa, H. Transaction from the Faraday Society. 1949, 45: 1142-1152.
    
    [46]Flory, P.J.; Orwoll, R.A.; Vrij, A. Statistical Thermodynamics of Chain Molecule Liquids .2. Liquid Mixtures of Normal Paraffin Hydrocarbons[J]. Journal of the American Chemical Society. 1964, 86(17): 3515-&.
    
    [47] Sanchez, I.C.; Lacombe, R.H. Theory of Liquid-Liquid and Liquid-Vapor Equilibria[J]. Nature. 1974, 252(5482): 381-382.
    
    [48]Tompa, H. Phase Relationships in Polymer Solutions[J]. Transactions of the Faraday Society. 1949, 45(12): 1142-1152.
    
    [49] Paul, D.R.; Barlow, J.W. A Binary Interaction-Model for Miscibility of Copolymers in Blends[J]. Polymer. 1984, 25(4): 487-494.
    
    [50]Hildebrand, J.H.; Scott, R.L., The Solubility of Nonelectrolytes[M]. 3rd ed. New York:Reinhold,1950.
    [51]Kressler,J.;Kammer,H.W.;Klostermann,K.Phase-Behavior of Poly(Methylmethacrylate) and Poly(Styrene-Co-Acrylonitrile) Blends[J].Polymer Bulletin.1986,15(2):113-119.
    [52]Lindvig,T.;Michelsen,M.L.;Kontogeorgis,G.M.Thermodynamics of paint-related systems with engineering models[J].Aiche Journal.2001,47(11):2573-2584.
    [53]Hansen,C.M.,Hansen solubility parameters-a user's handbook[M].Boca Raton,FL CRC Press,2000.
    [54]Cowie,J.M.G.;Li,G.X.;Ferguson,R.;McEwen,I.J.Prediction of Miscibility Regions in Ternary Blends of Poly(Styrene-Stat-Acrylonitrile),Poly(Acrylonitrile-Stat-Methyl Methacrylate),and Poly(Styrene-Stat-Methyl Methacrylate)[J].Journal of Polymer Science Part B-Polymer Physics.1992,30(12):1351-1358.
    [55]Su,A.C.;Fried,J.R.Phase-Behavior of Ternary Polymer Blends[J].Polymer Engineering and Science.1987,27(22):1657-1661.
    [1] Hamley, I.W. Nanostructure fabrication using block copolymers[J].Nanotechnology. 2003,14(10): R39-R54.
    
    [2] Bates, F.S.; Fredrickson, GH. Block copolymers - Designer soft materials[J].Physics Today. 1999,52(2): 32-38.
    
    [3] Bates, F.S.; Fredrickson, GH. Block Copolymer Thermodynamics - Theory and Experiment[J]. Annual Review of Physical Chemistry. 1990, 41: 525-557.
    
    [4] Matsen, M.W.; Schick, M. Stable and unstable phases of a diblock copolymer melt[J]. Phys. Rev. Lett. 1994, 72(16): 2660-2663.
    
    [5] Tyler, C.A.; Morse, D.C. Orthorhombic Fddd network in triblock and diblock copolymer melts[J]. Physical Review Letters. 2005, 94(20).
    
    [6] Ikkala, O.; ten Brinke, G. Functional materials based on self-assembly of polymeric supramolecules[J]. Science. 2002,295(5564): 2407-2409.
    
    [7] Zhang, L.F.; Bartels, C.; Yu, Y.S.; Shen, H.W.; Eisenberg, A. Mesosized crystal-like structure of hexagonally packed hollow hoops by solution self-assembly of diblock copolymers[J]. Physical Review Letters. 1997, 79(25): 5034-5037.
    
    [8] Zhang, L.F.; Eisenberg, A. Multiple morphologies and characteristics of "crew-cut" micelle-like aggregates of polystyrene-b-poly(acrylic acid) diblock copolymers in aqueous solutions[J]. Journal Of The American Chemical Society.1996,118(13): 3168-3181.
    
    [9] Yu, Y.S.; Zhang, L.F.; Eisenberg, A. Multiple morphologies of crew cut aggregates of polybutadiene-b-poly(acrylic acid) diblocks with low T-g cores[J].Langmuir. 1997,13(9): 2578-2581.
    
    [10]Yu, K.; Zhang, L.F.; Eisenberg, A. Novel morphologies of "crew-cut" aggregates of amphiphilic diblock copolymers in dilute solution[J]. Langmuir. 1996, 12(25):5980-5984.
    
    [11] Yu, K.; Eisenberg, A. Bilayer morphologies of self-assembled crew-cut aggregates of amphiphilic PS-b-PEO diblock copolymers in solution[J].Macromolecules. 1998, 31(11): 3509-3518.
    
    [12]Lodge, T.P.; Rasdal, A.; Li, Z.B.; Hillmyer, M.A. Simultaneous, segregated storage of two agents in a multicompartment micelle[J]. Journal Of The American Chemical Society. 2005,127(50): 17608-17609.
    
    [13]Zhang, L.F.; Eisenberg, A. Multiple Morphologies of Crew-Cut Aggregates of Polystyrene-B-Poly(Acrylic Acid) Block-Copolymers[J]. Science. 1995, 268(5218):1728-1731.
    
    [14]Luo, L.B.; Eisenberg, A. Thermodynamic stabilization mechanism of block copolymer vesicles[J]. Journal Of The American Chemical Society. 2001, 123(5):1012-1013.
    
    [15]Yu, K.; Bartels, C; Eisenberg, A. Trapping of intermediate structures of the morphological transition of vesicles to inverted hexagonally packed rods in dilute solutions of PS-b-PEO[J]. Langmuir. 1999,15(21): 7157-7167.
    
    [16]Guo, S.L.; Hou, T.J.; Xu, X.J. Simulation of the phase behavior of the (EO)(13)(PO)(30)(EO)(13)(Pluronic L64)/water/p-xylene system using MesoDyn[J]. Journal Of Physical Chemistry B. 2002,106(43): 11397-11403.
    
    [17]Uneyama, T.; Doi, M. Calculation of the micellar structure of polymer surfactant on the basis of the density functional theory[J]. Macromolecules. 2005, 38(13):5817-5825.
    
    [18]van Vlimmeren, B.A.C.; Maurits, N.M.; Zvelindovsky, A.V.; Sevink, GJ.A.;Fraaije, J. Simulation of 3D mesoscale structure formation in concentrated aqueous solution of the triblock polymer surfactants (ethylene oxide)(13)(propylene oxide)(30)(ethylene oxide)(13) and (propylene oxide)(19)(ethylene oxide)(33)(propylene oxide)(19). Application of dynamic mean-field density functional theory[J]. Macromolecules. 1999,32(3): 646-656.
    
    [19]Dotera, T.; Hatano, A. The diagonal bond method: A new lattice polymer model for simulation study of block copolymers[J]. Journal of Chemical Physics. 1996,105(18): 8413-8427.
    
    [20]Ji, S.C.; Ding, J.D. Spontaneous formation of vesicles from mixed amphiphiles with dispersed molecular weight: Monte Carlo simulation[J]. Langmuir. 2006, 22(2):553-559.
    
    [21]Noguchi, H.; Takasu, M. Self-assembly of amphiphiles into vesicles: a Brownian dynamics simulation[J]. Phys Rev E Stat Nonlin Soft Matter Phys. 2001,64(4 Pt 1):041913.
    
    [22]Cui, Y.Y.; Zhong, C.L.; Xia, J. Multicompartment micellar solutions in shear: A dissipative particle dynamics study[J]. Macromolecular Rapid Communications.2006,27(17): 1437-1441.
    
    [23]Drolet, F.; Fredrickson, GH. Optimizing chain bridging in complex block copolymers[J]. Macromolecules. 2001,34(15): 5317-5324.
    
    [24]Fredrickson, G.H.; Ganesan, V.; Drolet, F. Field-theoretic computer simulation methods for polymers and complex fluids[J]. Macromolecules. 2002,35(1): 16-39.
    
    [25]Drolet, F.; Fredrickson, G.H. Combinatorial screening of complex block copolymer assembly with self-consistent field theory[J]. Phys. Rev. Lett. 1999,83(21): 4317-4320.
    
    [26]Jiang, Y.; Chen, T.; Ye, F.W.; Liang, H.J.; Shi, A.C. Effect of polydispersity on the formation of vesicles from amphiphilic diblock copolymers[J]. Macromolecules.2005,38(15): 6710-6717.
    
    [27]He, X.H.; Liang, H.J.; Huang, L.; Pan, C.Y. Complex Microstructures of Amphiphilic Diblock Copolymer in Dilute Solution[J]. J. Phys. Chem. B 2004,108(5): 1931-1735.
    
    [28]Li, X.A.; Tang, P.; Qiu, F.; Zhang, H.D.; Yang, Y.L. Aggregates in solution of binary mixtures of amphiphilic diblock copolymers with different chain length[J].Journal Of Physical Chemistry B. 2006,110(5): 2024-2030.
    
    [29] Wang, R.; Tang, P.; Qiu, F.; Yang, Y.L. Aggregate morphologies of amphiphilic ABC triblock copolymer in dilute solution using self-consistent field theory[J].Journal Of Physical Chemistry B. 2005,109(36): 17120-17127.
    
    [30]Terreau, O.; Bartels, C.; Eisenberg, A. Effect of poly(acrylic acid) block length distribution on polystyrene-b-poly(acrylic acid) block copolymer aggregates in solution. 2. A partial phase diagram[J]. Langmuir. 2004, 20(3): 637-645.
    [31]Terreau, O.; Luo, L.B.; Eisenberg, A. Effect of poly(acrylic acid) block length distribution on polystyrene-b-poly(acrylic acid) aggregates in solution. 1. Vesicles[J].Langmuir. 2003,19(14): 5601-5607.
    
    [32]Winnik, F.M.; Liu, R.C.W.; Kujawa, P. Multicompartment polymeric micelles based on poly-(N-isopropylacrylamide)[J]. Abstracts of Papers of the American Chemical Society. 2003,226: U394-U394.
    
    [33]Kotzev, A.; Laschewsky, A.; Adriaensens, P.; Gelan, J. Micellar polymers with hydrocarbon and fluorocarbon hydrophobic chains. A strategy to multicompartment micelles[J]. Macromolecules. 2002,35(3): 1091-1101.
    
    [34]Stahler, K.; Selb, J.; Candau, F. Multicompartment polymeric micelles based on hydrocarbon and fluorocarbon polymerizable surfactants[J]. Langmuir. 1999,15(22):7565-7576.
    
    [35]Pochan, D.J.; Chen, Z.Y.; Cui, H.G; Hales, K.; Qi, K.; Wooley, K.L. Toroidal triblock copolymer assemblies[J]. Science. 2004,306(5693): 94-97.
    
    [36]Breiner, U.; Krappe, U.; Jakob, T.; Abetz, V.; Stadler, R. Spheres on spheres - a novel spherical multiphase morphology in polystyrene-block-polybutadiene-block-poly(methyl methacrylate) triblock copolymers[J]. Polymer Bulletin. 1998,40(2-3): 219-226.
    
    [37]Gohy, J.F.; Willet, N.; Varshney, S.; Zhang, J.X.; Jerome, R. Core-shell-corona micelles with a responsive shell[J]. Angewandte Chemie-International Edition. 2001,40(17):3214-+.
    
    [38]Li, Z.B.; Kesselman, E.; Talmon, Y.; Hillmyer, M.A.; Lodge, T.P.Multicompartment micelles from ABC miktoarm stars in water[J]. Science. 2004,306(5693): 98-101.
    
    [39]Li, Z.; Hillmyer, M.A.; Lodge, T.P. Morphologies of Multicompartment Micelles Formed by ABC Miktoarm Star Terpolymers[J]. Langmuir. 2006, 22(22):9409-9417.
    
    [40]Li, Z.B.; Hillmyer, M.A.; Lodge, T.P. Laterally nanostructured vesicles,polygonal bilayer sheets, and segmented wormlike micelles[J]. Nano Letters. 2006,6(6): 1245-1249.
    
    [41]Li, Z.B.; Hillmyer, M.A.; Lodge, T.P. Control of structure in multicompartment micelles by blending mu-ABC star terpolymers with AB diblock copolymers[J].Macromolecules. 2006,39(2): 765-771.
    
    [42]Kriz, J.; Masar, B.; Plestil, J.; Tuzar, Z.; Pospisil, H.; Doskocilova, D.Three-layer micelles of an ABC block copolymer: NMR, SANS, and LS study of a poly(2-ethylhexylacrylate)-block-poly(methylmethacrylate)-block poly(acrylic acid) copolymer in D2O[J]. Macromolecules. 1998,31(1): 41-51.
    
    [43] Chen, Z.Y.; Cui, H.G.; Hales, K.; Li, Z.B.; Qi, K.; Pochan, D.J.; Wooley, K.L.Unique toroidal morphology from composition and sequence control of triblock copolymers[J]. Journal Of The American Chemical Society. 2005, 127(24):8592-8593.
    
    [44]Bhargava, P.; Zheng, J.X.; Li, P.; Quirk, R.P.; Harris, F.W.; Cheng, S.Z.D.Self-Assembled Polystyrene-poly(ethylene oxide) Micelle Morphologies in Solution[J]. Macromolecules. 2006,39(14): 4880-4888.
    [45]Eugene,H.;Yukiko,T.Theory of the Interface between Immiscible Polymers.Ⅱ[J].The Journal of Chemical Physics.1972,56(7):3592-3601.
    [46]Bates,F.S.Network phases in block copolymer melts[J].Mrs Bulletin.2005,30(7):525-532.
    [47]Ritzenthaler,S.;Court,F.;David,L.;Girard-Reydet,E.;Leibler,L.;Pascault,J.P.ABC triblock copolymers/epoxy-diamine blends.1.Keys to achieve nanostructured thermosets[J].Macromolecules.2002,35(16):6245-6254.
    [48]Ritzenthaler,S.;Court,F.;Girard-Reydet,E.;Leibler,L.;Pascault,J.P.ABC triblock copolymers/epoxy-diamine blends.2.Parameters controlling the morphologies and properties[J].Macromolecules.2003,36(1):118-126.
    [49]Xia,J.;Zhong,C.L.Dissipative particle dynamics study of the formation of multicompartment micelles from ABC star triblock copolymers in water[J].Macromolecular Rapid Communications.2006,27(14):1110-1114.
    [50]Dormidontova,E.E.;Khokhlov,A.R.Complex spherical micelles in A-B-C-block copolymer melts[J].Macromolecules.1997,30(7):1980-1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700