碘仿作链转移剂的氯丁二烯乳液聚合及嵌段共聚物合成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鉴于氯丁二烯的活性自由基聚合及其嵌段共聚物的合成尚未有文献报导,本论文主要研究了碘仿作为链转移剂应用于氯丁二烯乳液聚合体系所表现出的可控自由基聚合特征;进而尝试采用碘原子退化转移自由基溶液和种子乳液聚合法制备了含聚氯丁二烯和聚苯乙烯组份的两嵌段共聚物,还考察了溶液聚合条件下,不同大分子碘代化合物作为链转移剂合成双组份嵌段共聚物的活性差异;初步探讨了碘仿取代调丁作为分子量调节剂合成的三种新型氯丁橡胶之综合性能并与传统调丁调节型CR-244、CR-232及混合调节型CR-322(含调丁和硫磺)氯丁橡胶性能进行了比较。具体工作如下:
     1.用碘仿作为链转移剂取代调丁,依照国内传统粘接型CR-244氯丁橡胶大生产配方及反应条件,顺利地进行了氯丁二烯的实验室低温乳液聚合,通过单体转化率、凝胶色谱(GPC)测试所得的相对数均分子量、分子量分布系数、分子量分布曲线及1H NMR核磁谱图等参数的分析,验证了一定量碘仿参与下的氯丁二烯自由基乳液聚合体系具有与苯乙烯溶液体系相似的活性自由基聚合特征并生成了链末端带有碘原子的聚氯丁二烯(PCP-I)结构。
     2.用碘仿作为退化链转移剂,采取以上方法先制得碘原子封端结构的聚氯丁二烯(PCP-I).然后,用PCP-I作为大分子链转移剂,在AIBN引发下,进行苯乙烯的溶液聚合。该反应呈现出了一定的可控聚合的特点,得到了PCP-b-PS两嵌段聚合物,通过GPC和1H NMR核磁谱图等测试手段验证了共聚物的嵌段结构,但是苯乙烯转化率最高只能达到30%。反之,先进行碘仿存在下的苯乙烯可控聚合,用所得链末端带有碘原子的聚苯乙烯(PS-I)作为大分子链转移剂,在AIBN引发下,进行氯丁二烯的溶液聚合,则无法合成明显的PCP-b-PS两嵌段聚合物。这说明PS-I大分子链转移剂对氯丁二烯的转移引发活性较低,而PCP-I大分子链转移剂对苯乙烯的转移引发活性较高。
     3.用含碘化合物作为链转移剂,通过种子乳液聚合的方法合成PCP-b-PS两嵌段聚合物。首先,用碘仿作为退化链转移剂,按照传统粘接型CR-244氯丁橡胶大生产配方及反应条件,进行了氯丁二烯的低温乳液聚合,得到一定分子量的聚氯丁二烯(PCP-I)种子乳液。然后,将乳液体系中剩余的未反应氯丁二烯单体真空脱气排出,再加入第二单体苯乙烯进行以PCP-I作为大分子链转移剂的苯乙烯种子乳液聚合。通过单体转化率、GPC测试数据、1H NMR核磁谱图等测试分析,验证了该反应具有一定的可控聚合的特征,且反应活性明显好于前述溶液聚合法嵌段苯乙烯的结果,成功地得到了相对分子量分布变窄且苯乙烯转化率非常高的PCP-b-PS两嵌段聚合物。
     4.用碘仿取代调丁作为分子量调节剂,按照国内传统粘接型CR-244和通用型CR-232及CR-322(混合调节型)三种氯丁橡胶大生产配方及反应条件,通过氯丁二烯的乳液聚合,合成了碘仿调节型CR-244、CR-232和碘仿/硫磺混合调节型CR-322三个新品种的氯丁橡胶,并与传统调丁调节型CR-244、CR-232和调丁/硫磺混合调节型CR-322氯丁橡胶综合性能进行了比较。
To the best of our knowledge, the study on living free radical polymerization of chloroprene and the synthesis of its block copolymers has never been reported. In this dissertation, the controlled radical polymerization characteristics of chloroprene emulsion polymerization was mainly researched with iodoform as chain transfer agent; the methods of degenerative transfer radical solution and emulsion polymerization (DTRP) was further studied to attempt at preparing polychloroprene and polychloroprene-b-polystyrene block copolymers (PCP-b-PS), also the reaction activity difference of using various iodide polymers as macro-chain transfer agents was investigated to synthesize diblock copolymers via solution polymeriation; the comprehensive properties of three new kinds of chloroprene rubbers (CR) prepared with iodoform as molecular weight regulator instead of traditional regulator D (isopropyl xanthogen disulfide) was preliminarily discussed and meanwhile made comparison with those of the traditional regulator D mediated CR-244, CR-232 as well as compound regulator mediated CR-322 (regulator D plus sulfur). The detailed work is as follows:
     1. Employing iodoform as chain transfer agent to replace the traditional regulator D, the chloroprene low-temperature emulsion polymerization was smoothly carried out in lab based on the domestic traditional industrial large-scale production formula and reaction conditions of adhesive type CR-244. Through analyses of monomer conversions, Gel Permeation Chromatography (GPC) determined relative number-average molecular weights, molecular weight distributions, as well as Nuclear Magnetic Resonance ('HNMR) spectra, etc., the chloroprene emulsion polymerization was found to have the characteristics of living free radical polymerization, similar to those of styrene solution polymerization system, giving the structure of iodine atom-ended polychloroprene (PCP-I).
     2. Adopting iodoform as chain-transfer agent, the iodine atom-ended polychloroprene was prepared first in accordance with the aforementioned method. Then styrene solution polymerization was conducted in toluene with AIBN as initiator and the above obtained polychloroprenes as macro-chain transfer agents. The polymerization process showed living free radical features, however styrene conversion could only reach up to 30%. PCP-b-PS diblock copolymers were acquired successfully and further confirmed by GPC and'HNMR Spectroscopy. In addition, the preparation of PCP-b-PS diblock copolymers was attempted as well using reverse route. Firstly, styrene radical solution polymerization was proceeded based on AIBN as initiator and iodoform as chain-transfer agent, giving iodine atom-ended polystyrene (PS-I) with controlled molecular weights. Secondly, chloroperene was polymerized in toluene with the synthesized PS-I as macro-chain transfer agents, to attempt for the preparation of PCP-b-PS diblock copolymers. However due to lower initiation efficiency of PS-I to chloroprene monomer comparing with that of PCP-I to styrene monomer, the PCP-b-PS diblock copolymer attempt was not as successful as when PCP-I macro-chain transfer agents were used.
     3. Taking iodide as chain-transfer agent, PCP-b-PS diblock copolymers were prepared through seed emulsion polymerization. In the first place, based on the domestic traditional industrial large-scale production formula and reaction conditions of adhesive type CR-244, the chloroprene free radical emulsion polymerization was performed by iodoform as the degenerative chain transfer agent to obtain the iodine atom-ended polychloroprene seed latex. After the unpolymerized chloroprene was devolatilized under vacuum, styrene was then added and the emulsion polymerization of styrene using above obtained polychloroprenes as macro-chain transfer agents was proceeded. The seed emulsion polymerization indicates more obvious living free radical characteristics and better reaction activity than the result of before-mentioned solution polymerization method in terms of the blocking reaction with styrene. Therefore, more narrowly distributed PCP-b-PS diblock copolymers at much higher styrene conversion were successfully prepared and further confirmed by GPC and 1HNMR Spectroscopy.
     4. Applying iodoform as molecular weight regulator to substitute traditional regulator D, three new kinds of CR were synthesized through chloroprene emulsion polymerization according to the domestic traditional industrial large-scale production formulas and reaction conditions of adhesive type CR-244 and general purpose types of CR-232, CR-322 (compound regulation type), and the relative contrasts were made with regard to CR comprehensive properties between iodofrm and regulator D respectively mediated CR-244, CR-232 as well as CR-322 (iodofrom or regulator D plus sulfur).
引文
[1]George M. K., Veregin R. P. N., Kazmaier P. M., Hamer G. K. Narrow molecular weight resins by a free-radical polymerization process. Macromolecules,1993,26:2987-2988
    [2]Otsu T., Yoshida M. M.. Role of initiator-transfer agent-terminator (iniferter) in radical polymerizations:Polymer design by organic disulfides as iniferters. Chem Rapid Commun, 1982,3:127-132
    [3]Wang J. S., Matyjaszewski K. Controlled/"living" radical polymerization atom transfer radical polymerization in the presence of transition-metal complexes. J Am Chem Soc, 1995,117:5614-5615
    [4]Wang J. S., Matyjaszewski K. Controlled/"Living" Radical Polymerization Halogen Atom Transfer Radical Polymerization Promoted by a Cu(I)/Cu(11) Redox Process. Macromolecules,1995,28:7901-7910
    [5]Chiefari J., Chong Y. K., Ercole F., Krstina J., Le T. P., Moad G., Rizzardo E., Thang, S. H. Living Free-Radical Polymerization by Reversible Addition-Fragmentation Chain Transfer:The RAFT Process. Macromolecules,1998,31:5559-5562
    [6]Wieland P. C., Raether B., Nuyken O. A New Additive for Controlled Radical Polymerization. Macromol Rapid Commun,2001,22:700-703
    [7]Matyjaszewski K., Gaynor S. G., Wang J. Controlled Radical Polymerizations:The Use of Alkyl Iodides in Degenerative Transfer. Macromolecules,1995,28 (6):2093-2095
    [8]Gaynor S. G., Wang J. S., Matyjaszewski K. Controlled Radical Polymerization by Degenerative Transfer:Effect of the Structure of the Transfer Agent. Macromolecules, 1995,28:8051-8056
    [9]Goto A., Ohno K., Fukuda T. Mechanism and Kinetics of Iodide-Mediated Polymerization of Styrene. Macromolecules,1998,31:2809-2814
    [10]Lansalot M., Farcet C., Charleux B., Vairo J. P. Controlled Free-Radical Miniemulsion Polymerization of Styrene Using Degenerative Transfer. Macromolecules,1999,32: 7354-7360
    [11]Farcet C., Lansalot M., Pirri R., Vairon J. P., Charleux B. Polystyrene-block-poly(butyl acrylate) and polystyreneblock-poly[(butyl acrylate)-co-styrene] block copolymers prepared via controlled free-radical miniemulsion polymerization using degenerative iodine transfer. Macromol Rapid Commun,2000,21:921-926
    [12]Kowalczuk-Blejaa A., Trzebickaa B., Komberc H., Voitc B., Dworak A. Controlled radical polymerization of p-(iodomethyl)styrene-a route to branched and star-like structures. Polymer,2004,45:9-18
    [13]Iovu M. C. and Matyjaszewski K. Controlled/Living Radical Polymerization of Vinyl Acetate by Degenerative Transfer with Alkyl Iodides. Macromolecules,2003,36: 9346-9354
    [14]Teodorescu M., Dimonie, M., Draghici C., Vasilievici G. Poly(ethylene oxide)-block-polystyrene copolymers obtained by radical polymerization involving chain-transfer processes. Polymer International,2004,53:1987-1993
    [15]张颖,徐冬梅,张可达.醋酸乙烯酯的可控/活性自由基聚合[J].功能高分子学报,2005,18:526-533
    [16]包宏强,张颖,徐冬梅,张可达.元素碘存在下合成聚醋酸乙烯酯-甲基丙烯酸甲酯嵌段共聚物[J].高分子材料科学与工程,2007,23(2):65-68
    [17]许文静,张颖,张可达.衰减转移自由基聚合醋酸乙烯酯[J].石油化工,2007,36(6):575-578
    [18]Ueda N., Kamigaito M., Sawamoto M. Polym Prepr Jpn.,1996,45:E622
    [19]Boutevin B. J Poly Sci Part A:Poly Chem,2000,38:3235
    [20]Percec V., Popov A. V., Ernesto R. C., Coelho J. F.J. J Poly Sci Part A:Poly Chem,2005, 43:773
    [21]张可达,常丽群,包宏强,王霞艳,吴建峰.元素碘存在下甲基丙烯酸甲酯(MMA)的衰减链转移(DT)聚合.全国高分子学术论文报告会,2005.
    [22]吁诚铭,徐冬梅,张鸿,张可达.元素碘参与的甲基丙烯酸甲酯衰减链转移聚合[J].高分子材料科学与工程,2008,24(8):55-58
    [23]李秉毅.含碘化学物存在下的自由基聚合研究[D].北京:北京化工大学,2007
    [24]Mori H., Muller A. H. E. New polymeric architectures with (meth) acrylic acid segments. Prog Polym Sci,2003,28:1403-1439
    [25]Hautekeer J. P., Varshney S. K., Fayt R., Jacobs C., Jerome R., Teyssie P. Anionic polymerization of acrylic monomers.5. Synthesis, characterization and modification of polystyrene-poly (tert-butyl acrylate) di-and triblock copolymers. Macromolecules,1990, 23 (17):3893-3898
    [26]Ramireddy C., Tuzar Z., Prochazka K., Webber S. E., Munk P. Styrene-tert-butyl methacrylate and styrene-methacrylic acid block copolymers:synthesis and characterization. Macromolecules,1992,25 (9):2541-2545
    [27]Varshney S. K., Jacobs C., Hautekeer J. P., Bayard P., Jerome R., Fayt R., Teyssie P. Anionic polymerization of acrylic monomers.6. Synthesis, characterization, and modification of poly(methyl methacrylate)-poly(tert-butyl acrylate) di-and triblock copolymers. Macromolecules,1991,24 (18):4997-5000
    [28]Ruckenstein E., Zhang H. Living Anionic Copolymerization of 1-(Alkoxy)ethyl
    Methacrylates with Polar and/or Nonpolar Monomers and the Preparation of Amphiphilic Block Copolymers Containing Poly (methacrylic acid) Hydrophilic Segments at Higher Temperatures Than Usually Employed. Macromolecules,1998,31 (26):9127-9133
    [29]Kriz J. B., Masar B., Pospisil H., Plestil J., Tuzar Z., Kiselev M. A. NMR and SANS Study of Poly (methyl methacrylate)-block-poly (acrylic acid) Micelles and Their Solubilization Interactions with Organic Solubilizates in D2O. Macromolecules,1996,29 (24):7853-7858
    [30]Hawker C. J., Bosnian A.W., Harth E. New polymer synthesis by nitroxide mediated living radical polymerization. Chem Rev,2001,101:3661-3688
    [31]Jiang J. G., Zhong H., Zhang K. D. Atom transfer radical polymerization initiated by N-bromosuccimide J Polym Sci Part A:Polym Chem,2004,42:5811-5816
    [32]Tsarevsky N. V, Sarbu T. G.. Synthesis of styrene-acrylonitritrile copolymers and related block copolmers by atom transfer radical polymerization. Macrololecules,2001,34 (21): 7269-7275
    [33]Chiefari J., Chong Y. K., Ercole F., Krstina J., Le T. P., Moad G., Rizzardo E., Thang, S. H. Living Free-Radical Polymerization by Reversible Addition-Fragmentation Chain Transfer:The RAFT Process. Macromolecules,1998,31:5559-5562
    [34]Davis K. A., Matyjaszewski K. Atom Transfer Radical Polymerization of tert-Butyl Acrylate and Preparation of Block Copolymers. Macromolecules,2000,33 (11): 4039-4047
    [35]Lu S., Fan Q. I.., Liu S. Y., Chua S. J. Huang W. Synthesis of Conjugated-Acidic Block Copolymers by Atom Transfer Radical Polymerization. Macromolecules,2002,35 (27): 9875-9881
    [36]Liu Y, Wang L., Pan C. Synthesis of Block Copoly(styrene-b-p-nitrophenyl methacrylate) and Its Derivatives by Atom Transfer Radical Polymerization. Macromolecules,1999,32 (25):8301-8305
    [37]Burguiere C., Pascual S., Bui C., Vairon J. P., Charleux B., Davis K. A., Matyjaszewski K., Betremieux I. Block Copolymers of Poly(styrene) and Poly(acrylic acid) of Various Molar Masses, Topologies, and Compositions Prepared via Controlled/Living Radical Polymerization. Application as Stabilizers in Emulsion Polymerization. Macromolecules, 2001,34 (13); 4439-4450
    [38]Ravi P., Wang C., Tam K. C., Gan L. H. Association Behavior of Poly (methacrylic acid)-block-poly(methyl methacrylate) in Aqueous Medium:Potentiometric and Laser Light Scattering Studies. Macromolecules,2003,36 (1):173-179
    [39]Chong Y K., Le T. P. T., Moad G., Rizzardo E., Thang S. H. A More Versatile Route to Block Copolymers and Other Polymers of Complex Architecture by Living Radical Polymerization:The RAFT Process. Macromolecules,1999,32 (6):2071-2074
    [40]Listigovers N. A., Georges M. K., Odell P. G, Keoshkerian B. Narrow-Polydispersity Diblock and Triblock Copolymers of Alkyl Acrylates by a "Living" Stable Free Radical Polymerization. Macromolecules,1996,29 (27):8992-8993
    [41]Benoit D., Chaplinski V, Braslau R., Hawker C. J. Development of a Universal Alkoxyamine for "Living" Free Radical Polymerizations. J Am Chem Soc,1999,121 (16): 3904-3920
    [42]Qin S. H., Qiu K. Y. Block copolymerization of tert-butyl methacrylate with α,ω-difunctionalized polystyrene macroiniferter and hydrolysis to amphiphilic block copolymer. Journal of Polymer Science Part A:Polymer Chemistry,2001,39:1450-1455
    [43]Kotani Y., Kamigaito M., Sawamoto M. Re(V)-Mediated Living Radical Polymerization of Styrene:ReO2I(PPh3)2/R-I Initiating Systems. Macromolecules,1999,32:2420-2424
    [44]Li B., Shi Y., Zhu W. C., Fu Z. F., Yang W. T. Synthesis of Amphiphilic Polystyrene-b-Poly (acrylic acid) Diblock Copolymers by Iodide-Mediated Radical Polymerization. Polym J,2006,38(4):387-394
    [45]Kotani Y., Kamigaito M., Sawamoto M. Re(V)-Mediated Living Radical Polymerization of Styrene:ReO2I(PPh3)2/R-I Initiating Systems. Macromolecules,1999,32:2420-2424
    [46]Kotani Y., Kamigaito M., Sawamoto M. FeCp(CO)2I:A Phosphine-Free Half-Metallocene-Type Iron(II) Catalyst for Living Radical Polymerization of Styrenel. Macromolecules,1999,32:6877-6880
    [47]Kotani Y., Kamigaito M., Sawamoto M. Living Radical Polymerization of Styrene by Half-Metallocene Iron Carbonyl Complexesl. Macromolecules,2000,33:3543-3549
    [48]Kotani Y., Kamigaito M., Sawamoto M. Living Radical Polymerization of Para-Substituted Styrenes and Synthesis of Styrene-Based Copolymers with Rhenium and Iron Complex Catalystsl. Macromolecules,2000,33:6746-6751
    [49]Onishi I., Baek K. Y., Kotani Y., Kamigaito M., Sawamoto M. Iron-Catalyzed Living Radical Polymerization of Acrylates:Iodide-Based Initiating Systems and Block and Random Copolymerizations. Journal of Polymer Science:Part A:Polymer Chemistry, 2002,40,2033-2043
    [50]Stenzel-Rosenbaum M. H., Davis T. P.,* Chen V., Fane A. G. Synthesis of Poly(styrene) Star Polymers Grown from Sucrose, Glucose, and Cyclodextrin Cores via Living Radical Polymerization Mediated by a Half-Metallocene Iron Carbonyl Complex. Macromolecules, 2001,34:5433-5438
    [51]Wakioka M., Baek K. Y., Ando T., Kamigaito M., Sawamoto M. Possibility of Living Radical Polymerization of Vinyl Acetate Catalyzed by Iron(I) Complex. Macromolecules,
    2002,35:330-333
    [52]Fuji Y., Ando T., Kamigaito M., Sawamoto M. Iron-Catalyzed Suspension Living Radical Polymerizations of Acrylates and Styrene in Water. Macromolecules,2002,35:2949-2954
    [53]Kamigaito M., Onishi I., Kimura S., Kotani Y., Sawamoto M. A highly active Fe(I) catalyst for radical polymerisation and taming the polymerisation with iodine. CHEM COMMUN,2002,2694-2695
    [54]Watanabe Y., Ando T., Kamigaito M., Sawamoto M. Ru(Cp*)Cl(PPh3)2:A Versatile Catalyst for Living Radical Polymerization of Methacrylates, Acrylates, and Styrene. Macromolecules,2001,34:4370-4374
    [55]Asandei A. D., Percec V. From Metal-Catalyzed Radical Telomerization to Metal-Catalyzed Radical Polymerization of Vinyl Chloride:Toward Living Radical Polymerization of Vinyl Chloride. Journal of Polymer Science:Part A:Polymer Chemistry,2001,39:3392-3418
    [56]Percec V., Popov A. V., Ramirez-Castillo E., Monteiro M., Barboiu B., Weichold O., Asandei A. D., Mitchell C. M.. Aqueous Room Temperature Metal-Catalyzed Living Radical Polymerization of Vinyl Chloride. JAM CHEM SOC,2002,124:4940-4941
    [57]Percec V., Popov A. V., Ramirez-Castillo E., Weichold O. Living Radical Polymerization of Vinyl Chloride Initiated with Iodoform and Catalyzed by Nascent CuO/Tris(2-aminoethyl)amine or Polyethyleneimine in Water at 25 ℃ Proceeds by a New Competing Pathways Mechanism. Journal of Polymer Science:Part A:Polymer Chemistry,2003,41:3283-3299
    [58]Percec V., Popov A. V., Ramirez-Castillo E., Coelho J. F. J., Hinojosa-Falcon L. A. Non-transition Metal-Catalyzed Living Radical Polymerization of Vinyl Chloride Initiated with Iodoform in Water at 25 ℃. Journal of Polymer Science:Part A:Polymer Chemistry, 2004,42:6267-6282
    [59]Percec V., Popov A. V., Ramirez-Castillo E., Weichold O. Acceleration of the Single Electron Transfer-Degenerative Chain Transfer Mediated Living Radical Polymerization (SET-DTLRP) of Vinyl Chloride in Water at 25 ℃. Journal of Polymer Science:Part A: Polymer Chemistry,2004,42:6364-6374
    [60]V Percec V., Popov A. V., Ramirez-Castillo E. Single-Electron-Transfer/Degenerative-Chain-Transfer Mediated Living Radical Polymerization of Vinyl Chloride Catalyzed by Thiourea Dioxide/Octyl Viologen in Water/Tetrahydrofuran at 25 ℃. J Polym. Sci A: Polym Chem,2005,43:287-295
    [61]Percec V., Popov A. V., Ramirez-Castillo E. Single Electron Transfer Degenerative Chain Transfer Mediated Living Radical Polymerization (SET-DTLRP) of Vinyl Chloride Initiated with Methylene Iodide and Catalyzed by Sodium Dithionite. J Polym Sci A: Polym Chem,2005,43:773-778
    [62]Percec V., Popov A. V., Ramirez-Castillo E., Coelho J. F. J., Hinojosa-Falcon L. A. Phase Transfer Catalyzed Single Electron Transfer-Degenerative Chain Transfer Mediated Living Radical Polymerization (PTC-SET-DTLRP) of Vinyl Chloride Catalyzed by-Sodium Dithionite and Initiated with Iodoform in Water at 43 ℃. J Polym Sci A:Polym. Chem,2005,43:779-788
    [63]Percec V., Popov A. V. Functionalization of the Active Chain Ends of Poly(vinyl chloride) Obtained by Single-Electron-Transfer/Degenerative-Chain-Transfer Mediated Living Radical Polymerization:Synthesis of Telechelic Di(hydroxy)poly(vinyl chloride). J Polym Sci A:Polym Chem,2005,43:1255-1260
    [64]Percec V., Guliashvili T., Popov A. V., Ramirez-Castillo E. Synthesis of Poly(methyl methacrylate)-b-Poly(vinyl chloride)-b-Poly(methyl methacrylate) Block Copolymers by CuCl/2,2_-Bipyridine-Catalyzed Living Radical Block Copolymerization Initiated from Di(iodo)poly(vinyl chloride) Prepared by Single-Electron-Transfer/ Degenerative-Chain-Transfer Mediated Living Radical Polymerization. J Polym Sci A: Polym Chem,2005,43:1478-1486
    [65]Percec V., Guliashvili T., Popov A. V., Ramirez-Castillo E., Coelho J. F. J., Hinojosa-Falcon L. A. Accelerated Synthesis of Poly(methyl ethacrylate)-b-Poly(vinyl chloride)-b-Poly(methyl methacrylate) Block Copolymers by the CuCl /Tris(2-dimethylaminoethyl)amine-Catalyzed Living Radical Block Copolymerization of Methyl Methacrylate Initiated with Di(iodo)poly(vinyl chloride) in Dimethyl Sulfoxide at 90 ℃. J Polym. Sci A:Polym Chem,2005,43:1649-1659
    [66]Percec V., Ramirez-Castillo E., Popov A. V., Hinojosa-Falcon Luis A. Ultrafast Synthesis of Poly(methyl methacrylate)-b-Poly(vinyl chloride)-b-Poly(methyl methacrylate) Block Copolymers by the Cu(0)/Tris(2-dimethylaminoethyl)amine-Catalyzed Living Radical Block Copolymerization of Methyl Methacrylate Initiated with Di(iodo)poly(vinyl chloride) in the Presence of Dimethyl Sulfoxide at 25 ℃. J Polym Sci A:Polym Chem, 2005,43,1660-1669
    [67]Percec V., Ramirez-Castillo E., Popov A. V., Hinojosa-Falcon L. A., Guliashvili T. Ultrafast Single-Electron-Transfer/Degenerative-Chain-Transfer Mediated Living Radical Polymerization of Acrylates Initiated with Iodoform in Water at Room Temperature and Catalyzed by Sodium Dithionite. J Polym Sci A:Polym Chem,2005,43:2178-2184
    [68]Percec V., Popov A. V., Ramirez-Castillo E.. Hinojosa-Falcon L. A.. Synthesis of Poly(vinyl chloride)-b-Poly(2-ethylhexyl acrylate)-b-Poly(vinyl chloride) by the Competitive Single-Electron-Transfer/Degenerative-Chain-Transfer Mediated Living Radical Polymerization of Vinyl Chloride Initiated from Di(iodo)poly(2-ethylhexyl acrylate) and Catalyzed with Sodium Dithionite in Water. J Polym Sci A:Polym. Chem, 2005,43:2276-2280
    [69]Coelho J. F. J., Silva A. M. F. P., Popov A. V., Percec V., Abreu M. V., GoncAlves P. M. O. F., Gil M. H. Synthesis of Poly(vinyl hloride)-b-Poly(n-butyl acrylate)-b-Poly(vinyl chloride) by the Competitive Single-Electron-Transfer/Degenerative-Chain-Transfer-Mediated Living Radical Polymerization in Water. J Polym Sci A:Polym Chem,2006,44: 3001-3008
    [70]Bament J C. Neoprene synthetic rubber A guide to grades compound and process.1994 Switzerland,1-51
    [71]杨晓文.氯丁橡胶的应用[J].特种橡胶制品,2006,46(5):55-58
    [72]朱家顺,王炼石.粘接型CR244粉末橡胶在溶剂型氯丁粘合剂中的应用[J].中国胶粘剂,2005,12(4):34:39
    [73]兰州化学工业公司编著.合成橡胶工业手册[M].北京:化学工业出版社,1991,12
    [74]H.瓦尔森,C.A.芬奇著;成国祥等译.合成聚合物乳液的应用.第一卷聚合物乳液基础及其在胶黏剂中的应用[M].北京:化学工业出版社,2004,388-400
    [75]奥村钦一.水性氯丁橡胶型胶粘剂[J].胶粘剂市场资讯,2006,8:34-36
    [76]CHISTELL A. L. Polychloroprene adhesive latex composition:US, RE36618 [P]. 2000-03-14. http://patents.uspto.gov
    [77]Satoh M., Koga M., et al. Method of producing a polychlororprene latex:US,5661205[P]. 1997-08-26. http://patents.uspto.gov
    [78]Satoh M., Koga M. Method of producing a polychlororprene latex:US,5681891 [P]. 1997-10-28. http://patents.uspto.gov
    [79]Satoh M., Koga M., Nagasawa S. (Denki KK). EP,0 648 788.1995
    [80]Sato M., Mochizuki K.. Production of polychloroprene lattices [P], JP Patent,256738, 1995-04-18
    [81]李广宇,于敏,李子东.氯丁橡胶胶粘剂的发展方向[J].粘接,2003,9(4):24-27
    [82]李德永,石艳,付志峰.丙烯酸甲酯对羧基氯丁胶乳聚合体系的影响[J].北京化工大学学报,2007,34(2):203-206
    [83]李广宇,何红波,于敏等.环保型氯丁胶粘剂[J].化学与粘合,2002,6:271-273
    [84]张立武编著.水基胶粘剂[M],北京:化学工业出版社,2002,11-14
    [85]王箴主编.化工辞典[M],第四版.北京:化学工业出版社,2001.1:618
    [86]海信.氯丁橡胶的国内外市场分析[J].CHINA RUBBER,2009,23 (15:19-21
    [87]李玉芳.国内外氯丁橡胶的生产消费现状及发展前景[J].橡胶科技市场,2007,2:1-3
    [88]刘健雄.增稠型高门尼氯丁橡胶[J].山西化工,2001,21(3):55-60
    [89]朱军,龚巍华,潘文玲.环保型接枝氯丁胶的研究[J].中国胶粘,2005,14(12):24-26
    [90]夏古稀.粘接型氯丁二烯共聚物的制备方法:中国,CN 1034002A[P].1989-07-19
    [911 杜茂平,魏伯荣,王熙,曾睿.溶剂型氯丁橡胶胶粘剂的研究开发现状[J].中国胶粘剂,2006,15(7):49-53
    [92]陈静,杨枫.氯丁橡胶胶粘剂的研究进展[J].中国橡胶,2000,20:13-15
    [93]郭汝轩.易加工氯丁橡胶的研制[J].合成橡胶工业,1995,18(2):94
    [94]Eni Chem. Elastomer Sri
    [95]《Data on Synthetin Rubber》 85'
    [96]孙丽君,徐天昊,王小为,李晓银,王春.GB 5577-2008.合成橡胶牌号规范.2008,6,19.北京:中国标准出版社,2008,12,1.
    [97]刘印文,刘振华编.氯丁橡胶配合加工与应用[M].化学工业出版社,2002,2
    [98]Q/140200SXJ001-2009.山西合成橡胶集团有限责任公司企业标准,2009-01-22发布,2009-03-01实施.
    [99]Brizzolara D. F., Hongsberg W. Poly-Chloroprene-polyvinyl alcohol latex:US,4 141 875 [P].1979-02-27 [2005-04-29]. http://patents.uspto.gov
    [100]曲秀芳,庄涛.阳离子氯丁胶乳改性水乳化沥青大桥用涂料的研制[J].现代涂料与涂装,2005,03:53
    [101]陈静,杨枫.氯丁橡胶胶粘剂的研究及应用进展[J].化学与粘合,2000,(2):79-82
    [102]R. M. Murrey, D. G Thompson:The Neoprene, (1963) du pont
    [103]山道克已日本橡胶协会志(日文),1990,63(6):331
    [104]饭岛贤治.(昭和电工杜邦公司.日本特许(公开),平01--66205
    [105]N. L. Catton:The Neoprene, (1952) du pont
    [106]Pabst J. Rubber World,1990,202 (3):39
    [107]特许公开(日文),昭48-14 176.
    [108]特许公开(日文),昭48-26 939.
    [109]Brit UK Pat Appl, GB 1 237 750.1971
    [110]Brit UK Pat Appl, GB 1 158 970.1969
    [111]US, US 3 655 827.1972
    [112]US, US 3 147 318.1964
    [113]秋本正史等(电化公司).日本特许(公开),平01-188504.
    [114]江畹兰.改善氯丁橡胶低温性能的配方之优化[J].世界橡胶工业,2001,3(4):21-25
    [115]张泗文.氯丁橡胶在向高性能发展[J].合成橡胶工业,1992,15(3):131-134
    [116]Mush R. (Bayer). DE,3 605 333.1987
    [117]Sauterey F. (Distugil). EP,0 336 824.1989
    [118]张学义.国产CR-244粘结型氯丁橡胶性能及加工应用[J].弹性体,2001-04-25,11(2):39-43
    [119]山西合成橡胶集团工艺操作规程.2001
    [120]张泗文.弹性体.1991,1
    [121]Schubart R., Hohmann G. Polychloroprene nongelling at high viscosity. FR 2073106 1971, 19
    [122]Zemanekc J., Sterba R. Effectiveness of herbicides applied at the different growth stages of wild oat. Agrochemia (Bratislava),1977,17(2):42-45
    [123]Valeeva K. G. Histochemical investigation of the effect of tolerable doses of organophosphorus compounds on the cholinesterase activity of the intramural nerve apparatus of the organs of the urinary system. Nauch. Tr. Kazan. Med. In-T,1974, (41): 16-17
    [124]张学义,张继森,郭顺先.易加工氯丁橡胶的工业化生产[J].合成橡胶工业,1996,19(3):151-152
    [125]周彦豪等.橡胶工业,1980,(8):46
    [126]胡维甫,杨晓文,郭文兰.低毒性接枝氯丁胶粘剂[J].中国胶粘剂,2005,14(10):41-42
    [127]杨素芬.可接枝型氯丁橡胶与甲基丙烯酸甲酯接枝共聚工艺剖析[J].合成橡胶工业,1999-09-15,22(5):306-307
    [128]特许公开(日文),昭61-181880.
    [129]特许公开(日文),昭61-243814.
    [130]特许公开(日文),昭61-27 5315.
    [131]特许公开(日文),昭61-27 5316.
    [132]刘大华主编.合成橡胶工业手册.北京:化学工业出版社,1994,4
    [133]刘霞.离子氯丁橡胶的制备及其性能[J].橡胶参考资料,2006,21(3):33-36
    [134]McFarland J. W., Pariser R. Consumption of mercaptan chain transfer agents in chloroprene polymerization. J Appl Polym Sci,1963,8:675
    [135]Stewart C. A., Takishita T., Coleman M. L. Chloroprene polymer. Ency Polym Sci Techno,3rd Ed. New York:Wiley2Interscience Publication,1985, (3)
    [136]Coeman M. L., Fuller R. E. The application of GPC-initrisic viscosity method to the determination of long chain branching in polychloroprene. J Macromol Sci, Phys 1975, B11 (3):419
    [137]Musch R., Schubart R., Hohmann G., Alberts H., Goebel W. High-molecular-weight polychloroprene and its use as raw material in adhesives. Eur. Pat. Appl.1982, DE 80-3025077,46
    [138]Ovanesov G. T., Sarkisyan Z. G., Arutyunyan R. B., Kabalyan Y. K. Effect of conditions for the crystallization and mechanical breakdown of polychloroprene on its properties. Kauchuk i Rezina,1977, (8):22-24
    [139]姚红.硫醇调节氯丁二烯低温乳液聚合研究[学位论文].北京:北京化工大学,1997.
    [140]姚红,张学义.正十二硫醇对氯丁橡胶相对分子质量及其分布和支化[N].北京化工大学学报(自然科学版),1998-4-2(5)
    [141]石艳.高门尼氯丁橡胶的研究与合成[学位论文].北京:北京化工大学,1995
    [142]郑国良.乳液聚合反应中调节剂的作用及聚合物分子量的控制.合成橡胶工业,1989,12(6):134
    [143]Hautekeer J. P., Varshney S. K., Fayt R., Jacobs C., Jerome R., Teyssie P. Anionic polymerization of acrylic monomers.5. Synthesis, characterization and modification of polystyrene-poly(tert-butyl acrylate) di-and triblock copolymers. Macromolecules,1990, 23 (17):3893-3898
    [144]Ramireddy C., Tuzar Z., Prochazka K., Webber S. E., Munk P. Styrene-tert-butyl methacrylate and styrene-methacrylic acid block copolymers:synthesis and characterization. Macromolecules,1992,25 (9):2541-2545
    [145]Liu Y, Wang L., Pan C. Synthesis of Block Copoly(styrene-b-p-nitrophenyl methacrylate) and Its Derivatives by Atom Transfer Radical Polymerization. Macromolecules,1999,32 (25):8301-8305
    [146]Burguiere C., Pascual S., Bui C., Vairon J.-P., Charleux B., Davis, K. A., Matyjaszewski K., Betremieux I. Block Copolymers of Poly(styrene) and Poly(acrylic acid) of Various Molar Masses, Topologies, and Compositions Prepared via Controlled/Living Radical Polymerization. Application as Stabilizers in Emulsion Polymerization. Macromolecules, 2001,34 (13):4439-4450
    [147]Farcet C., Lansalot M., Pirri R., Vairon J. P., Charleux B. Polystyrene-block-poly (butyl acrylate) and polystyreneblock-poly [(butyl acrylate)-co-styrene] block copolymers prepared via controlled free-radical miniemulsion polymerization using degenerative iodine transfer. Macromol Rapid Commun,2000,21:921-926
    [1]Matyjaszewski K., Gaynor S. G., Wang J. Controlled Radical Polymerizations:The Use of Alkyl Iodides in Degenerative Transfer. Macromolecules,1995,28 (6):2093-2095
    [2]Otsu T., Yoshida M. M.. Role of initiator-transfer agent-terminator (iniferter) in radical polymerizations:Polymer design by organic disulfides as iniferters. Chem Rapid Commun, 1982,3:127-132
    [3]George M. K., Veregin R. P. N., Kazmaier P. M., Hamer G K. Narrow molecular weight resins by a free-radical polymerization process. Macromolecules,1993,26:2987-2988
    [4]Hawker C. J., Bosman A.W., Harth E. New polymer synthesis by nitroxide mediated living radical polymerization. Chem Rev,2001,101:3661-3688
    [5]Wang J. S., Matyjaszewski K. Controlled/"living" radical polymerization atom transfer radical polymerization in the presence of transition-metal complexes. J Am Chem Soc, 1995,117:5614-5615
    [6]Wang J. S., Matyjaszewski K. Controlled/"Living" Radical Polymerization Halogen Atom Transfer Radical Polymerization Promoted by a Cu(I)/Cu(11) Redox Process. Macromolecules,1995,28:7901-7910
    [7]Jiang J. G, Zhong H., Zhang K. D. Atom transfer radical polymerization initiated by N-bromosuccimide J Polym Sci Part A:Polym Chem,2004,42:5811-5816
    [8]Chiefari J., Chong Y. K., Ercole F., Krstina J., Le T. P., Moad G., Rizzardo E., Thang, S. H. Living Free-Radical Polymerization by Reversible Addition-Fragmentation Chain Transfer:The RAFT Process. Macromolecules,1998,31:5559-5562
    [9]Wieland P. C., Raether B., Nuyken O. A New Additive for Controlled Radical Polymerization. Macromol Rapid Commun,2001,22:700-703
    [10]Goto A., Ohno K., Fukuda T. Mechanism and Kinetics of Iodide-Mediated Polymerization of Styrene. Macromolecules,1998,31:2809-2814
    [11]Lansalot M., Farcet C., Charleux B., Vairo J. P. Controlled Free-Radical Miniemulsion Polymerization of Styrene Using Degenerative Transfer. Macromolecules,1999,32: 7354-7360
    [12]Gaynor S. G., Wang J. S., Matyjaszewski K. Controlled Radical Polymerization by Degenerative Transfer:Effect of the Structure of the Transfer Agent. Macromolecules, 1995,28:8051-8056
    [13]Kamigaito M., Onishi I., Kimura S., Kotani Y., Sawamoto M. A highly active Fe(I) catalyst for radical polymerisation and taming the polymerisation with iodine. CHEM COMMUN,2002,2694-2695
    [14]Qin S. H., Qiu K. Y. Block copolymerization of tert-butyl methacrylate with α,ω-difunctionalized polystyrene macroiniferter and hydrolysis to amphiphilic block copolymer. Journal of Polymer Science Part A:Polymer Chemistry,2001,39:1450-1455
    [15]张可达,常丽群,包宏强,王霞艳,吴建峰.元素碘存在下甲基丙烯酸甲酯(MMA)的衰减链转移(DT)聚合.全国高分子学术论文报告会,2005
    [16]吁诚铭,徐冬梅,张鸿,张可达.元素碘参与的甲基丙烯酸甲酯衰减链转移聚合[J].高分子材料科学与工程,2008,24(8):55-58
    [17]Iovu M. C., Matyjaszewski K. Controlled/Living Radical Polymerization of Vinyl Acetate by Degenerative Transfer with Alkyl Iodides. Macromolecules,2003,36,9346-9354
    [18]Wakioka M., Baek K. Y., Ando T., Kamigaito M., Sawamoto M. Possibility of Living Radical Polymerization of Vinyl Acetate Catalyzed by Iron(Ⅰ) Complex. Macromolecules, 2002,35:330-333
    [19]Asandei A. D., Percec V. From Metal-Catalyzed Radical Telomerization to Metal-Catalyzed Radical Polymerization of Vinyl Chloride:Toward Living Radical Polymerization of Vinyl Chloride. Journal of Polymer Science:Part A:Polymer Chemistry,2001,39:3392-3418
    [20]Percec V., Popov A. V., Ramirez-Castillo E., Monteiro M., Barboiu B., Weichold O., Asandei A. D., Mitchell C. M.. Aqueous Room Temperature Metal-Catalyzed Living Radical Polymerization of Vinyl Chloride. J AM CHEM SOC,2002,124:4940-4941
    [21]Li B., Shi Y., Zhu W. C., Fu Z. F., Yang W. T. Synthesis of Amphiphilic Polystyrene-b-Poly (acrylic acid) Diblock Copolymers by Iodide-Mediated Radical Polymerization. Polym J,2006,38(4):387-394
    [1]Gaynor S. G., Wang J. S., Matyjaszewski K. Controlled Radical Polymerization by Degenerative Transfer:Effect of the Structure of the Transfer Agent. Macromolecules, 1995,28:8051-8056
    [2]Boutevin B. Journal of polymer science:part A:polymer chemistry,2000,38:3235-3243
    [3]Iovu M. C., Matyjaszewski K. Controlled/Living Radical Polymerization of Vinyl Acetate by Degenerative Transfer with Alkyl Iodides. Macromolecules,2003,36:9346-9354
    [4]Matyjaszewski K., Gaynor S. G., Wang J. Controlled Radical Polymerizations:The Use of Alkyl Iodides in Degenerative Transfer. Macromolecules,1995,28 (6):2093-2095
    [5]Gaynor S. G., Wang J. S., Matyjaszewski K. Controlled Radical Polymerization by Degenerative Transfer:Effect of the Structure of the Transfer Agent. Macromolecules, 1995,28:8051-8056
    [6]Atsushi Goto, Kohji Ohno and Takeshi Fukuda. Mechanism and Kinetics of Iodide-Mediated Polymerization of Styrene. Macromolecules,1998,31:2809-2814
    [7]Li B., Shi Y., Zhu W. C., Fu Z. F., Yang W. T. Synthesis of Amphiphilic Polystyrene-b-Poly (acrylic acid) Diblock Copolymers by Iodide-Mediated Radical Polymerization. Polym J,2006,38(4):387-394
    [8]Hautekeer J. P., Varshney S. K., Fayt R., Jacobs C., Jerome R., Teyssie P. Anionic polymerization of acrylic monomers.5. Synthesis, characterization and modification of polystyrene-poly(tert-butyl acrylate) di-and triblock copolymers. Macromolecules,1990, 23 (17):3893-3898
    [9]Ramireddy C., Tuzar Z., Prochazka K., Webber S. E., Munk P. Styrene-tert-butyl methacrylate and styrene-methacrylic acid block copolymers:synthesis and characterization. Macromolecules,1992,25 (9):2541-2545
    [10]Liu Y., Wang L., Pan C. Synthesis of Block Copoly(styrene-b-p-nitrophenyl methacrylate) and Its Derivatives by Atom Transfer Radical Polymerization. Macromolecules,1999,32 (25):8301-8305
    [11]Burguiere C., Pascual S., Bui C., Vairon J. P., Charleux B., Davis, K. A., Matyjaszewski K., Betremieux I. Block Copolymers of Poly(styrene) and Poly(acrylic acid) of Various Molar Masses, Topologies, and Compositions Prepared via Controlled/Living Radical Polymerization. Application as Stabilizers in Emulsion Polymerization. Macromolecules, 2001,34 (13):4439-4450
    [12]Farcet C., Lansalot M., Pirri R., Vairon J. P., Charleux B. Polystyrene-block-poly (butyl acry late) and poly styreneblock-poly [(butyl acrylate)-co-styrene] block copolymers prepared via controlled free-radical miniemulsion polymerization using degenerative iodine transfer. Macromol Rapid Commun,2000,21:921-926
    [13]李秉毅.含碘化学物存在下的自由基聚合研究[D].北京:北京化工大学,2007
    [1]Matyjaszewski K., Gaynor S. G, Wang J. Controlled Radical Polymerizations:The Use of Alkyl Iodides in Degenerative Transfer. Macromolecules,1995,28 (6):2093-2095
    [2]Lansalot M., Farcet C., Charleux B.*, Vairon J. P. Controlled Free-Radical Miniemulsion Polymerization of Styrene Using Degenerative Transfer. Macromolecules,1999,32: 7354-7360
    [3]Farcet C., Lansalot M., Pirri R., Vairon J. P., Charleux B. Polystyrene-block-poly(butyl acrylate) and polystyreneblock-poly[(butyl acrylate)-co-styrene] block copolymers prepared via controlled free-radical miniemulsion polymerization using degenerative iodine transfer. Macromol Rapid Commun,2000,21:921-926
    [4]Georges M. K., Veregin R. P. N., Kazmaier P. M., Hamer G. K. Narrow molecular weight resins by a free-radical polymerization process. Macromolecules,1993,26: 2987-2988
    [5]Chiefari J., Chong Y. K., Ercole F., Krstina J., Jeffery J., Le T. P. T., Mayadunne R. T. A., Meijs G. F., Moad C. L., Moad G, Rizzardo E., Thang S. H. Living Free-Radical Polymerization by Reversible Addition-Fragmentation Chain Transfer:The RAFT Process. Macromolecules,1998,31:5559-5562
    [6]Wang J. S. and Matyjaszewski K. Controlled/"living" radical polymerization atom transfer radical polymerization in the presence of transition-metal complexes. J Am Chem Soc,1995,117:5614-5615
    [7]Wang J. S., Matyjaszewski K. Controlled/"Living" Radical Polymerization Halogen Atom Transfer Radical Polymerization Promoted by a Cu(I)/Cu(11)Redox Process. Macromolecules,1995,28:7901-7910
    [8]朱军,龚巍华,潘文玲.环保型接枝氯丁胶的研究[J].中国胶粘,2005,14(12):24-26
    [9]夏古稀.粘接型氯丁二烯共聚物的制备方法:中国,CN 1034002A[P].1989-07-19
    [10]Li B., Shi Y., Zhu W. C, Fu Z. F., Yang W. T. Synthesis of Amphiphilic Polystyrene-b-Poly (acrylic acid) Diblock Copolymers by Iodide-Mediated Radical Polymerization. Polym J,2006,38(4):387-394
    [1]杨晓文.氯丁橡胶的应用[J].特种橡胶制品,2006,46(5):55-58
    [2]N. L. Catton:The Neoprene, du pont (1952)
    [3]张学义.国产CR-244粘结型氯丁橡胶性能及加工应用[J].弹性体,2001-04-25,11(2):39-43
    [4]朱家顺,王炼石.粘接型CR244粉末橡胶在溶剂型氯丁粘合剂中的应用[J].中国胶粘剂,2005,12(4):34:39
    [5]Wakioka M., Baek K. Y., Ando T., Kamigaito M., Sawamoto M. Possibility of Living Radical Polymerization of Vinyl Acetate Catalyzed by Iron(Ⅰ) Complex. Macromolecules,2002,35:330-333
    [6]Asandei A. D., Percec V. From Metal-Catalyzed Radical Telomerization to Metal-Catalyzed Radical Polymerization of Vinyl Chloride:Toward Living Radical Polymerization of Vinyl Chloride. Journal of Polymer Science:Part A:Polymer Chemistry,2001,39:3392-3418
    [7]Percec V., Popov A. V., Ramirez-Castillo E., Monteiro M., Barboiu B., Weichold O., Asandei A. D., Mitchell C. M.. Aqueous Room Temperature Metal-Catalyzed Living Radical Polymerization of Vinyl Chloride. J AM CHEM SOC,2002,124:4940-4941
    [8]吁诚铭,徐冬梅,张鸿,张可达.元素碘参与的甲基丙烯酸甲酯衰减链转移聚合[J]. 高分子材料科学与工程,2008,24(8):55-58
    [9]Iovu M. C., Matyjaszewski K. Controlled/Living Radical Polymerization of Vinyl Acetate by Degenerative Transfer with Alkyl Iodides. Macromolecules,2003,36, 9346-9354
    [10]Goto A., Ohno K., Fukuda T. Mechanism and Kinetics of Iodide-Mediated Polymerization of Styrene. Macromolecules,1998,31:2809-2814
    [11]Lansalot M., Farcet C., Charleux B.*, Vairon J. P. Controlled Free-Radical Miniemulsion Polymerization of Styrene Using Degenerative Transfer. Macromolecules,1999,32: 7354-7360
    [12]Gaynor S. G, Wang J. S., Matyjaszewski K. Controlled Radical Polymerization by Degenerative Transfer:Effect of the Structure of the Transfer Agent. Macromolecules, 1995,28:8051-8056
    [13]Kamigaito M., Onishi I., Kimura S., Kotani Y., Sawamoto M. A highly active Fe(Ⅰ) catalyst for radical polymerisation and taming the polymerisation with iodine. CHEM COMMUN,2002,2694-2695
    [14]Qin S. H., Qiu K. Y. Block copolymerization of tert-butyl methacrylate with υ,ω-difunctionalized polystyrene macroiniferter and hydrolysis to amphiphilic block copolymer. Journal of Polymer Science Part A:Polymer Chemistry,2001,39,1450-1455
    [15]张可达,常丽群,包宏强,王霞艳,吴建峰.元素碘存在下甲基丙烯酸甲酯(MMA)的衰减链转移(DT)聚合.全国高分子学术论文报告会,2005
    [16]吁诚铭,徐冬梅,张鸿,张可达.元素碘参与的甲基丙烯酸甲酯衰减链转移聚合[J].高分子材料科学与工程,2008,24(8):55-58
    [17]Iovu M. C., Matyjaszewski K. Controlled/Living Radical Polymerization of Vinyl Acetate by Degenerative Transfer with Alkyl Iodides. Macromolecules,2003,36, 9346-9354
    [18]Wakioka M., Baek K. Y., Ando T., Kamigaito M., Sawamoto M. Possibility of Living Radical Polymerization of Vinyl Acetate Catalyzed by Iron(I) Complex. Macromolecules,2002,35:330-333
    [19]Asandei A. D., Percec V. From Metal-Catalyzed Radical Telomerization to Metal-Catalyzed Radical Polymerization of Vinyl Chloride:Toward Living Radical Polymerization of Vinyl Chloride. Journal of Polymer Science:Part A:Polymer Chemistry,2001,39:3392-3418
    [20]Percec V., Popov A. V., Ramirez-Castillo E., Monteiro M., Barboiu B., Weichold O., Asandei A. D., Mitchell C. M.. Aqueous Room Temperature Metal-Catalyzed Living Radical Polymerization of Vinyl Chloride. J AM CHEM SOC,2002,124:4940-4941
    [21]ZB G 35001-88.中华人民共和国化学工业部1988-09-09发布,1989-03-01实施.
    [22]Li B., Shi Y., Zhu W. C., Fu Z. F., Yang W. T. Synthesis of Amphiphilic Polystyrene-b-Poly (acrylic acid) Diblock Copolymers by Iodide-Mediated Radical Polymerization. Polym J,2006,38(4):387-394
    [1]兰州化学工业公司编著.合成橡胶工业手册[M].北京:化学工业出版社,1991,12
    [2]奥村钦一.水性氯丁橡胶型胶粘剂[J].胶粘剂市场资讯,2006,8:34-36
    [3]张学义,张继森,郭顺先.易加工氯丁橡胶的工业化生产[J].合成橡胶工业,1996,19(3):151-152
    [4]Catton N. L. The Neoprene, du pont,1952
    [5]Q/140200SXJ001-2009.山西合成橡胶集团有限责任公司企业标准,2009-01-22发布,2009-03-01实施.
    [6]姚红,张学义.正十二硫醇对氯丁橡胶相对分子质量及其分布和支化[N].北京化工大学学报自然科学版,1998-4-2(5)
    [7]张泗文.氯丁橡胶在向高性能发展[J].合成橡胶工业,1992,15(3):131-134
    [8]刘建雄.防焦剂P-X在氯丁橡胶生产中的应用[J].山西化工,2003,23(3):13-14
    [9]石艳.高门尼氯丁橡胶的研究与合成[学位论文].北京:北京化工大学,1995
    [1]杨晓文.氯丁橡胶的应用[J].特种橡胶制品,2006,46(5):55-58
    [2]朱家顺,王炼石.粘接型CR244粉末橡胶在溶剂型氯丁粘合剂中的应用[J].中国胶粘剂,2005,12(4):34:39
    [3]兰州化学工业公司编著.合成橡胶工业手册[M].北京:化学工业出版社,1991,12
    [4]刘大华主编.合成橡胶工业手册.北京:化学工业出版社,1994,4
    [5]GB/T 15257-2008.中华人民共和国国家标准,2008-6-19发布,2009-02-01实施.
    [6]聚合岗位操作规程.山西合成橡胶集团有限公司,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700