两嵌段共聚物/纳米颗粒自组装的耗散粒子动力学模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
将嵌段共聚物体系置于一定的外部环境下,如受限、参杂、外力场、及溶剂等,由于受外部各种因素的诱导作用,体系将表现出与本体状态下不同的相行为特征。人们可以通过控制共聚物与外部环境间的相关参数,制备出结构新颖、长程有序的纳米材料。在研究共聚物体系在受限、掺入杂质颗粒、剪切场、及选择性溶剂等条件下自组装的过程中,也使我们更理解了嵌段共聚物的相行为本质。尤其对于掺杂情况,各项同性的纳米球与高长径比的纳米棒对体系自组装行为的影响有着极大地区别。纳米棒附带的取向熵,引导我们从体系的熵与焓角度去更本质地理解一系列相结构的内在机制。本论文采用耗散粒子动力学(DPD)模拟方法研究了层状/柱状的两嵌段共聚物与杂质颗粒(纳米球、纳米棒)共混体系,剪切场下共聚物/纳米棒共混体系,及柔性链嫁接的纳米棒分子在溶剂环境中的自组装行为。
     1.层状的两嵌段共聚物与纳米球共混体系的自组装行为。为实现刚性的纳米球,引入了一种新的相互作用势。我们系统地研究了纳米球的浓度、半径、及球与高分子链间的相互作用等参数对共聚物相分离的影响,并得到了三种参数共同构建的结构相图,全面地反应了体系的相行为。纳米球的位置分布主导着体系从有序的层状结构到双连续相的转变。当纳米球全部分布于亲A相区时,共聚物的相分离决定了体系维持层状结构;由于刚性球的排斥体积效应,当部分球被迫分布于AB相分离的界面,或甚至B相区时,纳米球就会破坏层状结构,诱导体系向双连续相转变,一致与实验研究的结果。
     2.层状或柱状的两嵌段共聚物与纳米棒共混体系的自组装行为。其中棒与棒间的弱排斥作用,使棒有集聚行为的趋势。我们系统地考虑了棒的个数、长度、半径、及棒与高分子间的相互作用等因素对混合体系自组装的影响。一系列的构型及相转变都是在共聚物的相分离与纳米棒的聚集行为共同作用下的结果。当把具有显著物理或化学性质的纳米颗粒混入到高分子体系时,从熵和焓的角度可以更本质地理解体系的自组装,尤其是颗粒的相行为。从焓方面,纳米棒与各高分子链段间相互作用决定了棒的分布;从熵方面,棒的各向异性、相区域的空间约束,及高分子链的构象熵共同决定了棒的取向。
     3.层状或柱状的两嵌段共聚物与二元纳米棒共混体系的自组装行为。二元棒间的区别在于棒的长短,且棒间的强排斥作用阻止了棒的集聚行为。我们分别考虑了亲A棒与中性棒两种情况。在恒定棒总浓度的前提下,改变短棒/长棒的浓度比,不仅可以诱导体系自组装出一系列的相结构,还指导二元棒选择性地分布于高分子基体中。这种共聚物/二元纳米棒共混体系的自组装行为,主要取决于两方面的贡献:一是焓的作用,源于棒与各嵌段间的相互作用,支配着棒的分布,二是熵的作用,源于棒的各向异性,高分子链的构象熵,及相分离结构的空间限制。短棒和长棒识别性地分布在共聚物基体中的这一相行为,对于两嵌段共聚物(无论是对称还是非对称的)与二元纳米棒共混体是普适的。变化嵌段比值fa,区别只是诱导出不同的共混体相结构,而内在机理是相同的。
     4.剪切场作用下共聚物与纳米棒共混体的自组装行为。我们分别考虑了亲A纳米棒与中性纳米棒两种情况。通过控制纳米棒浓度,使共聚物/纳米棒体系的初始相结构始终为层状,在剪切流场作用下,不仅使体系层结构的取向发生了转变,还诱导了体系相构型的转变,且剪切场可以加速取向与相转变的过程。对于纯共聚物,剪切诱导的层取向在低剪切率下转向平行,而在高剪切率下转向垂直。对于纳米棒,在剪切场下棒间有分散趋势。体系最终的自组装结构取决于共聚物与纳米棒在剪切场下各自相行为间的竞争作用。
     5.溶剂诱导下的柔性链嫁接的纳米棒分子的自组装行为。我们考虑了三种嫁接方式(一端、两端、及中间嫁接)的纳米棒在三种溶剂环境下:纯棒选择溶剂,纯链选择溶剂,及两者混合溶剂,体系形成的集聚形态体结构有:柱状、六角柱状、双分子层、层/柱混合相、空心柱状、向列相,及液晶相。这些丰富构型的形成是由分子的拓扑结构、棒/链比,溶剂选择性,及混合溶剂含量等因素决定的。在纯溶剂下,由棒/链比所引起的相结构转变,也可以等效地通过改变混合溶剂的含量来得到。本质上,这类分子在溶剂中的自组装行为主要决定于链的自由伸展能,棒的液晶相行为,及体系的界面能等因素。
Block copolymers under some external environments, such as confinement, nanoparticles, force field, solvent, and so on, due to the induction from the various external conditions, the systems exhibit different phase behaviors as to those in the bulk. It has been show that by controlling the related parameters, we can fabricate novel, and long-range order materials in nano-scale. The studies on the self-assembly of block copolymers suffer the inductions from confinement, nanoparticles, shear flow, and selective solvent, can promote the understanding of intrinsic characters of block copolymers segregation. Especially for nanoparticles, the effects of isotropic nanospheres and high aspect-ratio nanorods on the self-assembled behaviors have significant difference. Base on the additional orientational entropy of nanorods resulting from the particles'anisotropy, a consideration of enthalpic and entropic interactions can further exploite the inherent mechanism for driving these rich phase behaviors. In this dissertation, we use dissipative particle dynamics(DPD) method studied the self-assembly of the following systems:the mixtures of lamellar/cylindrical forming diblock copolymers(DBCPs) and nanoparticles(spheres, or rods), the mixtures of DBCPs and nanorods under shear flow, and the polymer tethered nanorods under selective solvent.
     1. The self-assembled phase behaviors of lamellar DBCPs and nanospheres mixtures. To ensure the rigidity characteristic of nanospheres, we introduce new interactive energies. We systematically study the effects of nanospheres volume fraction, radius, and the polymer-nanosphere interaction on the DBCPs microphase separation. As more, we get a phase diagram of copolymer nanocomposites in terms of these three parameters, which reflects the system phase behaviors comprehensively. The position distribution of nanospheres plays a decisive role in the phase transition from lamellar to bicontinuous morphology because of the strong excluded volume effects among nanospheres.
     2. The self-assembled phase behaviors of lamellar/cylindrical DBCPs and nanorods mixtures. The weak repulsions between nanorods drives the rods to aggregate. A series of parameters, such as nanorod number, length, radius, and the polymer-nanorod interaction, are introduced to analyse the cooperative phase behavior and novel morphologies of hybrids. The final phase structures of the mixtures result from the mutual inducement between mesophase-forming copolymers and NRs. When physically or chemically distinct nanoparticles are introduced into the polymer fluids, it is useful to understand the intrinsic characteristics of the composite self-assembly by considering the enthalpic and entropic interactions, especially for the nanoparticles'phase behaviors. On the one hand, the NRs distributions reveal a degree of enthalpically driven self-assembly, due to the attractions or repulsions among species. On the other hand, the NRs' aggregates and orientations show a degree of entropically generated self-assembly, based on the competition between the inherent shape anisotropy of NRs and confinement of host phase separated domains.
     3. The self-assembled phase behaviors of lamellar/cylindrical DBCPs and binary nanorods mixtures. The binary NRs are identical in energy but different in lengths. The repulsions between nanorods avoid the aggregates among nanorods. We consider two cases of A-block preferential and neutral nanorods, respectively. Replacing the monodisperse NRs with an equal volume fraction of bidisperse NRs, and varying the ratio of short/long nanorod has prompted not only a series of phase transformations in the polymer microstructure but also, the creation of a uniform orientation, and a discriminative distribution of NRs. The inherent mechanism for driving such rich phase behaviors arises from the competition between enthalpic and entropic effects.
     4. The self-assembly of lamellar DBCPs/nanorods composites under shear flow. Both selective and nonselective nanorods are considered. To preserve lamellar morphology in the nanocomposites, the nanorods concentration is controlled to be not too high. Subjected to steady shear flow, there are not only the shear-induced the reorientations of lamellae, but also the shear-induced phase transitions. Moreover, enhancing shear rate can speed up the transition process of micophase structures. For the pure DBCPs case, the shear-induced lamellae adopt parallel alignment at low shear rates, while perpendicular at high shear rates. For the pure nanorods under shear, the nanorods trend to disperse. The final morphologies of nanocomposites depend on the interplay between DBCPs and nanorods under shear flow.
     5. The solvent-induced self-assembly of polymer-tethered nanorods (PTN). We focus on three types of PTN molecules(one end tethered, both ends tethered, middle tethered) under different solvent conditions:the pure rod-selective solventⅠ, the pure tether-selective solventⅡ, and theⅠ/Ⅱmixed solvent. The observed micellar structures include:cylinders, hexagonally cylinders, bilayer lamellae, lamellae/cylinder mixed phases, inverted hollow cylinders, nematic bundles, and ordered LC phases. These morphologies depend on the topology, rod/tether length ratio, solvent selectivity, and mixed solvent content. In pure solvent case, the morphologies and morphological transitions of PTN assemblies are affected by the rod/tether length ratio, which also can be induced by varying mixed solvent content in sequence. These self-assembled structures are formed by the competition between the stretching of tethers, liquid crystalline of rods, and interfacial energy.
引文
[1]Urbas A, Fink Y, Thomas E L. One-dimensionally periodic dielectric reflectors from self-assembled block copolymer-homopolymer blends. Macromolecules., 1999,32(14):4748~4750.
    [2]Pratten M K, Lloyd J B, Horpel G, Ringsdorf H. Micelle-forming block copolymers:pinocytosis by macrophages and interaction with model membranes. Makromolekulare Chemie-Macromolecular Chemistry and Physics.,1985,186(4): 725~733.
    [3]Zhu Y Y, Ming N B. Dielectric superlattices for nonlinear optical effects. Optical and Quantum Electronics.,1999,31(11):1093~1128.
    [4]Degennes P G. Soft matter. Science.,1992,256(5056):495~497.
    [5]Daoud M, Williams C E. Soft Matter Physics. Berlin:Springer-Verlag.1999. 320~322
    [6]Bates F S, Fredrickson G H. Block copolymer thermodynamics:theory and experiment. Annual Review of Physical Chemistry.,1990,41:525~557.
    [7]Matsen M W, Schick M. Stable and unstable phases of a diblock copolymer melt. Physical Review Letters.,1994,72(16):2660~2663.
    [8]Bates F S, Fredrickson G H. Block copolymers-Designer soft materials. Physics Today.,1999,52(2):32~38.
    [9]Hamley I W. Nanostructure fabrication using block copolymers. Nanotechnology., 2003,14(10):R39-R54.
    [10]Park M, Harrison C, Chaikin P M, Register R A, Adamson D H. Block copolymer lithography:Periodic arrays of similar to 10(11) holes in 1 square centimeter. Science.,1997,276(5317):1401~1404.
    [11]Laurer J H, Ashraf A, Smith S D, Samseth J, Spontak R J. Macromolecular self-assembly in dilute sequence-controlled block copolymer/homopolymer blends. Supramolecular Science.,1997,4(1-2):121~126.
    [12]Mogi Y, Kotsuji H, Kaneko Y, Mori K, Matsushita Y, Noda I. Preparation and morphology of triblock copolymers of the ABC type. Macromolecules.,1992, 25(20):5408~5411.
    [13]Nakano T, Okamoto Y, Sogah D Y, Zheng S Y. Cyclopolymerization of Optically Active (-)-trans-4,5-Bis((methacryloyloxy)diphenyl-methyl)-2,2-dimethyl-1, 3-dioxacyclopentane through Radical and Anionic Mechanisms Gives Highly Isotactic Polymers. Macromolecules,1995,28(25):8705~8706.
    [14]Gido S P, Schwark D W, Thomas E L, Goncalves M D. Observation of a non-constant mean curvature interface in an ABC triblock copolymer. Macromolecules.,1993,26(10):2636~2640.
    [15]Nascimento A, Ko A I, Martins E A L, Monteiro-Vitorello C B. Comparative genomics of two Leptospira interrogans serovars reveals novel insights into physiology and pathogenesis. Journal of Bacteriology,2004,186(7):2164~2172.
    [16]Shin K, Xiang H Q, Moon S I, Kim T, McCarthy T J, Russell T P. Curving and frustrating flatland. Science.,2004,306(5693):76~76.
    [17]Wu Y Y, Cheng G S, Katsov K, Sides S W, Wang J F, Tang J, Fredrickson G H, Moskovits M, Stucky G D. Composite mesostructures by nano-confinement. Nature Materials.,2004,3(11):816~822.
    [18]Cheng J Y, Ross C A, Smith H I, Thomas E L. Templated self-assembly of block copolymers:Top-down helps bottom-up. Advanced Materials.,2006,18(19): 2505~2521.
    [19]Huang E, Russell T P, Harrison C, Chaikin P M, Register R A, Hawker C J, Mays J. Using surface active random copolymers to control the domain orientation in diblock copolymer thin films. Macromolecules.,1998,31(22):7641~7650.
    [20]Wang Q, Nealey P F, de Pablo J J. Monte Carlo simulations of asymmetric diblock copolymer thin films confined between two homogeneous surfaces. Macromolecules.,2001,34(10):3458~3470.
    [21]Cheng J Y, Mayes A M, Ross C A. Nanostructure engineering by templated self-assembly of block copolymers. Nature Materials.,2004,3(11):823~828.
    [22]Tseng R J, Tsai C L, Ma L P, Ouyang J Y. Digital memory device based on tobacco mosaic virus conjugated with nanoparticles. Nature Nanotechnology., 2006,1(1):72~77.
    [23]Konstantatos G, Howard I, Fischer A, Hoogland S, Clifford J, Klem E, Levina L, Sargent E H. Ultrasensitive solution-cast quantum dot photodetectors. Nature., 2006,442(7099):180~183.
    [24]Gas J, Poddar P, Almand J, Srinath S, Srikanth H. Superparamagnetic polymer nanocomposites with uniform Fe3O4 nanoparticle dispersions. Advanced Functional Materials.,2006,16(1):71~75.
    [25]Kaittanis C, Naser S A, Perez J M. One-step, nanoparticle-mediated bacterial detection with magnetic relaxation. Nano Letters.,2007,7(2):380~383.
    [26]Jaramillo T F, Baeck S H, Cuenya B R, McFarland E W. Catalytic activity of supported au nanoparticles deposited from block copolymer micelles. Journal of the American Chemical Society.,2003,125(24):7148~7149.
    [27]Bockstaller M R, Thomas E L. Proximity effects in self-organized binary particle-block copolymer blends. Physical Review Letters.,2004,93(16):166106.
    [28]Lin Y, Boker A, He J B, Sill K, Xiang H Q, Abetz C, Li X F, Wang J, Emrick T, Long S, Wang Q, Balazs A, Russell T P. Self-directed self-assembly of nanoparticle/copolymer mixtures. Nature.,2005,434(7029):55~59.
    [29]Kim B J, Chiu J J, Yi G R, Pine D J, Kramer E J. Nanoparticle-induced phase transitions in diblock-copolymer films. Advanced Materials.,2005,17(21): 2618~2712.
    [30]Chen Z R, Kornfield J A, Smith S D, Grothaus J T, Satkowski M M. Pathways to macroscale order in nanostructured block copolymers. Science.,1997,277(5330): 1248~1253.
    [31]Xu T, Zvelindovsky A V, Sevink G J A, Gang O, Ocko B, Zhu Y Q, Gido S P, Russell T P. Electric field induced sphere-to-cylinder transition in diblock copolymer thin films. Macromolecules.,2004,37(18):6980~6984.
    [32]Olsen B D, Segalman R A. Self-assembly of rod-coil block copolymers. Materials Science & Engineering R-Reports.,2008,62(2):37~66.
    [33]Hoogerbrugge P J, Koelman J. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhysics Letters.,1992,19(3): 155~160.
    [34]Koelman J, Hoogerbrugge P J. Dynamic simulations of hard-sphere suspensions under steady shear. Europhysics Letters.,1993,21(3):363~368.
    [35]Espanol P, Warren P. Statistical mechanics of dissipative particle dynamics. Europhysics Letters.,1995,30(4):191~196.
    [36]Groot R D, Warren P B. Dissipative particle dynamics:Bridging the gap between atomistic and mesoscopic simulation. Journal of Chemical Physics.,1997, 107(11):4423~4435.
    [37]Allen M P. Configurational temperature in membrane simulations using dissipative particle dynamics. Journal of Physical Chemistry B.,2006,110: 3823~3830.
    [38]Lebedev V V, Turitsyn K S, Vergeles S S. Dynamics of nearly spherical vesicles in an external flow. Physical Review Letters.,2007,99(21):218101.
    [39]Vattulainen I, Karttunen M, Besold G, Polson J M. Integration schemes for dissipative particle dynamics simulations:From softly interacting systems towards hybrid models. Journal of Chemical Physics.,2002,116(10): 3967~3979.
    [40]Nikunen P, Karttunen M, Vattulainen I. How would you integrate the equations of motion in dissipative particle dynamics simulations? Computer Physics Communications.,2003,153(3):407~423.
    [41]Groot R D, Rabone K L. Mesoscopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants. Biophysical Journal., 2001,81(2):725~736.
    [42]He L L, Zhang L X, Liang H J. Microdomain Morphology of Lamella-Forming Diblock Copolymer Confined in a Thin Film. Journal of Polymer Science Part B-Polymer Physics.,2009,47(1):1~10.
    [43]He L L, Zhang L X, Liang H J. Cooperative surface-induced self-assembly of symmetric diblock copolymers confined films with embedded nanorods. Polymer.,2009,50(2):721~727.
    [44]Chen P, Liang H J, Shi A C. Origin of microstructures from confined asymmetric diblock copolymers. Macromolecules.,2007,40:7329~7335.
    [45]Lee J Y, Thompson R B, Jasnow D, Balazs A C. Effect of nanoscopic particles on the mesophase structure of diblock copolymers. Macromolecules.,2002,35(13): 4855~4858.
    [46]Bockstaller M R, Mickiewicz R A, Thomas E L. Block copolymer nanocomposites:Perspectives for tailored functional materials. Advanced Materials.,2005,17(11):1331~1349.
    [47]Balazs A C. Interactions of nanoscopic particles with phase-separating polymeric mixtures. Current Opinion in Colloid & Interface Science.,1999,4(6):443~448.
    [48]Chiu J J, Kim B J, Kramer E J, Pine D J. Control of nanoparticle location in block copolymers. Journal of the American Chemical Society.,2005,127(14): 5036~5037.
    [49]Thompson R B, Ginzburg V V, Matsen M W, Balazs A C. Predicting the mesophases of copolymer-nanoparticle composites. Science.,2001,292(5526): 2469~2472.
    [50]Bockstaller M R, Lapetnikov Y, Margel S, Thomas E L. Size-selective organization of enthalpic compatibilized nanocrystals in ternary block copolymer/particle mixtures. Journal of the American Chemical Society.,2003, 125(18):5276~5277.
    [51]Thompson R B, Ginzburg V V, Matsen M W, Balazs A C. Block copolymer-directed assembly of nanoparticles:Forming mesoscopically ordered hybrid materials. Macromolecules.,2002,35(3):1060~1071.
    [52]Wang Q, Nealey P F, de Pablo J J. Behavior of single nanoparticle/homopolymer chain in ordered structures of diblock copolymers. Journal of Chemical Physics., 2003,118(24):11278~11285.
    [53]Liu D H, Zhong C L. Cooperative self-assembly of nanoparticle mixtures in lamellar diblock copolymers:A dissipative particle dynamics study. Macromolecular Rapid Communications.,2006,27(6):458~462.
    [54]Huh J, Ginzburg V V, Balazs A C. Thermodynamic behavior of particle/diblock copolymer mixtures:Simulation and theory. Macromolecules.,2000,33(21): 8085~8096.
    [55]Kim B J, Fredrickson G H, Hawker C J, Kramer E J. Nanoparticle surfactants as a route to bicontinuous block copolymer morphologies. Langmuir.,2007,23(14): 7804~7809.
    [56]Lin C H, Tung Y C, Ruokolainen J, Mezzenga R, Chen W C. Poly 2,7-(9,9-dihexylfluorene) -block-poly(2-vinylpyridine) Rod-Coil and Coil-Rod-Coil Block Copolymers:Synthesis, Morphology and Photophysical Properties in Methanol/THF Mixed Solvents. Macromolecules.,2008,41(22): 8759~8769.
    [57]Celestini F, Frisch T, Oyharcabal X. Stretching an adsorbed polymer globule. Physical Review E.,2004,70(1):012801
    [58]Alexandre M, Dubois P. Polymer-layered silicate nanocomposites:preparation, properties and uses of a new class of materials. Materials Science & Engineering R-Reports.,2000,28(1-2):1~63.
    [59]Giannelis E P. Polymer-layered silicate nanocomposites:Synthesis, properties and applications. Applied Organometallic Chemistry.,1998,12(10-11):675~680.
    [60]Soo P P, Huang B Y, Jang Y I, Chiang Y M, Sadoway D R, Mayes A M. Rubbery block copolymer electrolytes for solid-state rechargeable lithium batteries. Journal of the Electrochemical Society.,1999,146(1):32~37.
    [61]Peng G W, Qiu F, Ginzburg V V, Jasnow D, Balazs A C. Forming supramolecular networks from nanoscale rods in binary, phase-separating mixtures. Science., 2000,288(5472):1802~1804.
    [62]Lekkerkerker H N W, Stroobants A. Colloids-Ordering entropy. Nature.,1998, 393(6683):305~307.
    [63]Lopes W A, Jaeger H M. Hierarchical self-assembly of metal nanostructures on diblock copolymer scaffolds. Nature.,2001,414(6865):735~738.
    [64]Adams M, Dogic Z, Keller S L, Fraden S. Entropically driven microphase transitions in mixtures of colloidal rods and spheres. Nature.,1998,393(6683): 349~352.
    [65]Loudet J C, Barois P, Poulin P. Colloidal ordering from phase separation in a liquid-crystalline continuous phase. Nature.,2000,407(6804):611~613.
    [66]Schultz A J, Hall C K, Genzer J. Computer simulation of block copolymer/nanoparticle composites. Macromolecules.,2005,38(7): 3007~3016.
    [67]Lee J Y, Shou Z, Balazs A C. Modeling the self-assembly of copolymer-nanoparticle mixtures confined between solid surfaces. Physical Review Letters.,2003,91(13):136103.
    [68]Buxton G A, Balazs A C. Lattice spring model of filled polymers and nanocomposites. Journal of Chemical Physics.,2002,117(16):7649~7658.
    [69]Buxton G A, Balazs A C. Predicting the mechanical and electrical properties of nanocomposites formed from polymer blends and nanorods. Molecular Simulation.,2004,30(4):249~257.
    [70]Zhang Q L, Gupta S, Emrick T, Russell T P. Surface-functionalized CdSe nanorods for assembly in diblock copolymer templates. Journal of the American Chemical Society.,2006,128(12):3898~3899.
    [71]Beneut K, Constantin D, Davidson P, Dessombz A, Chaneac C. Magnetic nanorods confined in a lamellar lyotropic phase. Langmuir.,2008,24(15): 8205~8209.
    [72]Deshmukh R D, Liu Y, Composto R J. Two-dimensional confinement of nanorods in block copolymer domains. Nano Letters.,2007,7(12):3662~3668.
    [73]Balazs A C, Emrick T, Russell T P. Nanoparticle polymer composites:Where two small worlds meet. Science.,2006,314(5802):1107~1110.
    [74]Chen K, Ma Y Q. Ordering stripe structures of nanoscale rods in diblock copolymer scaffolds. Journal of Chemical Physics.,2002,116(18):7783~7786.
    [75]He L L, Zhang L X, Xia A, Liang H J. Effect of nanorods on the mesophase structure of diblock copolymers. Journal of Chemical Physics.,2009, 130(14):144907.
    [76]He L L, Zhang L X, Chen H P, Liang H J. The phase behaviors of cylindrical diblock copolymers and rigid nanorods'mixtures.Polymer.,2009,50(14): 3403-3410.
    [77]He L L, Zhang L X, Liang H J. Mono-or bidisperse nanorods mixtures in diblock copolymers. Polymer.,2010,51(14):3303-3314.
    [78]AlSunaidi A, Den Otter W K, Clarke J H R. Liquid-crystalline ordering in rod-coil diblock copolymers studied by mesoscale simulations. Philosophical Transactions of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences.,2004,362(1821):1773-1781.
    [79]Hore M J A, Laradji M. Prospects of nanorods as an emulsifying agent of immiscible blends. Journal of Chemical Physics.,2008,128(5):054901.
    [80]Zhang L X, Wang X H, Ma H Z, Huang Y X. Conformational behavior of short adsorbed polymer chains. European Polymer Journal.,1999,35(1):167-172.
    [81]He L L, Zhang L X, Liang H J. The effects of nanoparticles on the lamellar phase separation of diblock copolymers. Journal of Physical Chemistry B.,2008, 112(14):4194-4203.
    [82]Lauter-Pasyuk V, Lauter H J, Ausserre D, Gallot Y, Cabuil V, Kornilov E I, Hamdoun B. Effect of nanoparticle size on the internal structure of copolymer-nanoparticles composite thin films studied by neutron reflection. Physica B-Condensed Matter.,1997,241:1092-1094.
    [83]Lauter-Pasyuk V, Lauter H J, Ausserre D, Gallot Y, Cabuil V, Hamdoun B, Kornilov E I. Neutron reflectivity studies of composite nanoparticle copolymer thin films. Physica B.,1998,248:243~245.
    [84]Sun Y S, Jeng U S, Liang K S, Yeh S W, Wei K H. Transitions of domain ordering and domain size in a spherical-forming polystyrene-block-poly(ethylene oxide) copolymer and its composites with colloidal cadmium sulfide quantum dots. Polymer.,2006,47(4):1101~1107.
    [85]Yeh S W, Wei K H, Sun Y S, Jeng U S, Liang K S. CdS nanoparticles induce a morphological transformation of poly(styrene-b-4-vinylpyridine) from hexagonally packed cylinders to a lamellar structure. Macromolecules.,2005, 38(15):6559~6565.
    [86]Laradji M, Hore M J A. Nanospheres in phase-separating multicomponent fluids: A three-dimensional dissipative particle dynamics simulation. Journal of Chemical Physics.,2004,121(21):10641~10647.
    [87]Iacovella C R, Horsch M A, Glotzer S C. Local ordering of polymer-tethered nanospheres and nanorods and the stabilization of the double gyroid phase. Journal of Chemical Physics.,2008,129(4):044902.
    [88]Chan E R, Ho L C, Glotzer S C. Computer simulations of block copolymer tethered nanoparticle self-assembly. Journal of Chemical Physics,2006,125(6): 064905.
    [89]Groot R D, Madden T J. Dynamic simulation of diblock copolymer microphase separation. Journal of Chemical Physics.,1998,108(20):8713~8724.
    [90]Lee J Y, Thompson R B, Jasnow D, Balazs A C. Entropically driven formation of hierarchically ordered nanocomposites. Physical Review Letters.,2002,89(15): 155503.
    [91]Kim B J, Bang J, Hawker C J, Kramer E J. Effect of areal chain density on the location of polymer-modified gold nanoparticles in a block copolymer template. Macromolecules.,2006,39(12):4108~4114.
    [92]Dinsmore A D, Yodh A G, Pine D J. Phase diagrams of nearly-hard-sphere binary colloids. Physical Review E.,1995,52(4):4045~4057.
    [93]Dinsmore A D, Yodh A G, Pine D J. Entropic control of particle motion using passive surface microstructures. Nature.,1996,383(6597):239~242.
    [94]Leibler L. Theory of microphase separation in block copolymers. Macromolecules.,1980,13(6):1602~1617.
    [95]Khandpur A K, Forster S, Bates F S, Hamley I W, Ryan A J, Bras W, Almdal K, Mortensen K. Polyisoprene-polystyrene diblock copolymer phase diagram near the order-disorder transition. Macromolecules.,1995,28(26):8796~8806.
    [96]Zhang S Z, Kou X S, Yang Z, Shi Q H, Stucky G D, Sun L D, Wang J F, Yan C H. Nanonecklaces assembled from gold rods, spheres, and bipyramids. Chemical Communications.,2007,(18):1816~1818.
    [97]Spontak R J, Shankar R, Bowman M K, Krishnan A S, Hamersky M W, Samseth J, Bockstaller M R, Rasmussen K O. Selectivity- and size-induced segregation of molecular and nanoscale species in microphase-ordered triblock copolymers. Nano Letters.,2006,6(9):2115~2120.
    [98]Thompson R B, Lee J Y, Jasnow D, Balazs A C. Binary hard sphere mixtures in block copolymer melts. Physical Review E.,2002,66(3):154905.
    [99]Hamdoun B, Ausserre D, Cabuil V, Joly S. Copolymer nanoparticle composites: Lamellar period. Journal De Physique Ii.,1996,6(4):503~510.
    [100]Jin J Z, Wu J Z, Frischknecht A L. Modeling Microscopic Morphology and Mechanical Properties of Block Copolymer/Nanoparticle Composites. Macromolecules.,2009,42(19):7537~7544.
    [101]Feng J, Ruckenstein E. Long-range ordered structures in diblock copolymer melts induced by combined external fields. Journal of Chemical Physics.,2004, 121(3):1609~1625.
    [102]Hamley I W. Structure and flow behaviour of block copolymers. Journal of Physics-Condensed Matter.,2001,13(33):R643~R671.
    [103]Pinna M, Zvelindovsky A V, Todd S, Goldbeck-Wood G. Cubic phases of block copolymers under shear and electric fields by cell dynamics simulation.Ⅰ. Spherical phase. Journal of Chemical Physics.,2006,125(15):154905.
    [104]Hong Y R, Adamson D H, Chaikin P M, Register R A. Shear-induced sphere-to-cylinder transition in diblock copolymer thin films. Soft Matter.,2009, 5(8):1687~1691.
    [105]Luo K F, Yang Y L. Lamellar orientation and corresponding rheological properties of symmetric diblock copolymers under steady shear flow. Macromolecules.,2002,35(9):3722~3730.
    [106]Chen P L, Vinals J. Lamellar phase stability in diblock copolymers under oscillatory shear flows. Macromolecules.,2002,35(10):4183~4192.
    [107]Fraser B, Denniston C, Muser M H. On the orientation of lamellar block copolymer phases under shear. Journal of Chemical Physics.,2006,124(10): 104902.
    [108]Lisal M, Brennan J K. Alignment of lamellar diblock copolymer phases under shear:Insight from dissipative particle dynamics simulations. Langmuir.,2007, 23(9):4809~4818.
    [109]Mendoza C, Pietsch T, Gindy N, Fahmi A. Fabrication of 3D-periodic ordered metallic nanoparticles in a block copolymer bulk matrix via oscillating shear flow. Advanced Materials.,2008,20(6):1179~1184.
    [110]Mendoza C, Pietsch T, Gutmann J S, Jehnichen D, Gindy N, Fahmi A. Block Copolymers with Gold Nanoparticles:Correlation between Structural Characteristics and Mechanical Properties. Macromolecules.,2009,42(4): 1203~1211.
    [111]Mendoza C, Gindy N, Gutmann J S, Fromsdorf A, Forster S, Fahmi A. In Situ Synthesis and Alignment of Au Nanoparticles within Hexagonally Packed Cylindrical Domains of Diblock Copolymers in Bulk. Langmuir.,2009,25(16): 9571~9578.
    [112]Kalra V, Mendez S, Escobedo F, Joo Y L. Coarse-grained molecular dynamics simulation on the placement of nanoparticles within symmetric diblock copolymers under shear flow. Journal of Chemical Physics,2008,128(16): 164909.
    [113]Kalra V, Joo Y L. Coarse-grained molecular dynamics study of block copolymer/nanoparticle composites under elongational flow. Journal of Chemical Physics.,2009,131(21):214904.
    [114]Yan L T, Popp N, Ghosh S K, Boker A. Self-Assembly of Janus Nanoparticles in Diblock Copolymers. Acs Nano.,2010,4(2):913~920.
    [115]Thompson R B, Rasmussen K O, Lookman T. Origins of elastic properties in ordered block copolymer/nanoparticle composites. Nano Letters.,2004,4(12): 2455~2459.
    [116]Lees A W, Edwards S F. The computer study of transport processes under extreme conditions. Journal of Physics Part C Solid State Physics.,1972,5(15): 1921~1929.
    [117]Zipfel J, Lindner P, Tsianou M, Alexandridis P, Richtering W. Shear-induced formation of multilamellar vesicles ("onions") in block copolymers. Langmuir., 1999,15(8):2599~2602.
    [118]de Gennes P G, Prost J. The Physics of Liquid Crystals. Oxford,:Clarendon Press,.1993.
    [119]Guo H X. Nonequilibrium molecular dynamics simulation study on the orientation transition in the amphiphilic lamellar phase under shear flow. Journal of Chemical Physics.,2006,125(21):214902.
    [120]Koppi K A, Tirrell M, Bates F S, Almdal K, Lamellae orientation in dynamically sheared diblock copolymer melts. Journal De Physique Ii.,1992, 2(11):1941~1959.
    [121]Guo H X. Shear-induced parallel-to-perpendicular orientation transition in the amphiphilic lamellar phase:A nonequilibrium molecular-dynamics simulation study. Journal of Chemical Physics.,2006,124(5):054902.
    [122]Satoh A, Chantrell R W, Kamiyama S, Coverdale G N. Three dimensional Monte Carlo simulations of thick chainlike clusters composed of ferromagnetic fine particles. Journal of Colloid and Interface Science.,1996,181(2):422~428.
    [123]Zhang X, Chan E R, Glotzer S C. Self-assembled morphologies of monotethered polyhedral oligomeric silsesquioxane nanocubes from computer simulation. Journal of Chemical Physics.,2005,123(18):184718.
    [124]Iacovella C R, Horsch M A, Zhang Z, Glotzer S C. Phase diagrams of self-assembled mono-tethered nanospheres from molecular simulation and comparison to surfactants. Langmuir.,2005,21(21):9488~9494.
    [125]Chan E R, Zhang X, Lee C Y, Neurock M, Glotzer S C. Simulations of tetra-tethered organic/inorganic nanocube-polymer assemblies. Macromolecules.,2005,38(14):6168~6180.
    [126]Zhang Z L, Glotzer S C. Self-assembly of patchy particles. Nano Letters.,2004, 4(8):1407~1413.
    [127]Zhang Z L, Horsch M A, Lamm M H, Glotzer S C. Tethered nano building blocks:Toward a conceptual framework for nanoparticle self-assembly. Nano Letters.,2003,3(10):1341~1346.
    [128]Bates M A, Walker M. Dissipative particle dynamics simulation of quaternary bolaamphiphiles:multi-colour tiling in hexagonal columnar phases. Physical Chemistry Chemical Physics.,2009,11(12):1893~1900.
    [129]Cheung D L, Troisi A. Molecular structure and phase behaviour of hairy-rod polymers. Physical Chemistry Chemical Physics.,2009,11(12):2105~2112.
    [130]Murray C B, Kagan C R, Bawendi M G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annual Review of Materials Science.,2000,30:545~610.
    [131]Busbee B D, Obare S O, Murphy C J. An improved synthesis of high-aspect-ratio gold nanorods. Advanced Materials.,2003,15(5):414~416.
    [132]Sun Y G, Xia Y N. Shape-controlled synthesis of gold and silver nanoparticles. Science.,2002,298(5601):2176~2179.
    [133]Pinna N, Weiss K, Urban J, Pileni M P. Triangular CdS nanocrystals:Structural and optical studies. Advanced Materials.,2001,13(4):261~264.
    [134]Jin R C, Cao Y W, Mirkin C A, Kelly K L, Schatz G C, Zheng J G. Photoinduced conversion of silver nanospheres to nanoprisms. Science.,2001, 294(5548):1901~1903.
    [135]Crane A J, Martinez-Veracoechea F J, Escobedob F A, Muller E A. Molecular dynamics simulation of the mesophase behaviour of a model bolaamphiphilic liquid crystal with a lateral flexible chain. Soft Matter.,2008,4(9):1820~1829
    [136]Wilson M R, Thomas A B, Dennison M, Masters A J. Computer simulations and theory of polymer tethered nanorods:the role of flexible chains in influencing mesophase stability. Soft Matter.,2009,5(2):363~368.
    [137]Chen J-Z, Zhang C-X, Sun Z-Y, An L-J, Tong Z. Study of self-assembly of symmetric coil-rod-coil ABA-type triblock copolymers by self-consistent field lattice method. J Chem Phys.,2007,127(2):024105.
    [138]Klok H A, Lecommandoux S. Supramolecular materials via block copolymer self-assembly. Advanced Materials.,2001,13(16):1217~1229.
    [139]Lee M, Cho B K, Zin W C. Supramolecular structures from rod-coil block copolymers. Chemical Reviews.,2001,101(12):3869~3892.
    [140]Wang H B, Wang H H, Urban V S, Littrell K C, Thiyagarajan P, Yu L P. Syntheses of amphiphilic diblock copolymers containing a conjugated block and their self-assembling properties. Journal of the American Chemical Society.,2000,122(29):6855~6861.
    [141]Li K, Wang Q. Synthesis and solution aggregation of polystyrene-oligo(p-phenyleneethynylene)-polystyrene triblock copolymer. Macromolecules.,2004,37(4):1172~1174.
    [142]Ryu J H, Oh N K, Zin W C, Lee M. Self-assembly of rod-coil molecules into molecular length-dependent organization. Journal of the American Chemical Society.,2004,126(11):3551~3558.
    [143]Long Y J, Huang Y Z. Image based source camera identification using demosaicking.2006 IEEE Workshop on Multimedia Signal Processing.,2006: 419~424.
    [144]Hong D J, Lee E, Jeong H, Lee J, Zin W C, Nguyen T D, Glotzer S C, Lee M. Solid-State Scrolls from Hierarchical Self-Assembly of T-Shaped Rod-Coil Molecules. Angewandte Chemie-International Edition.,2009,48(9): 1664~1668.
    [145]Chen J Z, Zhang C X, Sun Z Y, Zheng Y S, An L J. A novel self-consistent-field lattice model for block copolymers. Journal of Chemical Physics.,2006, 124(10):104907.
    [146]Chen J Z, Sun Z Y, Zhang C X, An L J, Tong Z. Self-assembly of rod-coil-rod ABA-type triblock copolymers. Journal of Chemical Physics.,2008,128(7): 074904.
    [147]Tschierske C. Liquid crystal engineering-new complex mesophase structures and their relations to polymer morphologies, nanoscale patterning and crystal engineering. Chemical Society Reviews.,2007,36:1930~1970.
    [148]Lintuvuori J S, Wilson M R. A coarse-grained simulation study of mesophase formation in a series of rod-coil multiblock copolymers. Physical Chemistry Chemical Physics.,2009,11(12):2116~2125.
    [149]Song J H, Shi T F, Li Y Q, Chen J Z, An L J. Rigidity effect on phase behavior of symmetric ABA triblock copolymers:A Monte Carlo simulation. Journal of Chemical Physics.,2008,129(5):054906.
    [150]de Cuendias A, Le Hellaye M, Lecommandoux B, Cloutet E, Cramail H. Synthesis and self-assembly of polythiophene-based rod-coil and coil-rod-coil block copolymers. Journal of Materials Chemistry.,2005,15(32):3264~3267.
    [151]Koh H D, Park J W, Rahman M S, Changez M, Lee J S. Reversibly interchangeable, chain-wrapped micelles and vesicles of an amphiphilic rod-coil block copolymer. Chemical Communications.,2009,(32): 4824~4826.
    [152]Loos K, Boker A, Zettl H, Zhang A F, Krausch G, Muller A H E. Micellar aggregates of amylose-block-polystyrene rod-coil block copolymers in water and THF. Macromolecules.,2005,38(3):873~879.
    [153]Park J W, Thomas E L. Anisotropic micellar nanoobjects from reactive liquid crystalline rod-coil diblock copolymers. Macromolecules.,2004,37(10): 3532~3535.
    [154]Lin J P, Lin S L, Zhang L S, Nose T. Microphase separation of rod-coil diblock copolymer in solution. Journal of Chemical Physics.,2009,130(9):094907.
    [155]Horsch M A, Zhang Z, Glotzer S C. Self-assembly of polymer-tethered nanorods. Phys Rev Lett.,2005,95(5):056105.
    [156]Horsch M A, Zhang Z, Glotzer S C. Self-assembly of laterally-tethered nanorods. Nano Letters.,2006,6:240~2413.
    [157]Horsch M A, Zhang Z L, Glotzer S C. Simulation studies of self-assembly of end-tethered nanorods in solution and role of rod aspect ratio and tether length. Journal of Chemical Physics.,2006,125(18):184903
    [158]Nguyen T D, Glotzer S C. Switchable Helical Structures Formed by the Hierarchical Self-Assembly of Laterally Tethered Nanorods. Small.,2009, 5(18):2092~2098.
    [159]Wu J, Pearce E M, Kwei T K, Lefebvre A A, Balsara N P. Micelle formation of a rod-coil diblock copolymer in a solvent selective for the rod block. Macromolecules.,2002,35(5):1791~1796.
    [160]Lin S L, Numasawa N, Nose T, Lin J P. Brownian molecular dynamics simulation on self-assembly behavior of rod-coil diblock copolymers. Macromolecules.,2007,40:1684~1692.
    [161]Lin S T, Tung Y C, Chen W C. Synthesis, structures and multifunctional sensory properties of poly 2,7-(9,9-dihexylfluorene)-block-poly 2-(dimethylamino)ethyl methacrylate rod-coil diblock copolymers. Journal of Materials Chemistry.,2008,18(33):3985~3992.
    [162]Lin W R, Zhang J, Wan X H, Liang D H, Zhou Q F. Solvent-Induced Association and Micellization of Rod-Coil Diblock Copolymer. Macromolecules.,2009,42(12):4090~4098.
    [163]Tung Y C, Chen W C. Poly 2,7-(9,9-dihexylfluorene)-block-poly 3-(trimethoxysilyl)propyl methacrylate (PF-b-PTMSPMA) rod-coil block copolymers:Synthesis, morphology and photophysical properties in mixed solvents. Reactive & Functional Polymers.,2009,69(7):507~518.
    [164]Tung Y C, Wu W C, Chen W C. Morphological transformation and photophysical properties of rod-coil poly 2,7-(9,9-dihexylfluorene)-block-poly(acrylic acid) in solution. Macromolecular Rapid Communications., 2006,27(21):1838~1844.
    [165]Zhang H, Lin W R, Liu A H, Yu Z N, Wan X H, Liang D H, Zhou Q F. Solvent effect on the aggregation behavior of rod-coil diblock copolymers. Langmuir., 2008,24(8):3780~3786.
    [166]Goujon F, Malfreyt P, Tildesley D J. Mesoscopic Simulation of Entangled Polymer Brushes under Shear:Compression and Rheological Properties. Macromolecules.,2009,42(12):4310~4318.
    [167]Powles J G, Holtz B, Evans W A B. New method for determining the chemical potential for condensed matter at high density. Journal of Chemical Physics., 1994,101(9):7804~7810.
    [168]Widom B. Some topics in the theory of fluids. Journal of Chemical Physics., 1963,39(11):2808~2812.
    [169]Vriezema D M, Hoogboom J, Velonia K, Takazawa K, Christianen P C M, Maan J C, Rowan A E, Nolte R J M. Vesicles and polymerized vesicles from thiophene-containing rod-coil block copolymers. Angewandte Chemie-International Edition.,2003,42(7):772~776.
    [170]Velazquez M E, Gama-Goicochea A, Gonzalez-Melchor M, Neria M, Alejandre J. Finite-size effects in dissipative particle dynamics simulations. Journal of Chemical Physics.,2006,124(8):084104
    [171]Zhou Y Q, Hall C K, Karplus M. First-order disorder-to-order transition in an isolated homopolymer model. Physical Review Letters.,1996,77(13): 2822~2825.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700