典型嗜酸硫氧化菌作用下元素硫的形态及其转化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文选用代表性的嗜酸硫氧化菌包括嗜酸氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans)和喜温嗜酸硫杆菌(Acidithiobacillus caldus)氧化利用代表性还原型硫化物单质硫和硫代硫酸钠,及Acidithiobacillusferrooxidans、嗜酸氧化硫硫杆菌(Acidithiobacillus thiooxidans)、Acidithiobacilluscaldus、嗜热硫氧化硫化杆菌(Sulfobacillus thermosulfidooxidans)和万座嗜酸菌(Acidianus manzaensis)作用典型金属硫化矿黄铁矿和黄铜矿。旨在通过研究嗜酸硫氧化菌作用下单质硫的形态转化;嗜酸硫氧化细菌硫氧化相关胞外蛋白的分离、鉴定、功能分析及其功能基因探寻;细胞胞内外累积硫球硫的形态;细菌在不同含硫能源底物中表面特性;金属硫化矿浸出过程中矿物表面硫的形态及转化;为阐明硫的生物氧化过程和金属硫化矿的生物浸出机理提供基础数据。具体内容主要包括以下六部分:
     (1)硫的K边X射线吸收近边结构(XANES)光谱
     本文通过硫的K边XANES方法获取了一系列含硫有机和无机化合物的吸收光谱,首次在国内建立了含硫模式化合物的谱图库。结果表明硫的K边XANES光谱是一种相当灵敏的指纹光谱方法,不同含硫化合物中硫的化学形态与其吸收光谱之间存在相当精确的对应关系。利用模式化合物的吸收光谱采用最小二乘线性组合法对混合样品中硫的吸收光谱进行定量拟合分析。结果表明,如果选取合适的模式化合物,完全可以对复杂样品中硫的赋存形态展开原位分析,得到样品中硫的精确结构,并且可以对样品进行定量分析。
     (2)Acidithiobacillus ferrooxidans作用下单质硫的化学形态转变研究
     综合利用了SEM、TEM、FT-IR、EDS和硫的K边XANES对A.ferrooxidans作用下单质硫的形态转化展开研究。结果表明,当细菌在单质硫中生长时,细菌首先吸附到单质硫颗粒表面,并且细菌分泌的一些两性分子对硫颗粒表面起到修饰作用。这是第一次在国内外利用实验结果证明单质硫在嗜酸硫氧化菌活化作用下部分环状硫变成链状硫。进一步对单质硫中生长的细胞硫的K边XANES光谱解析表明,富含巯基的蛋白明显参与了单质硫的活化氧化过程。
     (3)嗜酸氧化亚铁硫杆菌硫活化相关胞外蛋白质的分离鉴定和功能验证
     利用2-D电泳比较了亚铁和单质硫能源基质中A.ferrooxidans差异蛋白质电泳谱,借助MALDI-TOF/MS分析了18个在单质硫中表达上调的胞外蛋白。通过与A.ferrooxidans ATCC 23270基因库中蛋白和基因信息比对发现其中12个是属于未知蛋白质,以及6个分子量较小的多肽序列中含有相对丰富的半胱氨酸残基(Cys)。对10个可能与硫氧化相关的基因进行RT-PCR验证发现它们在单质硫中表达均明显上调,首次证明了A.ferrooxidans中这些基因与单质硫的活化氧化的关联性。对其中一个吸附相关的菌毛蛋白(AFE 2621:pilin,putative)基因AFE 2621进行原核表达。利用硫的K边XANES光谱对胞外蛋白样品及纯化表达的菌毛蛋白样品进行分析,结果表明样品中富含巯基的氨基酸主要是半胱氨酸,从蛋白质、基因和硫的化学形态层面证明了富含巯基蛋白在单质硫的活化氧化过程中扮演重要角色。
     (4)Acidithiobacillus ferrooxidans和Acidithiobacillus caldus胞内外硫球硫的形态分析
     综合利用SEM、TEM、EDS和硫的K边XANES光谱比较分析了单质硫和硫代硫酸钠中A.ferrooxidans和A.caldus细胞累积胞内外硫球的差异及累积硫球中硫的形态差异。结果发现A.ferrooxidans在单质硫和硫代硫酸钠中生长时能在细胞胞内分别累积链状和环状硫,然而A.caldus在两种能源底物中生长时均不能累积胞内硫球。相比之下,A.ferrooxidans在硫代硫酸钠中生长时累积胞外硫球主要是链状硫,而A.caldus在硫代硫酸中生长时累积胞外硫球主要是环状硫。
     (5)极度嗜热菌Acidianus manzaensis在不同的能源底物中生长时细胞胞外特性研究
     比较研究了极度嗜热古菌Acidianus manzaensis YN-25在硫酸亚铁,单质硫,黄铁矿和黄铜矿中生长时细胞表面电位、亲疏水性以及表面官能团等细胞胞外特性。结果表明硫酸亚铁中生长时,细胞的亲疏水性和表面电位与固体底物中(单质硫,黄铁矿和黄铜矿)生长的细菌存在很大差别。FT-IR光谱结果表明固体底物中生长的细胞比亚铁中生长的细胞含有更多的蛋白质成份。
     (6)典型嗜酸硫氧化菌浸出黄铁矿和黄铜矿过程矿物表面硫的形态分析
     针对代表性的浸矿功能菌:中温菌A.ferrooxidans、A.thiooxidans,中度嗜热菌S.thermosulfidooxidans,极度嗜热菌Acidianus manzaensis,综合利用SEM、XRD和硫的K边XANES研究这些细菌浸出黄铁矿和黄铜矿过程中,矿物表面形貌、矿物组成成分和矿物表面硫的形态变化。结果发现这些细菌对金属硫化矿浸出具有选择性,且不同的单一细菌和不同的细菌组合在浸出过程中引起矿物表面硫的形态存在很大差异。Acidianus manzaensis浸出黄铁矿和黄铜矿效果都相当明显;S.thermosulfidooxidans对黄铁矿浸出能力较强;A.ferrooxidans浸出黄铜矿能力较黄铁矿强,并且A.thiooxidans对A.ferrooxidans浸出黄铜矿和黄铁矿促进作用不明显。通过对浸出前后矿物中组成成分和硫的化学形态分析表明,Acidianus manzaensis浸出黄铁矿时矿物表面会产生真绿矾的结晶体,黄铜矿表面会产生黄钾铁矾的沉积层,还可能产生铜蓝中间产物。S.thermosulfidooxidans浸出黄铁矿和黄铜矿时矿物表面均会产生黄钾铁矾的沉积层。单独A.ferrooxidans浸出黄铁矿时,矿物表面会产生单质硫层,A.thiooxidans加入可以有效防止硫层的产生,但是从浸出行为来看硫层对浸出过程不会产生明显的阻碍作用。A.ferrooxidans单独或与A.thiooxidans混合浸出黄铜矿时矿物表面均会产生黄钾铁矾沉积层。在这些菌浸出金属硫化矿过程中产生的沉积层均会阻碍铜离子的浸出。综合考虑各种变量之间的关系发现,体系中增加的酸度抑制细胞生长氧化活性,矿物表面形成黄钾铁矾沉积层又进一步阻碍细菌与矿物作用,阻碍金属硫化矿的浸出。
In present work, we chose the typical acidophilic sulfur oxidizing microbes including Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, Acidithiobacillus caldus, Sulfobacillus thermosulfidooxidans, Acidianus manzaensis to leach pyrite and chalcopyrite, and Acidithiobacillus ferrooxidans, Acidithiobacillus caldus to oxidize thiosulfate and elemental sulfur powder. The aim of this paper is to obtain some basic data to illustrate the biological oxidation process of inorganic sulfur compounds and the mechanism of bioleaching by investigation: the elemental sulfur speciation transformation mediated by A. ferrooxidans; the screen , identification , the verification of gens and proteins of sulfur activation related extracellular proteins; the sulfur chemical speciation of intracellular and extracellular sulfur globules; growth and surface properties of cells grown on different sulfur-containing energy substrates; the sulfur chemical speciation and transformation on the surface of metal sulfides. The primary subjects of which include six parts as follows:
     (1) The sulfur K-edge X-ray absorption near edge structure (XANES) spectra
     In this part, we investigated the sulfur K-edge XANES spectra of a series of sulfur containing organic and inorganic model compounds with synchrotron radiation X-ray absorption fine structure. And based on these spectra of model compounds, we firsty built a sulfur K-edge XANES spectra gallery in our country. The results showed that sulfur K-edge XANES spectroscopy was a sensitive analytical method. The sulfur chemical speciation of different sulfur containing compounds had exact correlations with its absorption spectra. The defined mixture sample was fitted with model compounds by least square linear combination fitting method. It is possible to analyze and obtain the precise structural information of sulfur in nature sample in situ and the main components of mixture, if the suitable model compounds were involved.
     (2) Investigation of elemental sulfur speciation transformation mediated by Acidithiobacillus ferrooxidans
     The speciation transformation of elemental sulfur mediated by the leaching bacterium, A. ferrooxidans was firstly investigated with the employment of an integrated approach including: SEM, TEM, FT-IR, EDS and XANES. Our results showed that when grown on elemental sulfur powder, A. ferrooxidans ATCC23270 cells were first attached to sulfur particles, and modified the surface sulfur with some amphiphilic compounds. In addition, part of the elemental sulfur powder might be converted to linear polysulfides. Up to our knowledge, it is the first time to prove the elemental sulfur must be changed to linear sulfur baseing on the experimental results. Furthermore, sulfur globules were accumulated inside the cells. XANES spectra of these cells suggested that these globules consisted of elemental sulfur bound to thiol groups of protein.
     (3) The screen, identification and functional investigation of extracellular proteins and genes of A. ferrooxidans
     A set of proteins that changed their levels of synthesis during growth of A. ferrooxidans on elemental sulfur/ferrous iron was characterized by using two dimensional polyacrylamide gel electrophoresis. We identified a total of 18 extracellular proteins with apparent higher abundance grown in element sulfur than in ferrous sulfate. Matrix-assisted laser desorption/ ionization time-of-flight/ time -of-flight mass spectroscopy (MALDI-TOF/MS) analysis of these proteins allowed their identification and the localization of the corresponding genes in the available genomic sequence of A. ferrooxidans. Additionally, six hypothetical proteins (or peptides) of which contain abundant of the cysteine residues. Expression analysis of the corresponding genes by real-time PCR showed the constitutive expression of all those genes was highly upregulated by growth on elmental sulfur compounds (and downregulated by growth on ferrous iron). A gene of AFE_2621 from A. ferrooxidans was cloned and expressed in E. coli. The extracellular proteins of A. ferrooxidans grown on elemental sulfur and the purified AFE_2621 (pinlin) were characterized with sulfur K-edge XANES spectroscopy. The results showed that the thiol-containing amino acid mainly cysteine play an important role in elemental sulfur activation and oxidation.
     (4) Sulfur species investigation in intra-/extracellular sulfur globules of Acidithiobacillus ferrooxidans and Acidithiobacillus caldus
     For the first time, the sulfur chemical speciation in intracellular and extracellular sulfur globules of A. ferrooxidans and A. caldus were investigated with the multiple employment of SEM, TEM, EDS and sulfur K-edge XANES. When respectively grown with elemental sulfur (S ) and thiosulfate, A. ferrooxidans could accumulate both linear sulfur and ring sulfur internally, whereas A. caldus could not accumulate intracellular sulfur globules. When grown with thiosulfate, in contrast, the sulfur species in extracellular sulfur globules produced was polymeric sulfur(with unknown) and homocycles(just like artificial made sediment) A. ferrooxidans and A. caldus, respectively.
     (5) Growth and surface properties of new thermoacidophilic Archaea strain Acidianus manzaensis grown on different substrates
     The growth characteristics of Acidianus manzaensis YN-25 have been firstly investigated. The cells were cultured with ferrous sulfate, elemental sulfur, pyrite and chalcopyrite mineral respectively, and the hydrophobicity, electrokinetic behaviour and the surface groups of cells grown under above substrate have been investigated. The results showed that the hydrophobicity and the Zeta-potential of cells grown in ferrous sulfate presented distinctly characteristics compared to the cells cultured in solid substrate. The FT-IR spectra indicated that the sulfur, pyrite and chalcopyrite grown cells contained a higher amount of protein component than the ferrous ion-grown cells on the cells surface.
     (6) Typical acidophilic sulfur oxidizing microbes leaching pyrite and chalcopyrite
     The typical mesophiles A. ferrooxidans、A. thiooxidans, moderate thermophiles S. thermosulfidooxidans and extreme thermophiles Acidianus manzaensis were chosen to leach pyrite and chalcopyrite. For the first time, the characteristics of mineral surface, main components of mineral and the sulfur speciation on the mineral surface were investigated with SEM,XRD and sulfur K-edge XANES spectra. The results showed that there were distinct differences among the sulfur speciation and the main components of leaching residual leached with these pure or mixture of microbes. The extreme thermophiles Acidianus manzaensis had excellent leaching ability with pyrite and chalcopyrite. S. thermosulfidooxidans had better leaching capability on pyrite than chalcopyrite. The mesophiles A. ferrooxidans had better leaching efficiency on chalcopyrite than pyrite. The strains of A. thiooxidans had no oblivious promotion on A. ferrooxidans leaching pyrite and chalcopyrite. During all the leaching experiments, the cells attached to the mineral surfaces firstly. The results of the sulfur speciation and the main components of leaching residual during the Acidianus manzaensis leaching experiments, the crystal of coquimbite and covellite and jarosite were accumulated on the surface of pyrite and chalcopyrite, respectively and the sediments layer of later could negatively affect the dissolution of copper ions. The passivation layer on the surface of metal sulfides were caused by the lowering acidity, in that case, the growth of cells were strongly inhibited. During the leaching of pyrite and chalcopyrite with S. thermosulfidooxidans, the precipitation of jarosite was formed on the surface of metal sulfides. The amount of jarosite produced from the former was much more than the latter, which also form negative barrier between cells and mineral surface. The elemental sulfur sediments were accumulated on the surface of pyrite leached with A. ferrooxidans, and the addition of A. thiooxidans could avoid the accumulation of elemental sulfur. The jarosite sediments on the chalcopyrite were formed with pure A. ferrooxidans and mixture of A. ferrooxidans and A. thiooxidans, which could lead to a gradual passivation of chalcopyrite whereby Cu~(2+) dissolution leveled off. Nevertheless, judging from the leaching curves of pyrite, the precipitation of elemental sulfur could not effected significantly the leaching of iron ions.
引文
[1]Rohwerder T,Gehrke T,Kinzler K,Sand W,Bioleaching review part A:Progress in bioleaching:fundamentals and mechanisms of bacterial metal sulfide oxidation.Applied Microbiology and Biotechnology,2003,63:239-248.
    [2]Rohwerder T,Sand W,Oxidation of inorganic sulfur compounds in acidophilic prokaryotes.Engineering in Life Science,2007,7:301-309.
    [3]He Zhi-Guo,Xiao Sheng-mu,Xie Xue-hui,Zhong Hong,Hu Yue-hua,Li Qing-hua,Gao Feng-lin,Liu Jian-she,Qiu Guan-zhou,Molecular diversity of microbial community in acid mine drainages of Yunfu sulfide mine.Extremophiles,2007,11:305-314.
    [4]Yang Yu,Wan Ming-xi,Shi Wu-yang,Peng Hong,Qiu Guan-zhou,Liu Xue-duan,Bacterial diversity and community structure in acid mine drainage from Dabaoshan Mine.Aquatic Microbial Ecology,2007,47:141-151.
    [5]Yin Hua-qun,Qiu Guan-zhou,Wang Dian-zuo,Cao Lin-hui,Dai Zhi-min,Wang Jie-wei,Liu Xue-duan,Comparison of microbial communities in three different mine drainages and their efficiency of bioleaching to the low grade of chalcopyrite.Journal of Central South University of Technology,2007,14:460-466.
    [6]Johnson DB,Biodiversity and ecology of acidophilic microorganisms.FEMS Microbiology Ecology,1998,27:307-317.
    [7]刘飞飞,周洪波,符波,邱冠周,不同能源条件下中度嗜热嗜酸菌系统多样性分析.微生物学报,2007,47:381-386.
    [8]Donovan PK,Wood A P,Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen.nov.,Halothiobacillus gen.nov.and Thermithiobacillus gen.nov.International Journal of Systematic and Evolutionary Microbiology,2000,50:511-516.
    [9]张成桂,夏金兰,王晶,邱冠周,嗜酸硫氧化细菌硫氧化进展.生物技术通报,2007,1:59-65,
    [10]张成桂,夏金兰,邱冠周,嗜酸氧化亚铁硫杆菌亚铁氧化系统研究进展.中国有色金属学报,2007,1239-1249.
    [11]Rawlings D E,Tributsch H,Hansford G S,Reasons why 'Leptospirillum '-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores. Microbiology, 1999,145: 5-13.
    [12] Ghauri M A, Khalid A M, Susan G, Heaphy S, Grant W D, Phylogenetic analysis of different isolates of Sulfobacillus spp. isolated from uranium-rich environments and recovery of genes using integron-specific primers.Extremophiles, 2003, 7: 341-345.
    [13] Qiu Guan Zhou, Fu Bo, Zhou Hong Bo, Isolation of a strain of Acidithiobacillus caldus and its role in bioleaching of chalcopyrite. World Journal of Microbiology and Biotechnology, 2007, 23: 1217-1225.
    [14] Bogdanova T I, Tsaplina I A, Kondrat'eva T F, Sulfobacillus thermotolerans sp. nov., a thermotolerant, chemolithotrophic bacterium. International Journal of Systematic and Evolutionary Microbiology, 2006, 56: 1039-1042.
    [15] Melamud V S, Pivovarova T A, Tourova T P, Kolganova TV, Osipov G A,Lysenko A M, Kondrat'eva T F, Karavaiko G I, Sulfobacillus sibiricussp. nov.,a new moderately thermophilic bacterium. Microbiology, 2003, 72: 605-612.
    [16] Dopson M, Lindstrom E B, Potential Role of Thiobacillus caldus in Arsenopyrite Bioleaching. Applied Environment Microbiology, 2003, 71:31-36.
    [17] BrocK T D, BrocK K M, Belly R T, Weiss R L, A new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Archives of Microbiology, 1972, 84: 54-68.
    [18] Kurosawa N, Itoh Y H, Iwai T, Sulfurisphaera ohwakuensis gen. nov., sp. nov.,a novel extremely thermophilic acidophile of the order Sulfolobales.International Journal of Systematic Bacteriology, 1998,48: 451-456.
    [19] Segerer A H, Trincone A, Gahrtz M, Stetter K O, Stygiolobus azoricus gen. nov., sp. nov. represent a novel genus of anaerobic, extremely thermoacidophilic archaebacteria of the order Sulfolobales. International Journal of Systematic Bacteriology, 1991, 49: 495-501.
    [20] Panchanadikar T DasV V, Chaudhury G. Roy, Short Communication: Bio-oxidation of iron using Thiobacillus ferrooxidans, World Journal of Microbiology & Biotechnology, 1998, 14: 297-298.
    [21] Suzuk I I, Chan C W, Takeuchi T L, Oxidation of elemental sulfur to sulfite by Thiobacillus thiooxidans cells. Applied Environment Microbiology, 1992, 58:3767-3769.
    [22]Xia Jin-lan,Peng An-an,He Huan,Yang Yu,Liu Xue-duan,Qiu Guan-zhou,A new strain Acidithiobacillus albertensis BY-05 for bioleaching of metal sulfides ores.Transactions of Nonferrous Metals Society of China,2007,17:168-175.
    [23]刘缨,齐放军,林建群,田克立,颜望明,一株中度嗜酸嗜热硫氧化杆菌分离和系统发育分析.微生物学通报,2004,44:382-385.
    [24]邓敬石,影响Sulfobacillus thermosulfidooxidans生长及亚铁氧化因素的研究.矿产资源综合利用,2002,3:38-41.
    [25]Kinnunen P M,Puhakka J A,Characterization of iron- and sulphide mineral-oxidizing moderately thermophilic acidophilic bacteria from an Indonesian auto-heating copper mine waste heap and a deep South African gold min.Journal of Industrial Microbiology and Biotechnology,2004,31:409-414.
    [26]Grogan D,Palm P,Zillig W,Isolate B12,which harbours a virus-like element,represents a new species of the archaebacterial genus Sulfolobus,Sulfolobus shibatae,sp.nov.Archives of Microbiology,1992,154:594-599.
    [27]Qun X S,Singh R K,Confalonierib F,Zivanovic Y,Allarde G,Awayeza M J,Curtisc B,Moorse A D,The complete genome of the crenarchaeon Sulfolobus solfataricus P2.Proceedings of the National Academy of Sciences,2001,98:7835-7840.
    [28]Dopson M,Sundkvist J E,Lindstrom E B,Toxicity of metal extraction and flotation chemicals to Sulfolobus metallicus and chalcopyrite bioleaching.Hydrometallurgy,2006,81:205-213.
    [29]Chen L M,Brugger K,Skovgaar M,Kurt H,Naoki N,Takahide K,Toshiaki U,The Genome of Sulfolobus acidocaldarius,a model organism of the crenarchaeota.Journal of Bacteriology,2005,187:4992-4994.
    [30]Toshiharu S,Toshio I,Taketoshi U,Sulfolobus tokodaii sp.nov.(Sulfolobus sp.strain 7),a new member of the genus Sulfolobus isolated from Beppu Hot Springs,Japan.Extremophiles,2002,6:39-44.
    [31]Itoh Y H,Kurosawa N,Uda I,Suga A,Tanoue S,Itoh T,Horiuchi T,Itoh T,Metallosphaera sedula TA-2,a calditoglycerocaldarchaeol deletion strain of a thermoacidophilic archaeon.Extremophiles,2001,5:241-245.
    [32]Fuchs T,Huber H,Teiner K,Burggraf S,Stetter K O,Metallosphaera prunae sp.nov.,a novel metal-mobilizing,thermoacidophilic Archaeum,isolated from a uranium-mine in Germany. Systematic and Applied Microbiology, 2007, 18:560-566.
    
    [33] Kurosawa N, Itoh Y H, Itoh T, Reclassification of Sulfolobus hakonensis Takayanagi et al. 1996 as Metallosphaera hakonensis comb. nov. based on phylogenetic evidence and DNA G+C content. International Journal of Systematic and Evolutionary Microbiology, 2003, 53: 1607-1608.
    
    [34] Konishi Y, Tokushige M, Asai S, Suzuki T, Copper recovery from chalcopyrite concentrate by acidophilic thermophile Acidianus brierleyi in batch and continuous-flowstirred tank reactors. Hydrometallurgy, 2001, 59: 271-282.
    
    [35] Segerer A, Neuner A, Kristjansson J K, Stetter K O, Acidianus infernus gen.nov., sp. nov., and Acidianus brierleyi comb, nov.: Facultatively aerobic,extremely acidophilic thermophilic sulfur-metabolizing archaebacteria.International Journal of Systematic Bacteriology, 1986, 36: 559-564.
    
    [36] Fuchs T, Huber H, Burggraf S, 16S rDNA-based phylogeny of the archaeal order Sulfolobales and reclassification of Desulfurolobus ambivalens as Acidianus ambivalens comb. nov. Systematic and Applied Microbiology, 1996,19:56-60.
    
    [37] Zillig W, Yeats S, Holz I, Boeck A, Rettenberger M, Gropp F, Simon G,Desulfurolobus ambivalens, gen. nov., sp. nov., an auto trophic archaebacterium facultatively oxidizing or reducing sulfur. Systematic and Applied Microbiology, 1986, 8: 197-203.
    
    [38] Plumb J J, Haddad C M, Gibson J A E, Franzmann PD, Acidianus sulfidivorans sp. nov., an extremely acidophilic, thermophilic archaeon isolated from a solfatara on Lihir Island, Papua New Guinea, and emendation of the genus description. International Journal of Systematic and Evolutionary Microbiology, 2007, 57: 1414-1423.
    
    [39] Yoshida N, Nakasato M, Ohmura N, Ando A, Saiki H, Ishii M, Igarashi Y,Acidianus manzaensis sp. nov., a novel thermoacidophilic archaeon growing autotrophically by the oxidation of H_2 with the reduction of Fe3~+. Current Microbiology, 2006, 53: 406-411.
    
    [40] He Z G, Zhong H, Li Y, Acidianus tengchongensis sp. nov., a new species of acidothermophilic archaeon isolated from an acidothermal spring. Current Microbiology, 2004, 48: 159-163.
    
    [41] Prange A, Dahl C, Bacterial sulfur globules: occurrence, structure and metabolism. 2006, 21-51.
    [42] Prange A, KuhlsenN, Birzele B, Arzberger I, Hormes J, Antes S, Kohler P, Sulfur in wheat gluten: In situ analysis by X-ray absorption near edge structure (XANES) spectroscopy, European Food Research and Technology,2001,212:570-575
    [43] Pickering I J, George G N, Yu E Y, Brune D C, Tuschak C, Overmann J,Beatty J T, Prince R C, Analysis of sulfur biochemistry of sulfur bacteria using X-ray absorption spectroscopy. Biochemistry, 2001, 40: 8138-8145.
    [44] Wilfred E K, Arie D K, Albert J H, Biologically produced sulfur. Topics in Current Chemistry, 2003, 230: 167-188.
    [45] Prange A, Chauvistre, Modrow H, Tr(?)per H G, Dahl C, Quantitative speciation of sulfur in bacterial sulfur globules: X-ray absorption spectroscopy reveals at least three different species of sulfur. Microbiology, 2002, 248: 267-276.
    [46] Rojas J, Giersig M, Tributsch H, Sulfur colloids as temporary energy reservoirs for Thiobacillus ferrooxidans during pyrite oxidation. Archives of Microbiology, 1995, 163: 352-356.
    [47] Knickerbocker C, Nordstrom D K, Southam G, The role of "blebbing" in overcoming the hydrophobic barrier during biooxidation of elemental sulfur by Thiobacillus thiooxidans. Chemical Geology, 2000, 169: 425-433.
    [48] Bryant R D, McGroarty K M, Costerton J W, Laishley E J, Isolation and characterization of a new acidophilic Thiobacillus species (T. albertis).Canadian Journal of Microbiology, 1983,29: 1159-1170.
    [49] Ballester A, Blauez M L, Gonzaez F , MunJ A , Catalytic role of silver and other ions on the mechanism of chemical and biological leaching. In:Microbial Processing of Metal Sulfides, Donati E R, Sand W(eds), 2007,77-101.
    [50] Jones R A, Koval S F, Nesbitt H W, Surface alteration of arsenopyrite (FeAsS) by Thiobacillus ferrooxidans. Geochimica et Cosmochimica Acta, 2003, 67:955-965.
    [51] Bevilaqua D, Leite A, Garcia O, Tuovinen O H, Oxidation of chalcopyrite by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in shake flasks. Process Biochemistry, 2002, 38: 587-592.
    [52] Shi S Y, Fang Z X, Bioleaching of marmatite flotation concentrate by Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans. Transactions of Nonferrous Metals Society of China, 2004,14: 569-575.
    [53] Fowler T A, Crundwell F K, Leaching of zinc sulfide by Thiobacillus ferrooxidans: bacterial oxidation of the sulfur product layer increases the rate of zinc sulfide dissolution at high concentrations of ferrous ions. Applied Environment Microbiology, 1999, 65: 5285-5292.
    [54] Falco L, Pogliani C A, Comparison of bioleaching of covellite using pure cultures of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans or a mixed culture of Leptospirillum ferrooxidans and Acidithiobacillus thiooxidans. Hydrometallurgy, 200, 71: 31-36.
    [55] Klauber C, Parker A, Wilhelm V B, Watling H, Sulphur speciation of leached chalcopyrite surfaces as determined by X-ray photoelectron spectroscopy. International Journal of Mineral Processing, 2001, 62: 65-94.
    [56] Harmer S L, Thomas J E, Fornasiero D, Gerson A R, The evolution of surface layers formed during chalcopyrite leaching. Geochim Cosmochim Acta, 2006,70: 4392-4402.
    [57] Parker A, Klauber C, Kougianos A, Watling H R, Bronswijk W van, An X-ray photoelectron spectroscopy study of the mechanism of oxidative dissolution of chalcopyrite. Hydrometallurgy, 2003, 71: 265-276.
    [58] Sandstrom A, Shchukarev A, Paul J, XPS characterisation of chalcopyrite chemically and bio-leached at high and low redox potential. Minerals Engineering, 2005, 18: 505-515.
    [59] Schippers A, Rohwerder T, Sand W, Intermediary sulfur compounds in pyrite oxidation: implications for bioleaching and biodepyritization of coal. Appl Microbiol Biotechnol, 1999, 52: 104-110.
    [60] Schippers A, Jozsa P G, Sand W, Sulfur chemistry in bacterial leaching of pyrite. Applied Environment Microbiology, 1996, 62: 3424-3431.
    [61] Gourdon R, Funtowicz N, Kinetic model of elemental sulfur oxidation by Thiobacillus thiooxidans in batch slurry reactors. Bioprocess and Biosystems Engineering, 1998, 18: 241-249.
    [62] Konishi Y, Asai S, Yoshida N, Growth kinetics of Thiobacillus thiooxidans on the surface of elemental sulfur. Applied Environmental Microbiology, 1995,61:3617-3622.
    [63] Sampson M I, Phillips C V, Blake R C, Influence of the attachment of acidophilic bacteria during the oxidation of mineral sulfides. Minerals Engineering, 2000, 13: 373-389.
    [64] Gehrke T, Telegdi J, Thierry D, Sand W, Importance of extracellular polymeric substances from Thiobacillus ferrooxidans for bioleaching. Applied Environmental Microbiology, 1998, 64: 2743-2747.
    [65] Ohmura N, Tsugita K, koizumi J I, Sulfur-binding protein of flagella of Thiobacillus ferrooxidans. The Journal of Bacteriology, 1996, 178: 5776-5780.
    [66] Rohwerder T, Sand W, The sulfane sulfur of persulfides is the actual substrate of the sulfur-oxidizing enzymes from Acidithiobacillus and Acidiphillum spp.Microbiology, 2003, 149: 1699-1709.
    [67] Ramirez P, Guiliani N, Valenzuela L, Beard S, Jerez C A, Differential protein expression during growth of Acidithiobacillus ferrooxidans on ferrous iron,sulfur compounds, or metal sulfides. Applied Environmental Microbiology,2004,70:4491-4498.
    [68] Buonfiglio V, Polidoro M, Flora L, Citro G, Valenti P, Orsi N, Identification of two surface proteins involved in the oxidation of sulphur compounds in Thiobacillus ferrooxidans. FEMS Microbiology Review, 1993, 11: 43-50.
    [69] Buonfiglio V, Polidoro M, Soyer F, Valenti P, Shively J, A novel gene encoding a sulfur-regulated outer membrane protein in Thiobacillus ferrooxidans.Journal of Biotechnology, 1999, 72: 85-93.
    [70] Silver M, Lundgren D G, Sulfur-oxidizing enzyme of Ferrobacillus ferrooxidans (Thiobacillus ferrooxidans). Canadian Journal of Chemistry,1968,46:457-461.
    [71] Sugio T, Ochi K, Muraoka T, Isolation and some properties of sulfur dioxygenase from Acidithiobacillus thiooxidans NB1-3. 2005, 25-29.
    [72] Friedrich C G, Rother D, Bradischewsky F, Quentmeier A, Fischer J,Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism. Applied Environmental Microbiology, 2001, 67:2873-2882.
    [73] Vestal J R, Lundgren DG, The sulfite oxidase of Thiobacillus ferrooxidans (Ferrobacillus ferrooxidans). Canadian Journal of Biochemistry, 1971, 49:1125-1130.
    [74] Kletzin A, Molecular characterization of the sor gene, which encodes the sulfur oxygenase/reductase of the thermoacidophilic Archaeum Desulfurolobus ambivalens. Journal of Bacteriology, 1989, 171: 1638-1641.
    [75] Sun C W, Chen Z W, He Z G, Zhou P J, Liu S J, Purification and properties of the sulfur oxygenase/reductase from the acidothermophilic archaeon,Acidianus strain S5. Extremophiles, 2003, 7: 131-134.
    
    [76] Urich T, Bandeiras T M, Leal S S, Rachel R, Albrecht T, Zimmermann P,Scholz C, Teixeira M, Gomes C M, Kletzin A, The sulphur oxygenase reductase from Acidianus ambivalens is a multimeric protein containing a low-potential mononuclear non-haem iron centre. Biochemistry Journal, 2004,381: 137-146.
    
    [77] Chen Z W, Jiang C Y, She Q X, Liu S J, Zhou P J, Key Role of Cysteine Residues in Catalysis and Subcellular Localization of Sulfur Oxygenase-Reductase of Acidianus tengchongensis. Applied Environmental Microbiology, 2005, 71: 621-628.
    
    [78] Muller F H, Bandeiras T M, Urich T, Teixeira M, Gomes C M, Kletzin A,Coupling of the pathway of sulfur oxidation to dioxygen reduction:characterization of a novel membrane-bound thiosulfate:quinone oxidoreductase. Molecular Microbiology, 2004, 53: 1147-1160.
    
    [79] Tabita R, Silver M, Lundgren D G, The rhodanese enzyme of Ferrobacillus ferrooxidans (Thiobacillus ferrooxidans). Canadian Journal of Biochemistry,1969,47:1140-1145.
    
    [80] Gardner M N, Rawlings D E, Production of rhodanese by bacteria present in bio-oxidation plants to recover gold from arsenopyrite concentrates. Journal of Applied Microbiology, 2000, 89: 185-190.
    
    [81] Ramirez P, Toledo H, Giliani N, Jerez C A, An exported rhodanese-like protein is induced during growth of Acidithiobacillus ferrooxidans in metal sulfides and different sulfur compounds. Applied Environmental Microbiology, 2002,68: 1837-1845.
    
    [82] Silver M, Lundgren D G, The thiosulfate-oxidizing enzyme of Ferrobacillus ferrooxidans (Thiobacillus ferrooxidans). Canadian Journal of Biochemistry,1968,46:1215-1220.
    
    [83] Nakamura K, Yoskikawa H, Okubo S, Kurosawa H, Amano Y, Purification and properties of membrane-bound sulfite dehydrogenase from Thiobacillus thiooxidans JCM7814. Bioscience Biotechnology and Biochemistry, 1995, 59:11-15.
    
    [84] Visser J M, Jong GAH de, Kuenen J G, Purification and characterization of a periplasmic thiosulfate dehydrogenase from the obligately autotrophic Thiobacillus sp.W5.Archives of Microbiology,1997,166:372-378.
    [85]Meulenberg R,Pronk J T,Hazeu W,Bos P,Kuenen J G,Oxidation of reduced sulfur compounds by intact cells of Thiobacillus acidophilus.Archives of Microbiology,1992,157:161-168.
    [86]Bugaytsova Z,Lindstrom E B,Localization,purification and properties of a tetrathionate hydrolase from Acidithiobacillus caldus.European Journal of Biochemistry,2004,271:272-280.
    [87]Kanao T,Kamimura K,Sugio T,Identification of a gene encoding a tetrathionate hydrolase in Acidithiobacillus ferrooxidans.Journal of Biotechnology,2007,132:16-22.
    [88]Wakai S,Kikumoto M,Kanao T,Kamimura K,Involvement of sulfide quinone oxidoreductase in sulfur oxidation of an acidophilic iron-oxidizing bacterium,Acidithiobacillus ferrooxidans NASF-1.Bioscience Biotechnology and Biochemistry,2004,68:2519-2528.
    [89]周南,硫的形态分析(上).上海化工,2002,3,4:30-33.
    [90]周南,硫的形态分析(中).上海化工,2002,5:20-22.
    [91]周南,硫的形态分析(下).上海化工,2002,6:20-22.
    [92]薛可铁,高庆宇,石美,刘兵,无机硫氧化物的分析化学.化学研究与应用,2004,16:723-727.
    [93]O'Reilly J W,Dicinoski G W,Shaw M J,Haddad P R,Chromatographic and electrophoretic separation of inorganic sulfur and sulfur oxygen species.Anlytica Chimica Acta,2001,432:165-192.
    [94]Daunoravicius Z,Padarauskas A,Capillary electrophoretic determination of thiosulfate,sulfide and sulfite using in-capillary derivatization with iodine.Journal of Chromatography A,2001,934:67-73.
    [95]Rozan T F,Theberge S M,Luther George Ⅲ,Quantifying elemental sulfur(S~0)bisulfide(HS~-) and polysulfides(S_x~(2-)) using a voltammetric method.Analysis Chimica Acta,2000,475:175-184.
    [96]Luther G W Ⅲ,Glazer B T,Hohmann L,Sulfur speciation monitored in situ with solid state gold amalgam voltammetric microelectrodes:polysulfides as a special case in sediments,microbial mats and hydrothermal vent waters.Journal of Environmental Monitoring,2001,3:61-66.
    [97]Jalilehvand F,Sulfur:not a "silent" element any more.Chemical Society Reviews,2006,35:1256-1268.
    [98]马礼敦,杨福家,同步辐射应用概论.2005,第二版:269-281.
    [99]韦世强,XAFS在凝聚态物物质研究中的应用.中国科学技术大学学报,2007,37:426-440.
    [100]寇元,固体催化剂研究方法.石油化工,2000,29:712-722.
    [101]Ektessabi A I,Applications of synchrotron radiation.2007,1-217.
    [102]王其武,刘文汉,X射线吸收精细结构及其应用.1994,第一版:103-128.
    [103]Beauchemin S,Hesterberg D,Beauchemin M,Principal component analysis approach for modeling sulfur K-XANES spectra of humic acids.Soil Scine Society American Journal,2002,66:83-91.
    [104]George G N,Picketing I J,Via G H,Sulfur K-edge X-ray absorption spectroscopy of Petroleum Asphaltenes and model compounds.Journal of the American Chemical Society,1989,111:3182-3186.
    [105]Huffman G P,Shah N,Huggins F E,Sulfur speciation of desulfurized coals by XANES spectroscopy.Fuel,1995,549-555.
    [106]Wiltfong R,Kirtley S M,Mullins O C,Sulfur speciation in different kerogens by XANES spectroscopy.Energy and Fuel,2005,19:1971-1976.
    [107]Prietzel J,Thieme J,Salome M,Knicker H,Sulfur K-edge XANES spectroscopy reveals differences in sulfur specation of bulk soils,humic acid,fulvic acid and particle size separates.Soil Biological Biochemistry,2007,39:877-890.
    [108]Zhao F J,Lehmann J,Solomon D,Fox M A,Mcgrath S P,Sulfur speciation and turnover in soils:evidence from sulfur K-edge XANES spectroscopy and isotpe dilution studies.Soil Biological Biochemistry,2006,38:1000-1007.
    [109]Metson J B,Hay S J,Trodah H J,Ruck 1 B,Hu Y,The use of the X-ray absorption near edge spectrum in materials characterization.Current Applied Physics,2004,4:233-236.
    [110]Wetherall K M,Moss R M,Jones A M,Smith A D,Skinner T,Pickup D M,Goatham S W,Chadwick A V,Newport R J,Sulfur and iron speciation in recently recovered timbers of the Mary Rose revealed via X-ray absorption spectroscopy.Journal of Archaeological Science,2008,35:1317-1328.
    [111]Rowe M C,Kent A J R,Nielsen R L,Determination of sulfur speciation and oxidation state of olivine hosted melt inclusions.Chemical Geology,2007,236-322
    [112] Prange A, Arzberger I, Engemann C, Modrow H, Schumann O, Tr(?)per H G,Steudel R, Dahl C, Hormes J, In situ analysis of sulfur in the sulfur globules of phototrophic sulfur bacteria by X-ray absorption near edge spectroscopy.Biochem Biophys Acta, 1999,1428: 446-454.
    
    [113] Rompel A, Cinco R M, Latimer M J, McDermott A E, Guiles R D, Quintanilha A, Krauss R M, Sauer K, Yachandra V K, Klein M P, Sulfur K-edge x-ray absorption spectroscopy: a spectroscopic tool to examine the redox state of S-containing metabolites in vivo. Proceedings of the National Academy of Sciences, 1998,95:6122-6127.
    
    [114] Pickering I J, Prince R C, Divers T, George G N, Sulfur K-edge X-ray absorption spectroscopy for determining the chemical speciation of sulfur in biological systems. FEBS Letter, 1998, 441: 11-14.
    
    [115] Vairavamurthy A, Using X-ray absorption to probe sulfur oxidation states in complex molecules. Spectrochimica Acta Part A, 1998, 54: 2009-2017.
    
    [116] Hazeu W, Batenburg-van der Vegte W H, Bos P, van derPas RK, Kuenen JG,The production and utilization of intermediary elemental sulfur during the oxidation of reduced sulfur compounds by Thiobacillus ferrooxidans. Archives of Microbiology, 1988, 150: 574-579.
    
    [117] Mangold S, Harneit K, Rohwerder T, Claus G, Sand W, Novel combination of atomic force microscopy and epifluorescence microscopy for visualization of leaching bacteria on pyrite. Applied Environmental Microbiology, 2008, 74:410-415.
    
    [118] Sand W, Gehrke T, Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron (III) ions and acidophilic bacteria. Research of Microbiology, 2006, 157: 49-56.
    
    [119] Devasia P, Natarajan K A, Sathyanarayana D N, Rao G R, Surface chemistry of Thiobacillus ferrooxidans relevant to adhesion on mineral surfaces. Applied Environmental Microbiology, 1993, 59: 4051-4055.
    
    [120] Takeuchi T, Suzuki I, Cell hydrophobicity and sulfur adhesion of Thiobacillus thiooxidans. Applied Environmental Microbiology, 1997, 63: 2058-2061.
    
    [121] Prange A, Dahl C, Behnke M, Hahn J, Modrow H, Hormes J, Investigation of S-H bonds in biologically important compounds by sulfur K-edge X-ray absorption spectroscopy. European Physical Journal D, 2002, 20: 589-596.
    
    [122] George G N, Gnida M, Bazylinski D A, Prince R C, Pickering I J, X-Ray absorption spectroscopy as a probe of microbial sulfur biochemistry:the nature of bacterial sulfur globules revisited.Journal of Bacteriology,2008,19:6376-6383.
    [123]Lee Y J,Prange A,Lichtenberg H,Rohde M,Dashti M,Wiegel J,In situ analysis of sulfur species in sulfur globules produced from thiosulfate by Thermoanaerobacter sulfurigignens and Thermoanaerobacterium thermosulfurigenes.Journal of Bacteriology,2007,189:7525-7529.
    [124]Bruce D C,Isolation and characterization of sulfur globule proteins from Chromatium vinosum and Thiocapsa roseopersiciana.Archives of Microbiology,1995,163:391-399.
    [125]Friedrich C G,Bardischewsky F,Rother D,Quentmeier A,Fisher J,Prokaryotic sulfur oxidation.Current opinion in Microbiology,2005,8:253-259.
    [126]张成桂,嗜酸氧化亚铁硫杆菌亚铁氧化系统研究进展.有色金属学报,2006.16:1239-1249.
    [127]Chi A,Valenzuela L,Beard S,Periplasmic proteins of the extremophile Acidithiobacillus ferrooxidans:a high throughput proteomic analysis.Mol Cell Proteomics,2007,6:2239-2251.
    [128]Gourdon R,Funtowicz N,Kinetic model of elemental sulfur oxidation by Thiobacillus thiooxidans in batch slurry reactors.Bioprocess Eng,1998,18:241-249.
    [129]Sand W,Gehrke T,Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(Ⅲ) ions and acidophilic bacteria.Research in Microbiology,2006,157:49-56.
    [130]傅建华,氧化亚铁硫杆菌胞外多聚物在生物浸出中的作用.激光生物学报,2004,13:62-66.
    [131]Sharma P K,Das A,Hanumantha Rao K,Forssberg K S E,Surface characterization of Acidithiobacillus ferrooxidans cells grown under different conditions.Hydrometallurgy,2003,71:285-292.
    [132]Melanie J B,Lester J N,Metal removal in activated sludge the role of bacterial extracellular polymers.Water Research,1979,13:813-817.
    [133]张成桂,嗜酸氧化亚铁硫杆菌适应与活化元素硫分子机制的研究.中南大学博士论文,2008,36-45.
    [134]肖水明,Acidithiobacillus ferrooxidans ATCC 23270热激反应表达差异的研 究.中南大学硕士论文,2008,32-41.
    [135] Resslert T, WinXAS: a program for X-ray absorption spectroscopy data analysis under MS-Windows. J.Synchrotron Rad., 1998, 5: 118-122.
    [136] Paktunc D, A computer program for analysing complex bulk XAFS spectra and for performing significance tests. J.Synchrotron Rad., 2004, 11: 295-298.
    [137] Buonfiglio V, Polidoro M, Flora L, Citro G, Valenti P, Orsi N, Identification of two outer membrane proteins involved in the oxidation of sulphur compounds in Thiobacillus ferrooxidans. FEMS Microbiol Rev, 1993, 11: 43-50.
    [138] Buonfiglio V, Polidoro M, Soyer F, Valenti P, Shively J, A novel gene encoding a sulfur-regulated outer membrane protein in Thiobacillus ferrooxidans. J Biotechnol, 1999, 72: 85-93.
    [139] He Zhiguo, Zhong Hui, Hu Yuehua, Xiao Shengmu, Xu Jin, Analysis of differential protein expression in Acidithiobacillus ferrooxidans grown under different energy resources respectively using SELDI-protein chip technologies.J Microbiol Methods, 2006, 65: 10-20.
    [140] He Zhiguo, Hu Yuhua, Zhong Hui, Hu Weixin, Preliminary proteomic analysis of Thiobacillus ferrooxidans cultivated with Fe~(2+) and elemental sulfur separately. J Biochem Mol Biol, 2005, 38: 307-313.
    [141] Kobayashi T, Ito K, Respiratory chain strongly oxidizes the CXXC motif of DsbB in the Escherichia coli disulfide bond formation pathway. The EMBO Journal, 1999,18:1192-1198.
    [142] Zhang Cheng-gui, Zhang Rui-yong, Xia Jin-Ian, Zhang Qian, Nie Zhen-yuan,Sulfur activation-related extracellular proteins of Acidithiobacillus ferrooxidans. Transactions of Nonferrous Metals Society of China, 2008, 18:1398-1402.
    [143] Olson G L, Brieley J A, Brierley CL, Bioleaching review part B: progress in bioleaching: applications of the microbial processes by the mineral industries. Applied and Environmental Microbiology, 2003, 63: 249-257.
    [144] Rawlings DE, Dew D, Plessis CD, Biomineralization of metal containing ores and concentrates. Trends Biotechnol, 2009, 21: 38-44.
    [145] Tributsch H, Rojas-Chapana J A, Metal sulfide semiconductor electrochemical mechanisms induced by bacterial activity. Electrochim.Acta., 2000, 45:4705-4716.
    [146] Silverman M P, Lundgren D G, Studies on the chemoautotrophic iron iron bacterium ferrobacillus ferroxidans: I. an improved medium and a harvesting procedure for securing high cell yields, J. Bacteriol., 1959, 77: 642-647.
    [147] Dopson M, Lindstrom E B, Potential role of Thiobacillus caldus in arsenopyrite bioleaching. Applied Environmental Microbiology, 1999, 65:36-40.
    [148] Steudel R, Aqueous sulfur sols. Topics in Current Chemistry, 2003, 230:153-166.
    [149] Rohwerder T, Sand W, Properties of thiols required for sulfur dioxygenase activity at acidic pH. Journal of Sulfur chemistry, 2008, 29: 293-302.
    [150] Kelly DP, Shergill JK, Lu WP, Oxidative metabolism of inorganic sulfur compounds by bacteria. Anton van Leuwenhoek, 1997, 71: 95-107.
    [151] Steudel R, Holdt G, Globel T, Hazeu W, Chromatographic separation of higher polythionates S_nO_6~(2-) (n = 322) and their detection in cultures of Thiobacillus ferroxidans: molecular composition of bacterial sulfur secretions. Angewandte Chemie International Edition in English, 1987, 26: 151-153.
    [152] Kinzler K, Gehrke T, Telegdi J, Sand W, Bioleaching: a result of interfacial processes caused by extracellular polymeric substances (EPS).Hydrometallurgy, 2003, 741: 83-88.
    [153] Blake RC, Shute EA, Howard GT, Solubilisation of minerals by bacteria: electrophoretic mobility of Thiobacillus ferrooxidans in the presence of iron, pyrite and sulfur. Applied Environmental Microbiology, 1994, 60: 3349-3357.
    [154] Mikkelsen D, Kappler U, Webb RI, Rasch R, Mcewan AG, Sly LI,Visualisation of pyrite leaching by selected thermophilic archaea: Nature of microorganism -ore interactions during bioleaching. Hydrometallurgy, 2007,88: 143-153.
    [155] Sand W, Gehrke T, Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron (III) ions and acidophilic bacteria. Research in Microbiology, 2006, 157: 49-56.
    [156] Sand W, Gehrke T, Jozsa PG, Schippers A, (Bio)chemistry of bacterial leaching direct vs. indirect bioleaching. Hydrometallurgy, 2001, 59: 159-175.
    [157] Shi Xian ai, Li Cong ying, Lin Hui, Meng Chun, Guo Yan hao, Process characteristics of bioleaching Meizhou chalcopyrite by thermophilic Acidianus brierleyi. The Chinese journal of process engineering, 2005, 5: 333-336.
    [158] Rosenberg M, Gutnick D, Rosenberg E, Adherence of bacteria to hydrocarbons:a simple method for measuring cell-surface hydrophobicity.FEMS Microbiology Letters,1980,9:29-33.
    [159]So CM,Young LY,Isolation and characterization of a sulfate-reducing bacterium that anaerobically degrades alkanes.Applied Environment Microbiology,1999,65:2969-2976.
    [160]Natarajan K A,Das A,Surface chemical studies on 'Acidithiobacillus' group of bacteria with reference to mineral flocculation.International Journal of Mineral Processing,2003,72:189-198.
    [161]Xia Le-xian,Liu Xin-xing,Zeng Jia,Yin Chu,Gao Jian,Liu Jian-she,Qiu Guan-zhou.,Mechanism of enhanced bioleaching efficiency of Acidithiobacillus ferroxidans after adaptation with chalcopyrite.Hydrometallurgy,2008,92:95-101.
    [162]Bendinger B,Rijnaarts HHM,Altendorf K,Zhender AJB.,Physicochemical cell surface and adhesive properties of coryneform bacteria related to the presence and chain length of mycolic acids.Applied and Environmental Microbiology,1993,59:3973-3977.
    [163]Rijnaarts HHM,Nordeb W,Lyklemab J,Zehnder AJB,The isoelectric point of bacteria as an indicator for the presence of cell surface polymers that inhibit adhesion.Colloids and SurfacesB:Biointerfaces,1995,4:191-197.
    [164]Sharma PK,Hanumantha RAO K,Surface characterization of bacterial cells relevant to the mineral industry.Minerals and Metallurgical Processing,2005,22:31-37.
    [165]Clinti JH,Wicks AC,Adhesion under water:Surface energy considerations.International Journal of Adhesion and Adhesives,2001,21:267-273.
    [166]石贤爱,李聪颖,林晖,孟春,郭养浩,嗜热布氏酸菌浸出梅州黄铜矿的研究.过程工程学报,2005,5:332-336.
    [167]杨显万,郭玉霞,生物湿法冶金回顾与展望.云南冶金,2002,31:85-88.
    [168]周吉奎,钮因健,硫化矿生物冶金进展 金属矿山,2005,346:24-30.
    [169]Falco L,Pogliani C,A comparison of bioleaching of covellite using pure cultures of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans or a mixed culture of Leptospirillum ferrooxidans and Acidithiobacillus thiooxidans.Hydrometallurgy,2003,71:31-36.
    [170]Battaglia-Brunet F,d'Hugues P,The mutual effect of mixed Thiobacillus and Leptospirilli populations on pyrite bioleaching.Minerals Engineering,1998, 11:195-205.
    [171]Sanhueza A,Fisher I J,Vargas T,Amils R,S(?)nchez C,Attachment of Thiobacillus ferrooxidans on synthetic pyrite of varying structural and electronic properties.Hydrometallurgy,1999,51:115-129.
    [172]Shao-yuan Shi,Zhao-heng Fang,Bioleaching of marmatite flotation concentrate by Acidithiobacillus ferrooxidans.Hydrometallurgy,2004,75:1-10.
    [173]Cruz R,La'zaro I,Gonza'lez I,Monroy M,Acid dissolution influences bacterial attachment and oxidation of arsenopyrite.Minerals Engineering,2005,18:1024-1031.
    [174]邓敬石,高温嗜热菌浸出金属硫化矿的研究现与进展.云南冶金,2005,35:21-24.
    [175]Golovachevar S,Karava I G I,New genus of thermophilic spore-forming bacteria,Sulfobacillus.Microbiology,1978,47:658-665.
    [176]Golovachevar S,Karava I G I,Validation of the publication of new names and new combinations previously effectively published outside the IJSB.International Journal of Systematic Bacteriology,1991,41:178-179.
    [177]Norris PR,Clark DA,Owen JP,Waterhouse S,Characteristics of Sulfobacillus acidophilus sp.nov.and other moderately thermophilic mineral sulphide oxidizing bacteria.Microbiology-SGM,1996,142:775-783.
    [178]Dufresne S,Bousquet J,Boissinot M,Guay R,Sulfobacillus disulfidooxidans sp.nov.,a new acidophilic,disulfide-oxidizing,gram-positive,spore-forming bacterium.International Journal of Systematic Bacteriology,1996,46:1056-1064.
    [179]BrierleyJ,A perspective on developments in bio-hydrometallurgy.Hydrometallurgy,2008,94:2-7.
    [180]Foucher S,Battaglia-Brunet F,d'Hugues P,Clarens M,Godon J J,Morin D,Evolution of the bacterial population during the batch bioleaching of a cobaltiferous pyrite in a suspended-solids bubble column and comparison with a mechanically agitated reactor.Hydrometallurgy,2003,71:5-12.
    [181]Dopson M,Lindstrom E B,Analysis of community composition during moderately thermophilic bioleaching of pyrite,arsenical pyrite,and chalcopyrite.Microbial Ecology,2004,48:19-28.
    [182]Rodriguez Y,Ballester A,Blazquez M L,Gonzalez E Munoz JA,New information on the chalcopyrite bioleaching mechanism at low and high temperature. Hydrometallurgy (Amsterdam), 2003, 71: 47-56.
    [183] Nava D, Gonzalez I, Electrochemical characterization of chemical species formed during the electrochemical treatment of chalcopyrite in sulfuric acid.Electrochimica Acta, 2006, 51: 5295-5303.
    [184] Sasaki K, Nakamuta Y, Hirajima T, Tuovinen O H, Raman characterization of secondary minerals formed during chalcopyrite leaching with Acidithiobacillus ferrooxidans. Hydrometallurgy, 2009,95: 153-158.
    [185] Zhang Lin, Qiu Guanzhou, Hu Yuehua, Sun Xiaojun, Li Jianhua, Gu Guohua,Bioleaching of pyrite by A. ferrooxidans and L. ferriphilum. Transactions of nonferrous translation of china, 2008,18: 1415-1420.
    [186] Rodriguez Y, Ballester A, Blazquez M L, Gonzalez F, Munoz JA, New information on the pyrite bioleaching mechanism at low and high temperature.Hydrometallurgy, 2003, 71: 37-46.
    [187] Blight K, Ralph D E, Thurgate S, Pyrite surfaces after bio-leaching: a mechanism for bio-oxidation. Hydrometallurgy, 2000, 58: 227-237.
    [188] Jiang Lei, Zhou Huaiyang, Peng Xiaotong, Ding Zhonghao, The use of microscopy techniques to analyze microbial biofilm of the bio-oxidized chalcopyrite surface. Minerals Engineering, 2009, 22: 37-42.
    [189] Murphy R, Strongin DR, Surface reactivity of pyrite and related sulfides.Surface Science Reports, 2009, 64: 1-45.
    [190] Murr LE, Berry VK, Observations of a natural thermophilic microorganism in the leaching of a large, experimental, copper-bearing waste body. 1978,
    [191] Sand W, Gehrke T, Jozsa PG, Schippers A, (Bio)chemistry of bacterial leaching direct vs. indirect bioleaching. Hydrometallurgy, 2001, 59: 159-175.
    [192] Wang H, Bigham J M, Jones FS, Tuovinen OH, Synthesis and properties of ammoniojarosites prepared with iron-oxidizing acidophilic microorganisms at 22 to 65℃. Geochim.Cosmochim.Acta, 2007, 71: 155-164.
    [193] Von Oertzen G U, Jones R T, Gerson A R, Electronic and optical properties of Fe, Zn and Pb sulfides. Physics Chemineral Minerals, 2005, 32: 255-268.
    [194] Wincott PL, Vaughan DJ, Spectroscopic Studies of Sulfides. Reviews in Mineralogy & Geochemistry, 2006, 61: 181-229.
    [195] Klauber C, Fracture-induced reconstruction of a chalcopyrite (CuFeS2) surface. Surface and interfacial analysis, 2003, 35: 415-428.
    [196] Hackl RP, Dreisinger DB, Peters E, King J, Passivation of chalcopyrite during oxidative leaching in sulfate media. Hydrometallurgy, 1995, 39: 25-48.
    [197] Li De, Bancroft G M, Kasra M, Fleet M E, Yang B X, Feng XH, Tan K, Peng Mingsheng, Sulfur K- and L-edge X-ray Absorption Spectroscopy of Sphalerite,Chalcopyrite and Stannite. Physics Chemineral Minerals, 1994, 20:489-499.
    [198] Li De, Bancroft G M, Kasrai M, Fleet M, Feng XH, Yang BX, Tan KH, S K-and L-edge XANES and Electronic Structure of Some Copper Sulfide Minerals. Physics Chemineral Minerals, 1994,21: 317-324.
    [199] Vilcaez J, Suto K, Inoue C, Bioleaching of chalcopyrite with thermophiles:Temperature-ORP dependence. International Journal of Mineral Processing,2008, 88: 37-44.
    [200] Gautier V, Escobar B, Vargas T, Cooperative action of attached and planktonic cells during bioleaching of chalcopyrite with Sulfolobus metallicus at 70 ℃.Hydrometallurgy, 2008, 94: 121-126.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700