两性聚合粒子与高分子聚合物体系的自组装
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
软物质物理是一重要的科学研究领域,与人们的生活息息相关。软物质物理的研究介于宏观和微观间的介观尺度上,是以多体相互作用为主的一类复杂系统,又称为“复杂流体”(complex fluid)。系统的自组织行为是软物质物理研究中的重要方向,包括高分子、胶体、液晶以及生物膜等各种复杂系统。本文研究的对象是两性聚合粒子/高分子聚合物的混合系统。我们系统的研究了两性聚合粒子的掺杂对胶束形貌的影响,以及不对称两性粒子浓度增加时其在支撑膜上结构排布的变化。在理论方法上,我们用自洽场理论(SCFT)处理高分子聚合物和密度泛函理论(DFT)处理两性聚合粒子。该研究对于我们理解复杂系统的自组织行为、理解生物体内的一些相关现象是非常有帮助的。
     第一章,我们介绍了软物质的特性、调控有序结构的手段以及一些典型的软物质。首先讲述了软物质与硬物质在自由能的贡献上的区别,一个是熵作为能量的构成主体,另外一个是焓作为能量的主要部分。其次,我们详细的介绍了软物质有序结构调控的手段,包括受限,衬底诱导,环境诱导和掺杂等。最后,我们介绍了软物质领域中常见的几种类型:高分子,胶体,表面活性剂以及生物膜。通过这章的介绍,我们将对软物质物理的研究对象有所了解。
     第二章,我们简单介绍了软物质研究中几种常用的理论研究方法。我们推演了高分子链的自由连接链模型,明确了它是高斯模型。接着,我们主要介绍了自洽场理论(SCFT)和密度泛函理论(DFT)。自洽场理论用于高分子体系的研究是高效的,其理论结果和实验现象非常吻合。它的优点是能够将多体相互作用简化为场与单体的相互作用,还能考虑到高分子链的构象熵。同时,自洽场理论是一种平均场理论,有其理论上的局限性。再次,密度泛函理论对胶体粒子的描述是一种有效的手段,它能够将粒子的空间体积排斥作用考虑在内。通过这两个理论的结合,人们在处理胶体/聚合物的体系上有了一条新的理论途径。最后,我们推导了密度泛函理论来描述两性二聚物粒子的过程。通过本章的学习,我们在理论上获得了一条可行的路径去研究两性粒子/高分子的混合系统。
     第三章,结合自洽场和密度泛函理论,我们系统地研究了由双亲粒子(具有不同亲疏水性的两球)引起的二嵌段共聚物胶束的形变。粒子因具有双亲性而能在胶束表面聚集。我们首先考虑了对称的双亲粒子的情况。当其浓度增加时,胶束的形状从最初的圆形变成椭圆形,然后到哑铃结构最后分裂成为两个胶束。接着我们对不对称粒子的情况做了研究。当亲水组分比疏水组分大,我们发现胶束更加喜欢形成哑铃结构,原因可以归结于不对称粒子本身所具有的特定的空间几何效应。当疏水组分比亲水组分大时,我们观察到两嵌段共聚物倾向于聚集在疏水部分周围,形成多个胶束。该工作有助于我们对细胞中存在的形变和分裂等现象的进一步理解。
     第四章,我们结合自洽场理论和密度泛函理论,研究了不对称的二聚物粒子在AB两嵌段共聚物形成的支撑膜上的自组织行为。不对称的二聚物是由两个不同的球组成的两性分子。其中一个球与A嵌段相亲,另外一个喜欢B嵌段。不对称粒子能在膜上形成一个双层结构。由于支撑板的存在,所形成的支撑膜上下两叶的对称性被破坏,从而导致了二聚物粒子在膜上每叶上形成的结构也变的不对称。随着二聚物粒子浓度的增加,在膜平面上的二聚物粒子的结构将发生变化,从稀四方,六角,密四方再到圆柱结构。在一个高浓度的密堆积下,二聚物粒子将形成一个弯曲的圆柱结构。我们确信,在支撑膜上二聚物粒子的结构是受两嵌段共聚物的熵,系统的焓和空间体积排斥作用的共同影响下形成的。
     第五章,我们对现有的工作做了一个总结,并对以后可能的工作做了一个展望。
Soft-matter is an important scientific research field, which correlates to people's daily lives. The scale of the soft-matter is between macro and micro which is re-garded as the mesoscopic world. Soft matter is a complex system of multi-body in-teraction, also known as "complex fluids". The important research content of soft matter is self-organizing behavior of the system, including polymers, colloids, liquid crystal, biomembrane and other complex systems. Our research object is dimer parti-cle/polymer hybrid system. We will study the influence of the morphology of a micelle induced by the dimer particles and the self-assembly behavior of the dimer particles in a supported membrane when the concentration of amphiphilic dimer particles added. In the theoretical approach, we use the self-consistent field theory(SCFT) for polymers and density functional theory(DFT) for dimer particles. Such a study is very helpful for us to understand the self-assembly behavior of complex systems and the relevant phenomena in biology.
     In the first chapter, we introduce the characteristics of soft materials, the method to obtain the order structures and some typical soft matter. Firstly, we introduce the dif-ference in the contribution to the free energy between soft materials and hard materials. Entropy is the main form of energy for the soft material, and enthalpy is the major part of hard material. Then, we introduce the method to obtain the order structures of soft matter, such as confined induce, substrate induce, environmental induce and doping. At last, we present several soft matters:polymer, colloid, surfactant and biomembrane. Through this chapter, we will have some understanding with the soft-matter.
     In the second chapter, we introduce several common research methods in the soft-matter. The free-connect model which used to describe polymer chain is deduced, also regarded as the Gaussian model. Then, we introduce two useful methods, they are self-consistent field theory (SCFT) and density functional theory (DFT). Self-consistent field theory used to describe the polymer chain, the theoretical results and experimental results are very consistent. Its advantage is the ability to simplify multi-body interaction as interactions between monomers and field, and concern the conformational entropy of polymer chains. We also note that the self-consistent field theory is a mean-field the-ory, which has its theoretical limitations. The density functional theory is an effective means for the description of colloidal particles which can take the steric repulsion of the particle into account. Through a combination of these two theories, we will have another way in studying colloid/polymer system in the theoretical approach. Finally, we show the process to deal with the dimer particles by using the density functional theory. Though this chapter, we have a viable theoretical approach to study dimer par-ticle/polymer system.
     In the third chapter, by combining self-consistent-field theory and density-functional theory, we systematically study the deformation of copolymer micelle in-duced by the presence of the amphiphilic dimer particles. Due to the amphiphilic na-ture, dimer particles tend to accumulate onto the interface of the copolymer micelle. With the increasing concentration of the symmetric dimer particles, which are made of two same spherical particles, the micelle deforms from the initial sphere to ellipse, dumbbell, and finally separates into two micelles. Furthermore,we investigate the in-fluence of asymmetric dimer particles, composed by two particles with different sizes on the deformation of the micelle. It is found that the micelle inclines to deform into dumbbell due to the additional curvature originating in the gathering of asymmetric dimer particles onto the interface of the micelle. The present study on the deforma-tion of micelle is useful to understand the possible shape variation in the course of cell division/fusion.
     In the fourth chapter, by using self-consistent field (SCFT) and density func-tional theories (DFT), we investigate the self-assembly behavior of asymmetric dimer particles in a supported AB block copolymer bilayer. Asymmetric dimer particles are amphiphilic molecules composed by two different spheres. One prefers A block of copolymers and the other likes B block when they are introduced into the copolymer bilayer. The two layer structure of the dimer particles is formed within the bilayer. Due to the presence of the substrate surface, the symmetry of the two leaflets of the bilayer is broken, which lead to two different layer structures of dimer particles within each leaflet of the bilayer. With the increasing concentration of the asymmetric dimer parti-cles, in-plane structure of the dimer particles undergoes sparse square, hexagonal, dense square and cylindrical structures. In a further condensed packing, a bending cylindrical structure comes into being. Here we verify that the entropic effect of copolymers, the enthalpy of the system and the steric repulsion of the dimer particles are three important factors determing the self-assembly of dimer particles within the supported copolymer bilayer.
     In the last chapter, we summarize what we have done and describe a long-term prospect on the further study of soft matter.
引文
[1]陆坤权,刘寄星,物理评论38,453(2009).
    [2]马余强,物理学进展,22,73(2002).
    [3]P.G.德热纳and J巴杜,软物质与硬科学[M],湖南教育出版社(2000)
    [4]P.G.德热纳,高分子物理学中的标度概念[M],化学工业出版社(2002)
    [5]L. Zhou and Y. Q. Ma, J.Phys.Condens.Matter 20,095006 (2008)
    [6]B. Yu, P. C. Sun, T. H. Chen, Q. H. Jin, D. T. Ding, B. H. Li and A. C. Shi, Phys. Rev. Lett.96,138306 (2006)
    [7]C. L. Ren and Y. Q. Ma, J.Am.Chem.Soc.128,2733 (2006)
    [8]M. Tanaka and E. Sackmann Nature 423,656 (2005)
    [9]Z. R. Chen, J. A. Kornfield, S. D. Smith, J. T.Grothaus and M. M.Satkowski, Science 277,1248 (1997)
    [10]Z. L. Zhou, Z. B. Li, Y. Ren, M. A. Hillmyer, and T. P. Lodge, J.Am.Chem.Soc. 125,10182(2003)
    [11]D. Q. Ly, T. Honda, T. Kawakatsu, and A. V. Zvelindovsky, Macromolecules 41, 4501 (2008)
    [12]I. Tsafrir, D. Sagi, T. Arzi, M. A. Guedeau-Boudeville, V. Frette, D. Kandel and J. Stavans,Phys.Rev.Lett,2001,86:1138
    [13]I. Tsafrir, Y. Caspi, M. A. Guedeau-Boudeville, T. Arzi and J. Stavans, Phys.Rev.Lett,2003,91:138102
    [14]R. B. Thompson, Phys. Rev.E 74,041501 (2006)
    [15]R. B. Thompson, J. Y. Lee, D. Jasnow and A. C. Balazs, Phys. Rev.E 66,031801 (2002)
    [16]R. B. Thompson, J. Y. Lee, D. Jasnow and A. C. Balazs, Macromolecules 35 1060 (2002)
    [17]R. B. Thompson, J. Y. Lee, D. Jasnow and A. C. Balazs, Science 292 2469 (2001)
    [18]田文德,南京大学博士学位论文,2010.
    [19]任春来,南京大学博士学位论文,2006.
    [20]A. J. Spakowitz and Z. G. Wang, Phys.Rev.Lett 91 166102 (2003)
    [21]X. J. Li and M. Schick, J.Phys.Chem.112 6063 (2000)
    [22]D. Duque, X. J. Li, K. Katsov and M. Schick J.Phys.Chem.116 10478 (2002)
    [23]B. Yuan, L. L.i Xing, Y. D. Zhang, Y. Lu, Z. H. Mai and M. Li J.Am.Chem.Soc. 129,11332(2007)
    [24]M. Majumder, N. Chopra, R. Andrews and B. J. Hinds, Nature,4438 (2005)
    [25]A. R. Studart, H. C. Shum and D. A. Weitz, J.Phys.Chem.B 113 3914 (2009)
    [26]J. W. Kim, D. Lee, H. C. Shum and D. A. Weitz Advance materials 20 3239 (2008)
    [27]Y. Y. Han,H. Z.Yu, H. B. Du and W. Jiang JAm.Chem.Soc.132 1144 (2010)
    [28]A. Ramamoorthy, D. K. Lee, J. S. Santos and K. A. Henzler-Wildman JAm.Chem.Soc.130 11023 (2008)
    [29]A. Alexeev, W. E. Uspal and A. C. Balazs ACS Nano 2117 (2008)
    [30]F. Sciortino, A. Giacometti and G. Pastore Phys.Rev.Lett.103 237801 (2009)
    [31]S. C. Glotzer and M. J. Solomon Nature Materials 6557 (2007)
    [32]L. Hong, A. Cacciuto, E. Luijten, and S. Granick Langmuir 24 621 (2008)
    [33]A. Walther and A. H. E. Muller Soft Matter 4663 (2008)
    [34]A. Walther, M. Drechsler and A. H. E. Muller Soft Matter 5 385 (2009)
    [35]J. U. Kim and M. W. Matsen Phys.Rev.Lett 102 078303 (2009)
    [36]A. B. Subramaniam, M. Abkarian, L. Mahadevan and H. A. Stone Nature 438 930 (2005)
    [37]M. Abkarian, A. B. Subramaniam, S. H. Kim, R. J. Larsen, S. M. Yang and H. A. Stone Phys.Rev.Lett 99 188301 (2007)
    [38]S. J. Singer and G. L. Nicolson, Science 175 720 (1972)
    [39]D. M. Engelman, Nature 438 578 (2005)
    [40]V. Ganesan and G. H. Fredrickson, Europhys. Lett.55 814 (2001)
    [41]J. W. Cahn, J. Chem. Phys.30 1121(1959)
    [42]J. W. Cahn, Acta Metall.9795 (1961)
    [43]A. J. Bray, Adv. Phys.43 357 (1994)
    [44]H. W. Huang, F. Y. Chen and M. T. Lee Phys.Rev.Lett 92 198304 (2004)
    [45]H. W. Huang Biochemistry 39 8347 (2000)
    [46]M. T. Lee, F. Y. Chen and H. W. Huang Biochemistry 43 3590 (2004)
    [47]L. Yang, T. A. Harroun, T. M. Weiss, L. Ding and H. W. Huang Biophys.J.81 1475 (2001)
    [48]M. Tanaka and E. Sackmann Nature 423,656 (2005)
    [49]Q. Y. Zhang and Y. Q. Ma J.Chem.Phys.125,164710 (2006)
    [50J Q. Y. Zhang and Y. Q. Ma J.Phys.Chem.B 110,26279 (2006)
    [51]Q. Liang and Y. Q. Ma J.Phys.Chem.B 112,1963 (2008)
    [52]Q. Liang and Y. Q. Ma J.Phys.Chem.B 113,8049 (2009)
    [1]K. Binde, J. Horbach, W. Kob, W. Paul and F. Varnik J. Phys.:Condens. Matter 16429 (2004)
    [2]M. Tsige, J. G. Curro,and G. S. Grest J. Chem. Phys.129 214901 (2008)
    [3]J. M. Ilnytskyi and D. Neher J.Chem. Phys.126 174905 (2007)
    [4]T. Aoyagi and T. Hondab J. Chem. Phys.117 8153 (2002)
    [5]M. X. Wang, W. B. Hu, Y. Ma and Y. Q. Ma Macromolecules 38 2806 (2005)
    [6]M. X. Wang, W. B. Hu, Y. Ma and Y. Q. Ma J.Chem.Phys.124 244901 (2006)
    [7J K. Yang and Y. Q. Ma, Nature NanoTecheology 5579 (2010)
    [8]K. Yang and Y. Q. Ma, J.Phys.Chem.B 113 1048 (2009)
    [9]K. Yang, X. Shao and Y. Q. Ma, Phys.Rev.E 79 051924 (2009)
    [10]M. Bulacu, Molecular Dynamics Studies of Entangled Polymer Chains [M] Print-Partners Ipskamp, Enschede. (2008)
    [11]M. W. Matsen and M. Schick Phys. Rev. Lett.772 2660 (1994).
    [12]M. W. Matsen and M. Schick Curr. Opin. Colloid Interface Sci.71329 (1996).
    [13]F. Drolet and G. H. Fredrickson Phys. Rev. Lett.783 4317 (1999).
    [14]R. B. Thompson, Phys. Rev.E 74,041501 (2006)
    [15]R. B. Thompson, J. Y. Lee, D. Jasnow and A. C. Balazs, Phys. Rev.E 66,031801 (2002)
    [16]R. B. Thompson, J. Y. Lee, D. Jasnow and A. C. Balazs, Macromolecules 35 1060 (2002)
    [17]R. B. Thompson, J. Y. Lee, D. Jasnow and A. C. Balazs, Science 292 2469 (2001)
    [18]M. W. Matsen, Self-Consistent Field Theory and Its Applications [M] Wiley-VCH, Weinheim, (2006)
    [19]任春来,南京大学博士学位论文,2006.
    [20]陈康,南京大学博士学位论文,2005.
    [21]E. Helfand,J. Chem. Phys.629 99 (1975).
    [22]E. Helfand and A. M. Sapse, J. Chem. Phys.62 1327(1975).
    [23]K. R. Shull, Macromolecules 26 2346(1993).
    [24]J. M. H. M. Scheutjens and G. J. Fleer, J. Chem. Phys.83 1619(1979).
    [25]S. F. Edwards, Proc. Phys. Soc.85 613 (1965)
    [26]E. Helfand and Y. Tagami J. Polym. Sci. B 9 741 (1971).
    [27]M. W. Matsen and M. Schick Phys. Rev. Lett.72 2660 (1994).
    [28]M. W. Matsen and M. Schick Curr. Opin. Colloid Interface Sci.1329 (1996).
    [29]F. Drolet and G. H. Fredrickson Phys. Rev. Lett.83 4317 (1999).
    [30]F. Schmid J. Phys.:Condens. Matte 10 8105 (1998).
    [31]P.G.德热纳,高分子物理学中的标度概念[M],化学工业出版社(2002)
    [32]Q. Liang and Y. Q. Ma J.Phys.Chem.B 112 1963 (2008)
    [33]Q. Liang and Y. Q. Ma J.Phys.Chem.B 113 8049 (2009)
    [34]C. L. Ren and Y. Q. Ma J.Am.Chem.Soc.128,2733 (2006)
    [35]Q. Y. Zhang and Y. Q. Ma J.Phys.Chem.B 110 26279 (2006)
    [36]Q. Y. Zhang and Y. Q. Ma J.Chem.Phys 125 164710 (2006)
    [37]S. W. Sides, B. J. Kim, E. J. Kramer and G. H. Fredrocksom Phys. Rev. Lett.96 250601 (2006)
    [38]L. S. Zhang, J. P. Lin and S. L. LinMacromolecules 40 5582 (2007)
    [39]Y. Rosenfeld, M. Schmidt, H. Lowen and P. Tarazona Phys. Rev. E.55 4245 (1997)
    [40]C. E. Woodward and J. Forsman Phys. Rev. Lett.100 098301 (2008)
    [41]K. Wang, Y. X. Yu and G. H. Gao J.Chem.Phys 128 185101 (2008)
    [42]P. Tarazona Mol.Phys 52 81 (1984)
    [43]N. F. Carnahan and K. E. Starling J.Chem.Phys 51635 (1969)
    [44]P. S. Christopher and D. W. Oxtobyb J.Chem.Phys 121 5005 (2004)
    [45]R. B. Thompson, Phys. Rev.E 73,020502 (2006)
    [46]R. B. Thompson, Phys. Rev.E 74,041501 (2006)
    [1]I. Tsafrir, D. Sagi, T. Arzi, M. A. Guedeau-Boudeville, V. Frette, D. Kandel, and J. Stavans Phys.Rev.Lett 861138 (2001)
    [2]I. Tsafrir, Y. Caspi, M. A. Guedeau-Boudeville, T. Arzi, and J. Stavans Phys.Rev.Lett 91 138102 (2003)
    [3]F. Campelo and A. Hernandez-Machado Phys.Rev.Lett 99 088101 (2007)
    [4]F. Campelo and A. Hernandez-Machado Phys.Rev.Lett 100 158103 (2008)
    [5]M. Majumder, N. Chopra, R. Andrews and B. J. Hinds Nature 44 438 (2005)
    [6]A. R. Studart, H. C. Shum and D. A. Weitz J.Phys.Chem.B 113 3914 (2009)
    [7]J. W. Kim, D. Lee, H. C. Shum, and D. A. Weitz Advance Materials 20 3239 (2008)
    [8]Y. Y. Han, H. Z. Yu, H. B. Du and W. Jiang J.Am.Chem.Soc.132 1144 (2010)
    [9]A. Ramamoorthy, D. K. Lee, J. S. Santos, and K. A. Henzler-Wildman J.Am.Chem.Soc.130 11023 (2008)
    [10]A. Alexeev, W. E. Uspal and A. C. Balazs ACS Nano 2 117 (2008)
    [11]F. Sciortino, A. Giacometti and G. Pastore Phys.Rev.Lett.103 237801 (2009)
    [12]Z. L. Zhou, Z. B. Li, Y. Ren, M. A. Hillmyer and T. P. Lodge J.Am.Chem.Soc.125 10182(2003)
    [13]H. G. Cui, Z. Y. Chen, S. Zhong, K. L. Wooley and D. J. Pochan Science317 647 (2007)
    [14]D. G. Wang, J. P. Liu, G. Ye and X. G. Wang Polymer 50 418 (2009)
    [15]R. Pool and P. G. Bolhuis J.Chem.Phys.126 244703 (2007)
    [16]M. Sammalkorpi, M. Karttunen and M. Haataja J.Am.Chem.Soc.130 17977 (2008)
    [17]Y. Rharbi and M. A. Winnik J.Phys.Chem.B 107 1491 (2003)
    [18]J. J. Gao, S. Y.Li, X. R. Zhang and W. C. Wang Phys.Chem.Chem.Phys.12 3219(2010)
    [19]R. B. Thompson, V. V. Ginzburg, M. W. Matsen and A. C. Balazs Macromolecules 35 1060 (2002)
    [20]R. B. Thompson, V. V. Ginzburg, M. W. Matsen and A. C. Balazs Science 292 2469(2001)
    [21]Q. Liang and Y. Q. Ma J.Phys.Chem.B 112 1963 (2008)
    [22]R. B. Thompson Y. Lee, D.Jasnow and A. C. Balazs Phys.Rev.E.66031801(2002)
    [23]V. V. Ginzburg and S. Balijepailli Nano Letters 7 3716 (2007)
    [24]C. L. Ren and Y. Q. Ma J.Am.Chem.Soc.128 2733 (2006)
    [25]Q. Y. Tang and Y. Q. Ma Soft Matter 6 4460 (2010)
    [26]Q. Y. Tang and Y. Q. Ma J.Phys.Chem.B 113 10117 (2009)
    [27]P. S. Christopher and D. W. Oxtoby J.Chem.Phys.1215005 (2004)
    [28]P. S. Christopher and D. W. Oxtoby J.Chem.Phys.11910330(2003)
    [29]R. B. Thompson Phys.Rev.E.73020502(2006)
    [30]R. B. Thompson Phys.Rev.E.74041501(2006)
    [31]M. W. Matsen and M. Schick Phys.Rev.Lett.722660(1994)
    [32]R. B. Thompson Y. Lee, D. Jasnow and A. C. Balazs Phys.Rev.E.66 031801(2002)
    [33]M. Muller, K. Katsov and M. Schick Phys.Rep.434113 (2006)
    [34]K. Katsov, M. Muller and M. Schick Biophys.J.873277(2004)
    [35]G. A. Mansoori, N. F. Carnahan, K. E. Starling and T. W. Leland J.Chem.Phys. 541523(1971)
    [36]P. Tarazona Mol.Phys 5281 (1984)
    [37]Y. Jiang, T. Chen, F. W. Ye, H. J. Liang and A. C. Shi Macromolecules 38 6710 (2005)
    [38]L. S. Zhang, J. P. Lin and S. L. Lin Macromolecules 405582(2007)
    [39]Q. Liang, and Y. Q. Ma J.Phys.Chem.B 1121963(2008)
    [40]H. W. Huang Phys.Rev.Lett 92 198304 (2004)
    [41]H. W. Huang Biochemistry 39 8347 (2000)
    [42]M. T. Lee, F. Y. Chen and H. W. Huang Biochemistry 43 3590 (2004)
    [43]L. Yang, T. A. Harroun, T. M. Weiss, L. Ding and H. W. Huang Biophys.J.81 1475 (2001)
    [1]E. V. Shevchenko, D. V. Talapin, N. A. Kotov, S. O. Brien and C. B. Murray Nature 439 55 (2006)
    [2]F. X. Redl, K. S. Cho, C. B. Murray and S. O'Brien Nature 423 968 (2003)
    [3]S. C. Glotzer and M. J. Solomon Nat.Mater.6557 (2007)
    [4]S. H. Chen, Z. L. Wang and J. Ballato, S. H. Foulger and D. L. Carroll J.Am.Chem.Soc.125 16186 (2003)
    [5]K. H. Roh, D. C. Martin and J. Lahann Nat.Mater.4759 (2005)
    [6]Z. H. Nie, W. Li, M. Seo, S. Q. Xu and E. Kumacheva, JAm.Chem.Soc.128,9408 (2006)
    [7]H. Liang, C. Angelo, L. Erik and G. Steve, Langmuir 24,621 (2008)
    [8]A. Walther and A. H. E. Muller, Soft Matter 4,663 (2008)
    [9]K. S. Cho, D. V. Talapin, W. Gaschler and C. B. Murray, JAm.Chem.Soc.127, 7140(2005)
    [10]A. Mohraz and M. J. Solomon, Langmuir 21,5298 (2005)
    [11]Y. Lu, H. Xiong, X. C. Jiang, Y. N. Xia, M. Prentiss and G. M. Whitesides, JAm.Chem.Soc.125,12724 (2003)
    [12]S. H. Lee, E. Y. Fung, E. K. Riley and C. M. Liddell, Langmuir 25,7193 (2009)
    [13]Z. L. Zhang and S. C. Glotzer, Nano Letters 4,1407 (2004)
    [14]T. P. Bigioni, X. M. Lin, T. T. Nguyen, E. I. Corwin, T. A. Witten and H. M. Jaeger, Nat.Mater.5,265 (2006)
    [15]E. V. Shevchenko, D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase and H. Weller,J.Am. Chem.Soc.124,11480(2002)
    [16]J. W. Kim, D. Lee, H. C. Shum and D. A. Weitz, Adv.Mater.20,3239 (2008)
    [17]Z. L. Zhang, A. S. Keys, T. Chen and S. C. Glotzer, Langmuir 21,11547 (2005)
    [18]A. Alexeev, W. E. Uspal and A. C. Balazs, ACS Nano 2,1117 (2008)
    [19]A. W. Wilber, J. P. K. Doye, A. A. Louis, E. G. Noya, M. A. Miller and P. Wong, J.Chem.Phys.127,085106 (2007)
    [20]E. Sackmann, Science 271,43 (1996)
    [21]M. Tanaka and E. Sackmann, Nature 473,656 (2005)
    [22]C. Y. Xin, O. H. S. Ollila, I. Vattulainen and R. Faller, Soft Matter 5,3258 (2009)
    [23]Christopher, P. S. and Oxtoby, D. W., J,Chem.Phys.,2004,121:5005
    [24]Christopher, P. S. and Oxtoby, D. W., J.Chem.Phys.,2003,119:10330
    [25]Thompson, R. B., Phys.Rev.E.,2006,73:020502
    [26]Thompson, R. B.,Phys.Rev.E.,2006,74:041501
    [27]M. Templin, A. Franck, A. DuChesne, H. Leist, Y. M. Zhang, R. Ulrich, V. Schadler and U. Wiesner, Science 278,1795 (1997)
    [28]D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka and G. D. Stucky, Science 279,548 (1998)
    [29]R. B. Thompson, V. V. Ginzburg, M. W. Matsen and A. C. Balazs, Science 292, 2469(2001)
    [30]J. Y. Lee, Z. Shou and A. C. Balazs, Phys.Rev.Lett 91,136103 (2003)
    [31]V. V. Ginzburg and S. Balijepalli, Nano Letters 7,3716 (2007)
    [32]K. Katsov, M. Muller and M. Schick, Biophys.J.87,3277 (2004)
    [33]P. S. Christophera and D. W. Oxtobyb, J.Chem.Phys.121,5005 (2004)
    [34]X. J. Li and M. Schick, Phys.a 78,34 (2000)
    [35]X. J. Li and M. Schick, J.Chem.Phys. 112,6063 (2000)
    [36]M. Schick, Biophys.J.369,100 (2006)
    [37]L. Yang, T. A. Harroun, T. M. Weiss, L. Ding and H. W. Huang Biophys.J.81 1475 (2001)
    [38]Q. Liang and Y. Q. Ma J.Phys.Chem.B 112 1963 (2008)
    [39]Q. Y. Zhang and Y. Q. Ma J.Chem.Phys.125 164710 (2006)
    [40]Q. Y. Zhang and Y. Q. Ma J.Phys.Chem.B 110 26279 (2006)
    [41]R. B. Thompson, Phys. Rev. E 74,041501 (2006)
    [42]R. B. Thompson, J. Y. Lee, D. Jasnow and A. C. Balazs, Phys. Rev.E 66,031801 (2002)
    [43]G. A. Mansoori, N. F. Carnahan, K. E. Starling and T. W. Leland, J.Chem.Phys. 54,1523(1971)
    [44]P. Tarazona, Mol.Phys 52 81(1984)
    [45]C. L. Ren and Y. Q. Ma, J.Am.Chem.Soc.128,2733 (2006)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700