催化胺化制三烷基叔胺的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脂肪叔胺是一类重要的有机中间体,按其结构可分为单长链烷基二甲基叔胺、双长链烷基甲基叔胺和三长链烷基叔胺。叔胺的主要用途是作为阳离子和两性表面活性剂的原料。叔胺及其衍生物在纺织印染、医疗卫生、日用化工、石油化工、金属加工等领域具有广泛的应用。有关脂肪醇常压催化胺化制备单烷基叔胺及其催化剂和以单烷基叔胺制备阳离子季铵盐的研究报导已有很多,而关于三烷基叔胺的合成和催化剂及其季铵盐研究的文献报导很少。
     三烷基叔胺分子结构中含有三个长链烷基,其空间位阻效应大大高于单烷基叔胺和双烷基叔胺,催化剂必须具有更高的活性和选择性,反应机理也有其特殊性,因此本论文针对三烷基叔胺的合成、反应机理、催化剂及其新型季铵盐等进行深入的研究。
     本论文的工作首先是用正辛醇和氨气制备三辛基叔胺。以硅藻土作载体,用硝酸铜、硝酸镍和碳酸钠共沉淀制备出一系列不同比例的Cu、Ni二元负载型催化剂,进行胺化反应评价优化出适合的元素比例,并根据反应过程中样品组成的变化情况,提出详细的反应机理。同时以优化出的Cu、Ni二元催化剂为基础,加入第三组份Mg、Zn,考察第三组份对催化剂催化制备三烷基叔胺胺化反应性能的影响(第二章)。对催化剂进行一系列的性能表征,如:用TPR手段测试催化剂的还原性能,用XPS进行催化剂表面元素价态及元素组成的测定(第三章);用H2-TPD和NH3-TPD研究催化剂的吸脱附性能(第四章);用XRD进行催化剂颗粒表面晶相分析,用TEM观察催化剂的形貌,测定催化剂样品的比表面积、孔体积及孔径分布等(第五章)。以合成出的三辛基叔胺为原料,设计一种新的季铵盐合成路线,合成出在N原子上含有羟乙基基团的新型季铵盐阳离子表面活性剂,并同时合成出了单十二烷基叔胺和双癸基叔胺的季铵盐进行对比,对它们进行结构表征与表面活性测定,并对它们的物化性能进行研究(第六章)。得到的主要结果和结论如下:
     胺化反应评价结果表明,只含Cu或Ni的催化剂活性和选择性均很低,催化剂的活性和选择性是两种元素协同作用的结果,缺一不可。优选出最佳的催化剂元素比为Ni:Cu=1.25:1,脂肪醇的转化率达到99%以上,产物中三辛基叔胺含量达到97%。对胺化反应机理进行了研究,制备三烷基叔胺的主反应为三步串联反应,脂肪醇→伯胺→仲胺→叔胺,实验结果表明由仲胺生成叔胺是反应的速度控制步骤。考察第三组份Mg、Zn对催化制备三烷基叔股胺化反应性能的影响,结果表明加入Mg的催化剂具有很高的活性和选择性,与二元催化剂相当。而加入Zn的催化剂活性很好,但叔胺选择性有所降低,在90%左右。
     H2-TPR的研究结果表明,含有NiO和CuO两种氧化物的催化剂还原温度比单一CuO或NiO的还原温度降低且只显示一个还原峰,两者之间具有明显的协同作用;最佳催化剂Ni:Cu=1.25:1的还原温度为170.6℃,与胺化反应时催化剂进行还原的温度170℃一致。加入第三组份Mg和Zn时,对催化剂的还原有明显的影响,即还原温度提高,还原程度降低。
     XPS的研究结果表明,Ni元素在催化剂表面富集,而Cu元素在催化剂体相富集。最佳催化剂Ni:Cu体相组成为1.25:1,XPS测出其表面组成是3.2:1。在胺化反应前催化剂进行还原的条件170℃、40min下,Cu2+和Ni2+两种元素都没有完全还原,Cu0约为60-70%,Ni0约为9%左右,说明胺化反应过程中催化剂元素无需完全还原,一定比例的Cu2+和Cu0与Ni2+和Ni0协同作用使催化剂的性能达到最佳。加入Mg, Zn后,Mg富集于体相而Zn富集于表面,这一差别导致催化剂的还原性能出现差异,即Zn在表面的富集使Ni2+难以还原,Ni0含量减少,因而影响了催化剂的选择性。
     H2-TPD的研究结果表明,Ni具有较强的吸氢能力而Cu对H2的吸附很弱,在催化剂中铜主要起脱氢作用,镍主要起加氢作用,在催化剂中必须含有铜和镍两种元素才能使催化剂同时具有脱氢-加氢作用;与单烷基叔胺相比,在制备三烷基叔胺时,反应存在较大的空间位阻,催化剂需要有较强的加氢能力,因此三烷基叔胺催化剂以镍为主活性组份,而单烷基叔胺以铜为主活性组份。加入第三组份Mg和Zn后,催化剂的加氢能力提高。
     NH3-TPD的研究结果表明,NH3分子在催化剂表面存在两种吸附态,NH3中N-H键断裂的解离吸附和N原子上的孤对电子与催化剂表面形成的配位吸附。解离吸附为弱吸附,是反应进行的必要条件,配位吸附为强吸附,由于此种吸附占据了一定的活性位,对反应不利。加入Mg的催化剂不存在配位吸附,催化剂的活性位不受损失,对胺化反应无影响,加入Zn后,出现了配位吸附峰,对胺化反应产生了不利影响。
     XRD、TEM和BET等手段对催化剂的结构进行测试的结果是一致的,即TEM观察催化剂微粒比较小的,XRD的衍射峰也比较小,比表面积比较大。最佳催化剂和加入Mg、Zn催化剂的XRD谱图中只显示NiO的特征峰,而不出现CuO、MgO和ZnO的特征峰,表明此三种金属氧化物高度分散在载体和NiO中;最佳催化剂与其他比例及三元催化剂相比具有较小的粒径,分散程度比较高,对胺化反应有利。
     利用三辛基叔胺、盐酸和环氧乙烷,合成出在N原子上含有羟乙基基团的新型季铵盐阳离子表面活性剂三辛基羟乙基氯化铵(TQA),并同时合成出十二烷基二甲基羟乙基氯化铵(MQA)和双癸基甲基羟乙基氯化铵(DQA)进行对比。通过FT-IR、1H-NMR和元素分析对产品进行结构表征,证实了合成产物的结构。对合成的季铵盐进行表面活性研究,与相应的传统不含羟乙基基团的产品进行比较,发现含有羟乙基基团的产品具有更好的表面活性。研究了MQA与LAS的阴阳离子复配性能,发现LAS和MQA复配比在9:1左右,可以使混合体系的界面张力、乳化力、润湿力和去污力等性能得以明显改善,具有明显的协同增效作用。
Fatty alkyl tertiary amines including mono-, di-, and tri-alkyl tertiary amines (RNMe2, R2NMe and R3N, respectively), as important intermediates for cationic surfactants, amphoteric compounds and important organic intermediates, have extensive applications. These derivatives of tertiary amines can be used in the fields of textile printing and dyeing, health care, daily chemical, petroleum chemical, metal processing and so forth. Catalytic amination of fatty alcohols is a major process for the preparation of these amines at present. Studies on catalysts, synthetic processes for mono-alkyl tertiary amines and their cationic quaternary ammonium salts have been performed for a long time, and have been reported widely. Up to now, very few articles were reported about the synthesis of tri-alkyl tertiary amines and catalysts and their quaternary ammonium salts.
     Tri-alkyl tertiary amines contain a bulky group (three long alkyl-chains) with a steric-hindrance. Therefore, more active catalysts than those used for the preparation of mono-and di-alkyl tertiary amines are required. The reaction mechanism has particularity, too. Therefore, the work in this paper is centered on the study of the synthesis of tri-long-alkyl tertiary amines, more effective amination catalysts, reaction mechanism and a new type of quaternary ammonium salts.
     A series of diatomite-supported catalysts with different Ni:Cu ratios were prepared by co-precipitation method from copper nitrate, nickel nitrate and sodium carbonate and tested by the amination of n-octanol with ammonia to trioctylamine under atmospheric pressure. The best element ratio was optimized and a detailed reaction mechanism was proposed. The third element Zn and Mg were added into the optimal catalyst and their effects on the performance of catalyst were investigated (Chapter2). TPR (temperature programmed reduction) were carried out to investigate reduction temperatures of catalysts, and XPS (X-ray photoelectron spectroscopy) spectra were measured to investigate surface compositions and valence state of catalyst elements (Chapter3). H2-TPD and NH3-TPD (temperature programmed desorption) were used to research adsorption and desorption properties of catalysts (Chapter4). XRD (X-ray diffraction) was used to analyze surface crystalline phase of catalysts particles. TEM (transmission electron microscopy) was carried out to observe morphology of catalysts. BET (N2adsorption-desorption isotherm) was measured to test specific surface areas, pore volume and pore size distribution of catalysts (Chapter5). A new type of containing hydroxyethyl group quaternary ammonium salts were synthesized from trioctylamine, monolauryltertiary amine and didecyltertiary amine. The structures of the quaternary ammonium salts were characterized and the surface activities were measured (Chapter6). The main results and conclusions in this paper are as follows:
     The results of amination reaction showed that the catalyst containing only Cu or only Ni had low activity and selectivity. The coexistence and synergism of Ni and Cu were essential for the generation of effective activity and selectivity. The optimum Ni/Cu molar ratio was1.25:1. The conversion of alcohol was higher than99%, and the content of trioctylamine in amination products reached over97%. A detailed reaction mechanism was proposed. The amination of octanol with ammonia is a consecutive reaction, via the formation of octylamine and dioctylamine, to form trioctylamine. The reaction from dioctylamine to trioctylamine is the rate-determining step of the formation of trioctylamine. The effects of the third element Mg and Zn on catalyst performances were investigated. The catalyst adding Mg had high activity and selectivity. The catalyst adding Zn had high activity, but the selectivity droped to about90%.
     The results of H2-TPR indicated that the catalysts containing NiO and CuO had decrease in the reduction temperature compared with the catalysts containing NiO or CuO only that might be brought about by a strong synergism due to the coexistence of Ni and Cu. The reduction temperature of the optimum catalyst was the lowest,170.6℃, the same as the catalyst reduction temperature in amination reaction. The addition of Zn and Mg had obvious influences on the catalyst reduction that the reduction temperatures increased and the reduction degrees decreased.
     The results of XPS revealed that the surface Ni/Cu ratio of the optimum catalyst was3.2:1, indicating that Ni was easily concentrated on the catalyst surface and Cu was easily concentrated on the catalyst bulk. The reduction of Cu and Ni of the catalysts was not completed at the reduction condition of H2at170℃for40mins. The contents of Cu0and Ni0were about70%and9%, respectively. This result indicated that the optimum catalyst performance was the synergism of a particular ratio of Cu0/Cu2+and Ni0/Ni2+. Zn was concentrated on the catalyst surface and Mg was concentrated on the catalyst bulk when Zn or Mg was added into the optimal catalyst. The contents of Ni0decreased because of the concentration of Zn on the catalyst surface, resulting in the decrease of the selectivity of the catalyst.
     The results of H2-TPD showed that Ni had strong hydrogen absorption capacity and that of Cu was weak. The function of Cu in catalysts was mainly dehydrogenation and the function of Ni was hydrogenation. Ni and Cu must be concurrence in catalysts that catalysts had dehydrogenation and hydrogenation simultaneously. There was larger steric-hindrance to prepare trialkylamines, the hydrogenation ability of the catalyst for trialkylamines should be stronger than the catalyst for monoalkyl tertiary amines. Therefore, Ni was main active component for trialkylamines and Cu was main active component for monoalkyl tertiary amines. The hydrogen absorption capacity of the catalyst adding Zn or Mg increased.
     The results of NH3-TPD indicated that there were two adsorption states of NH3on the surface of catalysts that were possibly the adsorption related to the cleavage of N-H bond and the ligand adsorption by the lone pair of electrons of N atom. The first adsorption was weak and was the active adsorption state for amination reaction. The second adsorption was strong and difficult to desorb under the condition of amination reaction that was disadvantageous for amination reaction. The catalyst adding Mg had no the ligand adsorption and had no harmful effect on the amination reaction. But the catalyst adding Zn appeared the ligand adsorption peak taking some active site so that the amination reaction was attected.
     The characterization results of catalysts structure by XRD, TEM and BET were accordant. The catalyst particles were small by TEM, the diffraction peaks were small by XRD indicating the presence of small particles and the specific surface areas were larger. Only NiO diffraction peaks were observed in the optimal catalyst and the catalyst adding Zn or Mg and the diffraction peaks of CuO, MgO and ZnO disappeared, which means that the three oxides were highly dispersed on the carrier and NiO. The optimal catalyst had smaller nanoparticles and the dispersion was better than other catalysts, so the amination reaction was better, too.
     A new type of containing hydroxyethyl group quaternary ammonium salt-trioctylhydroxyethylammonium chloride (TQA) was synthesized from trioctylamine, hydrochloric acid and ethylene oxide, and was compared with monolauryldimethylhydroxyethylammonium chloride (MQA), didecylmethylhydroxyethylammonium chloride (DQA). The structures of the quaternary ammonium salts were characterized and confirmed by FT-IR,'H-NMR and element analysis. The surface activities were measured and were compared with the conventional quaternary ammonium salt without hydroxyethyl group. The results indicated that the containing hydroxyethyl group quaternary ammonium salts exhibit higher surface activities. The compounding properties of cationic and anionic surfactants of MQA and LAS were studied. The interfacial tension, emulsifying power, wetting force and detergency were improved obviously at the mass ratio of LAS/MQA=9:1. The cationic and anionic surfactants of MQA and LAS had obvious synergism.
引文
[1]李秋小,张高勇.脂肪醇催化胺化制叔胺工艺技术现状及前景.日用化学工业,2001,4,21-25.
    [2]Baiker A, et al. Catalytic synthesis of higher aliphatic amines from the corresponding alcohol. Catal. Rev. Sci. Eng.1985,27(4),653-697.
    [3]周继维,徐立林.三长链烷基叔胺的合成.精细与专用化学品,2001,24,21-22.
    [4]郭祥峰,贾丽华.阳离子表面活性剂及应用.北京,化学工业出版社,2002.
    [5]常青春.季铵盐型阳离子表面活性剂的发展及应用.佳木斯大学学报,2003,21(4),503-506.
    [6]常致成.油基表面活性剂.中国轻工业出版社,1998.
    [7]薛文青,薛广波.季铵盐类阳离子表面活性消毒剂研究进展.中华医院感染学杂志,2002,12(8),634-636.
    [8]魏代军,刘振泊.伯胺甲醇一步法合成脂肪烷基二甲基叔胺的研究.中国洗涤用品工业,2008(1),76-78.
    [9]曾广溯,陈钢,陈禾.叔胺制备工艺评述.2001(4),314-316.
    [10]常致成.单、双和三长链烷基叔胺及其季钱盐制备技术新进展.表面活性剂工业,2000(1),1-10.
    [11]Hiroshi Kimura. Progress in one-step amination of long-chain fatty alcohols with dimethylamine-development of key technologies for industrial applications, innovations, and future outlook. Catalysis Reviews,2011,53,1-90.
    [12]Kotlyarevskii I. L., Tkacheva N.A., Andrievskii V. N. Synthesis of higher tertiary amines. Zh. Prikl. Khim.,1975,48(5),1178-9.
    [13]殷福珊,陈银广,刘学民,等.脂肪醇的胺化反应.日用化学工业,1996(4),1-4.
    [14]Mueller Herbert. Amines. Basf, DE3246978,1984,6,20.
    [15]Yokota Yukinaga, Hashiba Ikuza, et al., Catalysts for manufacture of N-substituted amines. JP 62149646,1987,07,03.
    [16]Okibe K., Abe H., Yokota. Y. Development of Catalysts for Direct Amination of Aliphatic Alcohols. Stud. Surf. Sci. Catal.,1989,44,299.
    [17]Abe H., Taniguchi H., Okabe K., Sotoya K. Research on the Synthesis of Tri(long-chain alkyl) amines. Yushi,1989,38(7),565.
    [18]Strauss J, Hubner H, Muller H. Process for the preparation of tertiary aliphatic amines. Patent, Patent number:DE 1975-2535073 to former Hoechst Aktiengeselschaft.
    [19]常致成.单、双和三长链烷基叔胺及其季铵盐制备技术新进展.表面活性剂工业,2000,1,1-9.
    [20]Slaugh L. H., Schoenthal G. W. Amine process using cu-sn-na catalyst. Patent, Patent number:4,229,374,1980.
    [21]Slaugh L. H. Amine process using copper-rhenium catalyst. Patent, Patent number: 4,206,149,1980.
    [22]Blackhurst C. W. Preparation of amines. Patent, Patent number:4,683,336,1987.
    [23]Baiker A., Richarz W. Synthesis of long chain aliphatic amines from corresponding alcohols. Tetrahedron Letters,1977,22,1937-1938.
    [24]Baiker A., Richarz W. The 5th Canadian Symposium on Catalysis,1977,298.
    [25]Baiker A., Richarz W. Activity, Selectivity and decay of amination catalysts. Helv. Chim.Acta.,1978,61,1169.
    [26]Baiker A., Monti D., Yuan S. F. Yuan. Formation of Cu-nitride as a reason for the catalyst deactivation. J. Catal.,1984,88,81-88.
    [27]Baiker A., Maciejewski M. Formation and thermal stability of copper and nickel nitrides. Chem. Soc, Faraday Trans.I.,1984,80,2331-2341.
    [28]Baiker A. Catalytic amination of aliphatic alcohols:The role of hydrogen as inhibitor for catalyst deactivation. Ind. Eng. Chem. Prod. Res. Dev.,1981,20(4),615-618.
    [29]Baiker A., Caprez W., Hoistin W. L. Catalytic amination of aliphatic alcohols in the gas and liquid phases:Kinetics and reaction pathway. Ind. Eng. Chem., Prod. Res, Dev., 1983,22(2),217-225.
    [30]Baiker A. The role of hydrogen in the catalytic amination of alcohols and the disproportionate of amines. Stud. Surf. Sci. Catal.,1988,41,283-290.
    [31]Abe H., Katoh T., Sotoya K. Studies on the reaction mechanism for synthesis of aliphatic amines. J. Jpn. Oil. Chem. Soc.,1989,38(9),717-721 (written in Japanese).
    [32]Abe H., Yokota Y, Okabe K. Amination catalysts for the production of N,N-dimethyldodecylamine from dodecyl alcohol and dimethylamine. Appl. Catal. A. Gen.,1989,52,171-179.
    [33]Abe H., Hashiba K., Yokota Y. Studies on the catalyst for the production of N,N-Dimethyl(Long-chain Alkyl Amines). J. Jpn. Oil. Chem. Soc.,1988,37(7),519-523.
    [34]Abe H., Hoshi S., Domen K., Maruya Ohtaki H. Characterization of highly sensitive Cu-Ni amination catalysts. Chem. Lett.,1990,401-403.
    [35]Abe H. Development of catalysts for direct amibation of alcohol. Stud. Surf. Sci. Catal.,1989,44,299.
    [36]Kimura H. Basic function of Cu/Ni-based colloidal catalysts for the one-step amination of fatty alcohols to N,N-dimethyl-tertiary amines. Catal. Catal.,2003,45(2), 169-171.
    [37]Kimura H, Matsutani K, Tsutsumi S. Basic function of Cu/Ni-based catalyst in a colloidal state for one-pot amination alcohols to N,N-dimethyl tertiary amines. Catal. Lett., 2005,99(3-4),119-131.
    [38]Kimura H., Ishikawa K., Nishino K. Development of CO-resistive catalysts for the one-step amination of dodecyl alcohol to N,N-dimethyldodecylamine, and effect of carbon monoxide on activity of Cu/Ni-based catalysts. Appl. Catal. A:Gen.,2005,286,120-127.
    [39]Kimura H., Taniguchi H. Targeting quantitative synthesis for the one-step amination of fatty alcohols and dimethylamine. Appl. Catal. A:Gen.,2005,287,191-196.
    [40]Kimura H., Tsutsumi S., Tsukada K. Reusability of the Cu/Ni-based colloidal catalysts stabilized by carboxylates of alkali-earth metals for the one-step amination of dodecyl alcohol and dimethylamine. Appl. Catal. A:Gen.,2005,292,281-286.
    [41]Li Qiu xiao, Zhang Gao-yong, Peng Shao-yi. Study of Amination of Fatty Alcohols Catalyzed by Cu-Ni Catalysts. J. Surfactants and Deterg.,2002,5(3),229.
    [42]李秋小,张高勇,彭少逸.元素量比对Cu-Ni二元脂肪醇胺化催化剂性能的影响.精细化工,2003,20(3),151-156.
    [43]李秋小,张高勇,彭少逸Cu-Ni-Zn三元脂肪醇胺化催化剂的研究.催化学报,2001,2(1),7-10.
    [44]李秋小,张高勇,彭少逸.用于月桂醇胺化的Cu-Ni-Mg三元催化剂的研究.应用化学,2001,18(9),693-696.
    [45]殷福珊,金秀蓉,刘学民,等.新型脂肪醇胺化催化剂的开发.无锡轻工大学学报,1995,14(1),57-60.
    [46]刘学民.稀土元素对脂肪醇胺化催化剂性能的影响.精细化工,2002,19(6),315-317.
    [47]李秋小,等.催化胺化生产十二烷基二甲基叔胺.94西安国际表面活性剂/洗涤剂研讨会论文集,西安,1994,210-213.
    [48]陈海群,张灏,邱滔.脂肪醇胺化催化剂失活的研究.江苏石油化工学院学报,2000,12(1),19-21.
    [49]顾良荧.日用化工产品及原料制造与应用大全.北京,化学工业出版社,1997,758-763.
    [50]刘军海,冯练享.表面活性剂的研究热点及其绿色化发展.中国洗涤用品工业,2008(2),33-35.
    [51]修玉飞,殷允杰,王潮霞.阳离子型Gemini表面活性剂的合成方法及性能.印染助剂,2010,27(11),1-6.
    [52]孔素东,朱驯,王瑛.双季铵盐类化合物的研究现状及合成进展.化工中间体,2006(10),10-12.
    [53]Zana R., Xia J. Gemini surfactants:synthesis, interfacial and solutionphase behavior, and application. New York, Dekker,2004,3-6.
    [54]Asakawa T, Okada T, Hayasaka T, et al. The unusual micelle micropolarity of partially fluorinated gemini surfactants sensed by pyrene fluorescence. Langmuir,2006, 22(6),6053-6055.
    [55]Zana R., Benrraou M., Rueff R. Alkanediyl-. Alpha. Omega.-bis(dimethylalky-lammonium bromide) surfactants.1. Effect of the spacer chain length on the critical micelle concentration and micllionization degree. Langmuir,1991,7,1072-1075.
    [56]Alami E., Levy H., Zana R. Alkanediyl-. Alpha. Omega.-bis(dimethylalky-lammonium bromide) surfactants.2. Structure of the lyotropic mesophases in the presence of water. Langmuir,1993,9,940-944.
    [57]Alami E., Beinert G., M arie P., Zana R. Alkanediyl-. Alpha. Omega.-bis(dime-thylalkylammonium bromide) surfactants.3. Behavior at the air-water interface. Langmuir, 1993,9,1465-1467.
    [58]Frindi M., Michels B., Levy H., Zana R. Alkanediyl-. Alpha. Omega.-bis(dime-thylalkylammonium bromide) surfactants.4. Ultrasonic Absorption Studies of Amphiphile Exchange between Micelles and Bulk Phase in Aqueous Micellar Solution. Langmuir, 1994,10,1140-1145.
    [59]Danino D., Talmon Y., Zana R. Alkanediyl-. Alpha. Omega.-bis(dimethyl alkylammonium bromide) surfactants.5. Aggregation and Microstructure in Aqueous Solutions. Langmuir,1995,11,1448-1456.
    [60]Zana R., Levy H. Alkanediyl-α,ω-bis(dimethylalkylammonium bromide) surfactants (dimeric surfactants) Part 6. CMC of the ethanediyl-1,2-bis(dimethylalkylammonium bromide) series. Colloids Surfaces A,1997,127(1-3),229-232.
    [61]Zana R., In M., Levy H., Duportail G. Alkanediyl-a,co-bis(dimethylalkylammonium bromide).7. Fluorescence Probing Studies of Micelle Micropolarity and Microviscosity. Langmuir,1997,13,5552-5557.
    [62]王俊,杨培法,李杰,等.阳离子型双子表面活性剂的合成及表面活性.应用化工,2005,34(11),692-694.
    [63]梅平,段明峰,襄谷.新型杀菌剂双季铵盐BQAS性能试验研究.油气田环境保护,2005,15(4),32-34.
    [64]陈志,冯玉军,王碧清.季铵盐阳离子型双子表面活性剂的合成及其表面活性[J].合成化学,2009,17(1),74-76.
    [65]Tao- Seong Kim, Toshikazu Hirao, Isao Ikeda. Preparation of bis-quaternary ammonium salts from epichlorohydrin. JAOCS,1996,73(1),67-71.
    [66]Tao- Seong Kim, Toshiyuki Kida, Yohji nakatsuji,et al. Surface- active properties of novel cationic surfactants with two alkyl chains and two ammonium groups. JAOCS, 1996,73(7),907-911.
    [67]Y-P, Isihara Zhu K, Masuyama A, et al. Preparation and properties of double-chain bis (quaternary ammonium) compounds. J. Jpn. Oil. Chem. Soc.,1993,42,161-166.
    [68]叶志文Gemini表面活性剂C(12)-3-C(12)-2Br及C(12)-3(OH)-C(12)·2C1的合成及表面活性.化学试剂,2007,29(9),513-516.
    [69]周小丰,苗宗成,孔涛.12-3-12型Gemini阳离子表面活性剂的合成及性能研究,河北化工,2006,29(10),16-18.
    [70]徐群,曹明丽,马文辉,等.非对称双子季铵盐阳离子表面活性剂的合成及性能.日用化学工业,2004,34(5),280-282.
    [71]张雪娇,程永清.化工生产中“绿色原料”:碳酸二甲酯的应用.化学工业与工程技术,2005,26(2),40-43.
    [72]Mori S., Ich I., Kazuhiko IDA, et al. Process for producing quaternary salts. Patent, Patent number:4892944,1990,01,09.
    [73]Gary W. E., Weisshaar D. E., Paulson D. Quaternarymethyl carbonates:novel agents for fabric conditioning. Journal of Surfactants and Detergents,2005,8(4),325-329.
    [74]耿涛,李秋小,姜亚洁,等.甲基碳酸酯季铵盐的合成与表征.精细化工,2010,27(6),537-541.
    [75]邹利宏,方云,吕栓锁.阴/阳离子表面活性剂复配研究与应用.日用化学工业,2001(5),37-40.
    [76]Hall, Robin, Gibson, et al. Detergent composition. Patent, Patent number:WO 98/ 17758,1998,4,30.
    [77]李运玲,李秋小,李明,等.阳离子表面活性剂与LAS的复配性能研究.精细与专用化学品,2006,14(13),19-21.
    [78]Asano, Kaori, et al. Detergent composition. Patent, Patent number:WO 97/43389, 1997,11,20.
    [79]刘波,司波.氯化十二烷基二甲基羟乙基铵的合成及性能.辽宁化工,2006,35(1),13-14.
    [80]马家骧,腾风云.含羟基季铵盐杀生剂的合成.南京化工学院学报,1994,16(12),115-118.
    [1]Abe H., Hashiba K., Yokota Y., Okabe K. Studies on the Catalyst for the Production of N,N-DimethyI (Long-chain Alkyl Amines). Yushi.1988,37(7),519.
    [2]殷福珊,会秀蓉,刘学民,等.新型脂肪醇胺化催化剂的开发.无锡轻工大学学报,1995,14(1),57-60.
    [3]Hiroshi Kimura, Kazuto Matsutani, Shun-ichi Tsutsumi, et al. Basic function of Cu/Ni-based catalyst in a colloidal state for one-pot amination alcohols to N,N-dimethyl tertiary amines. Catalysis Letters,2005,99(3-4),119-131.
    [4]李秋小,张高勇,彭少逸.元素量比对Cu-Ni二元脂肪醇胺化催化剂性能的影响.精细化工,2003,20(3),151-156.
    [5]李秋小,张高勇,彭少逸Cu-Ni-Zn三元脂肪醇胺化催化剂的研究.催化学报,2001,2(1),7-10.
    [6]李秋小,张高勇,彭少逸.用于月桂醇胺化的Cu—Ni—Mg三元催化剂的研究.应用化学,2001,18(9),693-696.
    [7]周继维,徐立林.三长链烷基叔胺的合成.精细与专用化学品,2001,24,21-22.
    [8]GB/T 15045-94脂肪烷基二甲基叔胺.
    [9]Tlusty T., Pasek J., Vonka P. Gas phase amination of octan-1-ol over a cu-cr catalyst. React. Kinet. Catal. Lett.,2006,88(2),371.
    [10]傅献彩,沈文霞,姚天扬.物理化学.高等教育出版社第四版,1990,741.
    [11]Abe H., Taniguchi H., Okabe K., Sotoya K. Research on the Synthesis of Tri(long-chain alkyl) amines. Yushi,1989,38(7),565.
    [12]Okibe K., Abe H.,Yokota Y. Development of catalysts for direct amination of aliphatic alcohols. Stud. Surf. Sci. Catal.,1989,44,299-306.
    [13]Baiker A., Caprez W., Hoistein W. Catalytic amination of aliphatic alcohols in the gas and liquid phased:kinetics and reaction pathway. Ind. Eng. Chem. Prod. Res. Dev.,1983, 22,217-225.
    [14]Abe H., Hashiba K., Yokota Y Studies on the catalyst for the production of N,N-Dimethyl(Long-chain Alkyl Amines). J. Jpn. Oil. Chem. Soc.,1988,37(7),519-523.
    [15]Robertson S. D., Me Nicol B. D., De Baas JH., et. al. Determination of reducibility and identification of alloying in copper-nickel-on-silica catalysts by temperature-programmed reduction. J. Catal.,1975,37,424-431.
    [16]Fischer A., Mallat T., Baiker A. Amination of diols and polyols to acyclic amines. Catalysis Today,1997,37,167-189.
    [17]Yamakawa T., Tsuchiya I., Mitsuzuka D., Ogawa T. Alkylation of ethylenediamine with alcohols by use of Cu-based catalysts in the liquid phase. Catalysis Communications,2004,5(6),291-295.
    [18]Hiroshi Kimura, Kazuto Matsutani, Shun-ichi Tsutsumi, et al. Basic function of Cu/Ni-based catalyst in a colloidal state for one-pot amination alcohols to N,N-dimethyl tertiary amines. Catalysis Letters.2005,99(3-4),119-131.
    [1]夏云生,郭玉双.催化剂的还原动力学表征.渤海大学学报,2006,27(3),206-208.
    [2]杨锡尧.固体催化剂的研究方法-程序升温技术分析(上).石油化工,2001,30(12),952-959.
    [3]杨锡尧.固体催化剂的研究方法-程序升温技术分析(下).石油化工,2002,31(1),63-73
    [4]杨春雁,张喜文,凌凤香.化学吸附仪在催化剂研制过程中的应用.辽宁化工,2004,33(11),645-648.
    [5]张欣艳,苏润洲,赵达,等.X射线光电子能谱(XPS)在木质材料研究领域中的应用.黑龙江八一农垦大学学报,2007,19(2),79-84.
    [6]吴正龙,刘洁.现代X光电子能谱(XPS)分析技术.现代仪器,2006,20(8),54-56.
    [7]Abe H., Hashiba K., Yokota Y., et al. Studies on the Catalyst for the Production of N,N-Dimethyl (Long-chain Alkyl Amines).
    [8]Baker A. D., et al. Photoelectron Spectroscopy. Pergemon Press,1972,118-128.
    [9]Ng K. T., Hercules D. M. J. Phys. Chem.,1976,80(19),2094.
    [10]Moulder J. F., Stickle W. F., Sobol P. E., et al. Handbook of X-ray photoelectron spectroscopy. Minnesota:Perkin-Elmer Corporation:Physical Electronic Division,1992, 254-260.
    [1]杨锡尧.固体催化剂的研究方法-程序升温技术分析(上).石油化工,2001,3(12),952-959.
    [2]吴丽丽,刘明刚.催化剂的TPD表征.泸天化科技,2007(4),368-371.
    [3]李运玲,李秋小,张明慧,等.吸附二甲胺/乙二胺的胺化催化剂脱附性能研究.应用化工,2005,34(1),22-24.
    [4]Abe H., Hashiba K., Yokota Y. Studies on the catalyst for the production of N,N-Dimethyl(Long-chain Alkyl Amines). J. Jpn. Oil. Chem. Soc.,1988,37(7),519-523.
    [5]李秋小,张高勇,彭少逸.元素量比对Cu-Ni二元脂肪醇胺化催化剂性能的影响.精细化工,2003,20(3),151-156.
    [6]Baiker A. The role of hydrogen in the catalytic amination of alcohols and the disproportionate of amines. Stud. Surf. Sci. Catal.,1988,41,283-290.
    [1]周公度,段连运.结构化学基础.北京,北京大学出版社,1995,362.
    [2]甄开吉,王国甲,毕颖丽,等.催化作用基础.科学出版社,第三版,2005.
    [4]上海市科学技术编译馆,催化剂专辑,第二辑,1965,185.
    [5]中国科学院大连化学物理研究所研究报告,流动吸附色谱法测定固体表面剂和微孔分布,1975.
    [6]Nelsen, F. M., Anal. Chem.,30,1958,1387.
    [7]Brunauer S., Emmett P. H., Teller E. J. Am. Chem. Soc.,1938,60,309.
    [8]Barrett E. P., Joyner L. G., Halenda P. P. J. Am. Chem. Soc.,1951,73,373.
    [9]Kim T. H., Jang M., Park J. K. Bifu nctionalized mesoporous molecular sieve for perchlorate removal. Microporous and Mesoporous Materials,2008,108,22-28.
    [1]李秋小,张高勇,脂肪醇催化胺化制叔胺工艺技术现状及前景.日用化学工业,2001,4,21-25.
    [2]郭祥峰,贾丽华.阳离子表面活性剂及应用.北京,化学工业出版社,2002.
    [3]常青春.季铵盐型阳离子表面活性剂的发展及应用.佳木斯大学学报,2003,21,4,503-506.
    [4]薛文青,薛广波.季铵盐类阳离子表面活性消毒剂研究进展.中华医院感染学杂志,2002,12,8,634-636.
    [5]刘军海,冯练享.表面活性剂的研究热点及其绿色化发展.中国洗涤用品工业,2008,2,33-35.
    [6]Asano, Kaori, et al. Detergent composition. Patent, Patent number:WO 97/43389, 1997.
    [7]刘波,司波.氯化十二烷基二甲基羟乙基钱的合成及性能.辽宁化工,2006,35,1,13-14.
    [8]马家骧,腾凤云.含羟基季铵盐杀生剂的合成.南京化工学院学报,1994,16,12,115-118.
    [9]邹利宏,方云,吕栓锁.阴.阳离子表面活性剂复配研究与应用.日用化学工业,2001,5,37-40.
    [10]Hall, Robin, Gibson, et al., Detergent composition. Patent, Patent number:WO 98/ 17758,1998.
    [11]Mao P K. Surfactant products industry analysis. Chemical Industry press, Beijing, 2002.
    [12]阳离子表面活性剂-脂肪烷基三甲基卤化铵及脂肪烷基二甲基苄基卤化铵QB/T1915-1993.
    [13]孙记夫.双癸基甲基羟乙基氯化铵的合成与性能研究.硕士学位论文,2008.中国日用化学工业研究院.
    [14]Wang G. Y., Du Z. P., Zhang W., Cao Q.Y. Synthesis and surface properties of trisiloxane-modified oligo(ethylene oxide). Tenside Surf. Det.,2009,46,4,214-217.
    [15]李运玲,李秋小,李明,等.阳离子表面活性剂与LAS的复配性能研究,精细与专用化学品,2006,14(13),19-21.
    [16]Wang G. Y., Du Z. P., Li Q. X. Carbohydrate-modified siloxane surfactants and their adsorption and aggregation behavior in aqueous solution. J. Phys. Chem. B.,2010,114 (20),6872-6877.
    [17]Mohamed A. S., Mohamed M. Z. Preparation of novel cationic surfactants from epichlorohydrin:their surface properties and biological activities. J. Surfact. Deterg., 2010,13,159-163.
    [18]Dorota P. P., Klaus L., Andrzej P. Adsorption behavior of surface-chemically pure N-alkyl-N-(2-hydroxyethyl)aldonamides at the air/water interface. Langmuir,2004,20, 1572-1578.
    [19]赵国玺,朱步瑶.表面活性剂作用原理.北京,中国轻工业出版社,2003,352-355.
    [20]ZHU Y P, ISIHARA K, MASUYAMA A, et al. Preparation and Properties of double-chain bis(quaternary ammonium) compounds. J.pn.Oil chem.,1993,42(3), 161-167.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700