氟碳间二氮杂环戊烯季铵盐合成与抑制油井腐蚀的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在油田开采过程中,由于油井采出液含有大量污水和腐蚀介质,对原油的采、集、输、炼等设备会造成严重腐蚀,导致环境污染和经济损失。寻求有效防止采出液对设备腐蚀的技术,已成为保证油田正常生产的重点和难点。本论文目的是通过对油田采出液腐蚀机理和应用缓蚀剂防腐蚀的缓蚀机理的研究,合成一种多功能,高效、低毒的氟碳间二氮杂环戊烯季铵盐化合物作为油井缓蚀剂主剂,复配其它助剂形成高效的油井采出液缓蚀剂,能够有效、全方位、系统的抑制采出液中腐蚀介质对采、集、输、炼等设备腐蚀。主要结果概括为:
     1.通过对油田采出液所含腐蚀介质成份的分析,研究了其对金属设备的腐蚀机理。因采出液的水中溶解有Ca2+、Mg2+、O2、CO2、SO42-、Cl-、HCO3-、H2S、SRB(硫酸盐还原菌)等腐蚀介质,对金属设备进行腐蚀,属于矿物离子引起的电化学腐蚀、细菌参与的微生物腐蚀、以及机械应力腐蚀等机理的交叉腐蚀。
     2.根据油田采出液腐蚀机理结果,有针对性的选择缓蚀剂来抑制采出液对设备腐蚀。并根据缓蚀剂的缓蚀机理,设计、研制了具有高效缓蚀、杀菌性能分子结构的氟碳间二氮杂环戊烯季铵盐化合物为缓蚀剂主剂。研究了该化合物的合成机理,质子催化合成工艺,化合物表征。结果表明,以多胺、全氟A酸为原料,以介孔氧化铝钇分子筛负载磷钨酸为催化剂,在130℃,反应9h后,合成了氟碳间二氮杂环戊烯,以紫外光谱法测定其含量,产品收率可达96%。将上步合成的氟碳间二氮杂环戊烯和烷化剂按摩尔比1:1,温度控制在90-100℃之间,反应10小时后即得目标化合物,收率可达84.6%。通过红外光谱,色/质联动、13C核磁共振谱图、对合成物进行表征,分子量为481,与理论完全相符。
     3.对合成中间体氟碳间二氮杂环戊烯所用介孔氧化铝钇分子筛负载磷钨酸催化剂的合成工艺进行了研究。以尿素为沉淀剂,SDS为模板剂,采用均相沉淀法制备的介孔氧化铝钇分子筛负载磷钨酸催化剂,产品的比表面积大(627.43m2/g),孔径分布窄(集中在5nm左右),且孔道大小均匀、形状规整。通过成熟的间二氮杂环戊烯合成反应工艺验证了该催化剂具有较强的催化活性,为氟碳间二氮杂环戊烯的合成提供了理论基础。
     4.为了快速、定量测试氟碳间二氮杂环戊烯中间体的含量,利用其在波长210nm紫外区处有最大吸收这一特性,研究了一种紫外光谱法测试方法。氟碳间二氮杂环戊烯的吸光度与其在0.005~0.030mg/mL浓度范围内呈良好的线性关系,线性相关系数R2=0.99882。平均回收率为99.72%,相对标准偏差(RSD)在0.8-2.0%之间,可以用于日常生产的质量控制。
     5.氟碳间二氮杂环戊烯季铵盐化合物是一个新的化合物,本文对其物化特性进行了测试。该化合物在加热到220℃时,开始进行开链分解,400℃完全分解,有较高的热稳定性。添加量为水的万分之五的情况下,就可使水的表面张力由81.6mN/M降到22.04mN/m。其临界胶束浓度(CMC)为100mg/L。该氟碳间二氮杂环戊烯季铵盐在硫酸,和硫酸、氧化铬的混合液(98%硫酸/氧化铬=100/1),碱性(饱和NaOH水溶液)等溶液中放置10天,表面张力无变化,说明该化合物有较强的化学稳定性。
     6.氟碳间二氮杂环戊烯季铵盐对于硫酸盐还原菌的具有优良的杀菌性能。本文将该化合物与1227、异噻唑啉酮、碳氢间二氮杂环戊烯季铵盐做了比较试验,该化合物杀菌效率最高。添加量为30mg/L时,就可将硫酸盐还原菌全部杀死,杀菌率达到100%。经过霍恩氏法Wistar大鼠径口急性毒性试验检测,结果显示为LD5o为1046.41mg/kg,说明该化合物为低毒级。
     7.本文研究了氟碳间二氮杂环戊烯季铵盐的缓蚀机理,该化合物分子结构中含有伯N,仲N,叔N,季N基团和氟碳疏水基,以及含有苯环的苄基基团等多个中心原子。不但能与金属原子形成配位键,而且能形成多点吸附,形成更稳定的吸附膜。吸附机理符合有机吸附型缓蚀剂所有的吸附机理。其氟碳疏水基有很低的表面张力,可比普通烷烃更有效地阻止腐蚀介质到达金属表面。当添加量为普通缓蚀剂的1/600量时,可使普通缓蚀剂的缓蚀率由64.4%,提高到91.2%,说明其缓蚀效率很高。
     8.通过加标回收率法,分析了油田污水中含油、水质硬度、破乳剂等因素对邻菲罗啉分光光度法测定铁含量的结果影响。结果显示,采出水中含油量对该方法检测结果的准确性有较大影响,其原因是油污严重影响了透光率,使测定结果偏大。其余破乳剂、水质硬度、油田污水等因素对测定结果影响不大。
     9.通过油田现场应用试验对氟碳间二氮杂环戊烯缓蚀剂抑制采出液腐蚀井下设备的评判来看,加药井比空白井采出液污水中总铁含量明显下降,平均下降率为64.39%-76.80%:失重法结果显示三口井的缓蚀率均大于97%。充分说明利用本研究开发的特种高效缓蚀剂能够有效抑制油井采出液对金属设备的腐蚀,而且说明了采用缓蚀剂来抑制采出液对油井设备的腐蚀是一种行之有效的防腐蚀工艺。
Produced fluid of oil wells contain mass corrosive medium to cause severe corrosion to equipment in the crude oil mining, collecting, transportation, refining. That resulted in economic losses and environmental pollution. Seeking to effectively technology which prevents the produced fluid into corrosion of equipment has become important and difficult to ensure the normal oil production. This paper was focus on, by studied oilfield corrosion mechanism of produced fluid, synthesis of fluorocarbon imidazoline quaternary ammonium salt with multi-functional, efficient, low toxicity. As the main agent in corrosion inhibitor, it compounds other additives form a highly efficient oilfield produced water corrosion inhibitor, which can control effectively, comprehensively, systematic suppression the corrosion of the corrosive medium in produced fluid to equipment in the extraction, collection, transportation, refining of the crude oil.
     1. Based on the analysis of corrosion mechanism of corrosive elements to metal equipment contained in the oil produced liquid was studied. Mass mineral salts and O2, CO2, SO42-, Ca2+,Mg2+,Cl-, HCO3-,H2S, SRB (sulfate reducing bacteria) and other corrosive medium dissolved in water of produced fluid corroded metal equipment. Corrosion mechanism was cross-corrosion which involved in electrochemical corrosion caused by mineral ions, and bacteria microorganisms'corrosion, and mechanical stress corrosion.
     2. By this corrosion mechanism, the targeted inhibitors were the choice to suppress the corrosion of equipment from the produced fluid. And by anti-corrosion mechanism of inhibitor, fluorocarbon imidazoline quaternary ammonium salt compounds, as the main agent for the inhibitor, were designed. In this paper, the synthesis of the mechanism of proton catalytic synthesis and compound characterization were studied. The results showed that fluorocarbon imidazoline was synthesized with B amine and perfluorooctanoic A acid as the raw material, and mesoporous Al2O3Y supporting HPW as catalyst, reacted for9h in130℃. The yield of the reaction was up to96%. Fluorocarbon imidazoline quaternary ammonium salt was successfully synthesized in the reaction after10hours, and the temperature controlled at90-100℃, mole ratio of fluorocarbon imidazoline and alkylating agent were1:1, the yield was84.6%. The compounds were characterized by IR, GC/MS, NMR spectra, and molecular weight was481, that consisted completely with the theory.
     3. In this paper, the synthesis of mesoporous Al2O3Y supported HPW catalyst in preparation of imidazoline was studied. It prepared by homogeneous precipitation with urea as precipitation agent, SDS as template. The product specific surface area was627.43m2/g, and had narrow pore size distribution (concentrated around5nm), and pore size distribution, and regular shape.
     4. The fluorocarbon imidazoline has maximum absorption of UV wavelength at235nm.the content of fluorocarbon imidazoline tested by UV was studied Using this feature. There were a good linear relationship between the absorbance of fluorocarbon imidazoline and its concentration range of0.005-0.030mg/mL.The linear correlation coefficient R20.99882. The average recovery was99.72%, relative standard deviation (RSD) was0.8to2.0%, and this test means production can be used for quality controlling in production.
     5. Fluorocarbon imidazoline quaternary ammonium salt is a new compound, its physical and chemical properties were studied. The compound was heated up to220℃, the first open chain decomposition was beginning, and degraded completely at400℃. It showed that it has higher thermal stability. With it's dosage in water be0.05%, the surface tension of water could fall to22.04from81.6mN/m. The CMC of is100mg/l. The fluorocarbon imidazoline quaternary ammonium salt was placed in sulfuric acid, and mixture solution (98%sulfuric acid/chromium oxide=100/l), and alkaline (NaOH saturated aqueous solution) for10days. There were no changes in surface tension, which indicated the compound has a strong chemical stability.
     6. Fluorocarbon imidazoline quaternary ammonium salt was fine bactericide for sulfate-reducing bacteria. It was compared with1227, isothiazolin ketone, hydrocarbon imidazoline quaternary ammonium salt in sterilization performance, the bactericidal efficiency of compound was the highest. When its dosage was30mg/l, all of sulfate-reducing bacteria could be killed.The sterilization rate reached100%. After Wistar rats trail oral acute toxicity test in Whitethorn's methods showed that the LD50of fluorocarbon imidazoline quaternary ammonium salt was1046.41mg/kg, and the compound is low toxicity grade.
     7. The inhibition mechanism of fluorocarbon imidazoline quaternary ammonium salt was discussed in this paper. Because the molecular structure of the compound contains primary N, secondary N, tertiary N, quaternary N and fluorocarbon hydrophobic group, and the benzene ring in benzyl group, that groups made not only the coordination bonds with metal, but also provided the proton to make the adsorption complex with metal surface stronger than the coordination bond. Adsorption mechanism of fluorocarbon imidazoline quaternary ammonium salt meets with all of the adsorption mechanism of organic adsorption inhibitor. The fluorocarbon hydrophobic with low surface tension was more effectively than ordinary paraffin medium reach to the metal surface to prevent corrosion. When its dosage was1/600of general inhibitor, the corrosion inhibition rate increased to91.2%from64.4%. This indicated it had very high inhibition efficient.
     8. By the standard addition method, affects on determination of iron content using Phenanthroline spectrophotometer method was anglicized from oil, water hardness, demulsifies and other factors in oil field waste water. The results showed that oil content of produced water had great effect on the accuracy of test of this method. Oil could affect seriously on the light transmittance. While the demulsifier, water hardness, oil field waste water had little effect on the determination of iron content.
     9. Fluorocarbon imidazoline quaternary ammonium salt corrosion inhibitor for corrosion of underground equipment was judged by oil field application test. The results showed that the total iron content in the liquid effluent decreased in dosing wells, the average decline rate of64.39%~76.80%than in the blank wells; weight loss results showed that the corrosion inhibition rate were beyond97%in three dosing wells. The application test ensured that the special use of high efficient inhibitors can inhibit corrosion of the oil recovery equipment, and certified the use of inhibitors to suppress the liquid corrosion on the oil recovery equipment was an effective anti-corrosion process.
引文
[1]刘伟,黄宪华,赵家宏,等,油井的腐蚀原因与防护措施[J].腐蚀科学与防护技术,2006,18(6):448-450
    [2]李鹤林,路民旭.油气田腐蚀类型、特点及几个重要研究领域[A].腐蚀与防护协会编.腐蚀科学与防腐蚀工程技术新进展[C].北京:化学工业出版社,1999:12-20
    [3]陈卓元,张学元.C02腐蚀机理及影响因素[J].材料开发与应用1998,13(5):34-36
    [4]Sal-Hassan, B. Mishra, D.L. Olson, et al. Effect of Micro structure on Corrosion of Steels in Aqueous Solutions Containing Carbon Dioxide [J].Corrosion,1998, 54(6):480-483.
    [5]Johnson.M. D. New Chemical Approach to Mitigate Sulfide Production in Oilfield Water Injection Systems, Proceedings-SPE International Symposium on Oilfield Chemistry 1999. SPE 50741,1999:403-406
    [6]Jr Rosser H. R. Injection Water Treatment at the some Biocide-enhanced Corrosion Inhibitor Squeeze Treatments of Water Supply Wells in a Central Arabia Oil field, Proceedings-SPE International Symposium on Oilfield Chemistry 1999. SPE 50740, 1999:389-402
    [7]http://corrosion-doctors.org/Pollution/Introduction.html,2004-03-9
    [8]曹楚南,陈家坚.缓蚀剂在油气田的应用[J].石油化工腐蚀,1997,14(4),34-37
    [9]http://xian.qq.com/a/20080704/000015.html,2008-07-04
    [10]谢香山.高性能油井管的发展及其前景[J].上海金属,2000,22(3):3-5.
    [11]夏智富.三层复合涂镀技术的应用[J].黑龙江石油化工,2002,13(1):15-16
    [12]Charles M. Blair, Jr Webster Groves, et al. Processes for Preventing Corrosion and Corrosion Inhibitors. US 2466517.1949
    [13]黄魁元.缓蚀剂科技发展历程的回顾与展望[A].腐蚀与防护协会编.腐蚀科学与防腐蚀工程技术新进展[C].北京:化学工业出版社,1999:380-382
    [14]张天胜.缓蚀剂[M].北京:化学工业出版社,2001:12-15
    [15]Florida I. Halilova. Inhibition Effect of Some Organic N-containing Compounds in Acidic Corrosion of Carbonized Steel [J]. Anti-corrosion Methods and Materials, 2001,48(-):18-20
    [16]李章亚.油田腐蚀与防护技术手册[M].北京:石油工业出版社,1999:35-58.
    [17]王慧龙.环境友好缓蚀剂的研究进展[J].腐蚀科学与防护技术,2002,14(5):265-279
    [18]吴宇峰,周坤坪.等.咪唑啉季铵盐水溶性缓蚀剂NH1-1的合成及性能研究[J].精细石油化工,2001,9(5):39-42.
    [19]Eden D. A. Electrochemical Noise-simultaneous Monitoring of Potential and Current Noise Signals from Corroding Electrodes. Corrosion,1986,42(4):274-276
    [20]Kelly R. G. Analysis of Electrochemical Noise for Type 410 Stainless Steel in Chloride Solutions Electrochemical Noise Measurements for Corrosion Applications. Corrosion,1996,52(1):101-103
    [21]曹楚南.腐蚀电化学[M].北京:化学工业出版社,1994:130-136
    [22]甘复兴,汪的华.界面缓蚀剂的吸附稳定性[J].电化学,1999,5(2):157-159
    [23]崔朝轩,刘荣华,张晓萍,等.油井缓蚀剂现场效果评价技术及应用[J].内蒙古石油化工,1999,25(3):132-135
    [24]黄红兵.近年来油气井缓蚀剂发展新技术[J].石油天然气化工1998,27(4):259-261
    [25]高秋英,梅平,陈武,等.咪唑啉类缓蚀剂的合成及应用研究进展[J].化学工程师,2006,128(5):18-21
    [26]宁朝辉.咪唑啉酰胺中和缓蚀剂的成膜性能研究[J].石油化工腐钟与防护,2005,22(1):16-19
    [27]Daxi Wang, Shuyuan Li, Daxi Wang, Shuyuan Li, et al. Theoretical and Experimental Studies of Structure and Inhibition Efficiency of Imidazoline Derivatives [J]. Corrosion Science,1999,41:1911-1919
    [28]LAHODNY-SARC O. Corrosion Inhibition in Oil and Gas Production[A].6th European Sympoean Symposium in Corrosion Inhibitors[C].LAHODNY-SARC O Ferrara:University of Ferrara,1985,1313-1329
    [29]魏晓峰.中国有机氟工业发展现状及新商机[J].有机氟工业,2002,1:1 5-20
    [30]曾毓华.氟碳表面活性剂[M].北京:化学工业出版社,2001:5-10
    [31]Murry Hauptschein Glenside, Sameeh S Toukan. Fluororinated unsaturated organic compounds and Polymers thereof [P]. US:3304278,1967-02-14
    [32]Arthur H A,Harvey A B,Samael s. Fluorocarbon acrylate and methacrylate esters and their polymers[P].US 2803615.1957
    [33]黄金营,魏慧芳等.油井腐蚀因素探讨[J].湖北化工,2003,2:41-42
    [34]万里平,唐酞峰,孟英峰等.长庆油田油井井筒腐蚀机理与防护措施[J].石油与天然气化工,2006,35(4):311-313
    [35]姬鄂豫,李爱魁,张银华等.原油对碳钢腐蚀行为影响的研究[J].材料保护,2004,37(5):42-44
    [36]Hemandez S, Hernandez S, RinconH, et al. Flow Induced CO2 and H2S Corrosion Studies Using the Dynamic Field Tester in Crude Oil Wells [J]. Corrosion,2002, 58(10):889-892
    [37]刘合.油田套管损坏防治技术[M].北京:石油工业出版社,2003,62-67.
    [38]万仁溥.采油工程手册[M].北京;石油工业出版社,2000,517-521.
    [39]张丽,纪云林,黄强,等.油气田腐蚀与防护技术手册(上册)[M].北京:石油工业出版社,1999.43-48.
    [40]刘靖.硫酸盐还原菌腐蚀研究进展[J].材料保护,2001,34(3):8-10.
    [41]张小里,刘海洪,陈开勋,等.硫酸盐还原菌生长规律的研究[J].西北大学学报(自然科学版),1999,29(5):397-401
    [42]岳钟英,周平安.影响材料腐蚀磨损的因素及机理研究[J].固体润滑,1997,(7):65-72.
    [43]赵国鹏,于欣伟,吴荫顺.腐蚀磨损协同作用率的研究[J].摩擦学学报,1993,13(2):157-161.
    [44]饶启昌,高义民,刘福玲,等.24Cr高铬铸铁三体腐蚀磨损过程中腐蚀与磨损的交互作用[J].机械工程学报,1991,27(12):1-5.
    [45]赵会友,陈华辉,邵荷生,等.几种钢的腐蚀冲蚀磨损行为与机理研究[J].摩擦学学报,1996,16(2):112-119.
    [46]Zheng Yugui, Yao Zhiming, Wei Xiangyun, et al. The synergistic effect between erosion and corrosion in acidic slurry medium[J]. Wear,1995, (186-187):555-561
    [47]Wood R.J. K., Hutton S.P. The synergistic effect of erosion and corrosion:trends in published results [J]. Wear,1990, (140):387-394.
    [48]郑玉贵,姚治铭,李春生,等.泥浆型冲蚀中冲刷和腐蚀的交互作用[J].中国腐蚀与防护学报,1990,30(9):813-830.
    [49]Corma A. From microporous to mesoporous molecular sieve materials and their use in catalysis [J]. Chem Rev,1997, (97):2373-2419.
    [50]张荣国,熊洪超.介孔材料的应用前景及其研究进展[J].无机盐工业,2005,(6):1445-1447.
    [51]祝淑芳,倪文,张铭金,等.介孔分子筛材料合成及应用研究的现状及进展[J].岩石矿物学杂志,2006(4):24228-24233.
    [52]谷林茂,刘晓芳.介孔材料的研究进展[J].云南大学学报(自然科学版),2008(S1):369-372.
    [53]许林,胡度文,王恩波.杂多酸型催化剂的研究进展[J].石油化工,1997,26(9):632-638.
    [54]Hu Changwen, Zhang Yufeng, XuLin, et al. Continuous syntheses of octyphenolor-nonane phenolon supported heteropolyacid catalysts [J]. App Catal A:General, 1999,177(2):237-244.
    [55]于大伟,柳树华.固载杂多酸PW12/SiO2催化合成对苯二甲酸二异辛酯[J].抚顺石油学院学报,1999,19(3):34-36.
    [56]华瑞年,龚剑,王东仁,等.Y-A1203负载杂多酸催化合成二甲醚[J].东北师范大学学报自然科学版,1997,(4):37-39.
    [57]宋艳芬,黄世勇,郭星翠,等.PW/MCM-41催化剂的合成及对合成柠檬酸三丁酯反应的研究[J].工业催化,2004,2(3):22-25.
    [58]闵恩泽.21世纪催化材料的发展与对策[J].中国科学院院刊,2000,10(5):329-334.
    [59]朱洪法.催化剂载体制备及应用技术[M].北京:石油工业出版社,2002:5862.
    [60]杨丽娜,亓玉台,袁兴东,等.磷钨酸改性介孔分子筛SBA-15催化剂的酸性及水热稳定性的研究[J].石油化工,2005,34(3):222-225.
    [61]郭建维.新型催化材料——介孔氧化铝分子筛的合成、表征以及应用前景[J].功能材,2006,(37):1527-1530.
    [62]Kresge C.T., Leonowicz M.E., Roth W.J., et al. Ordered mesoporous molecular sieves synthesized by aliquid cystal template mechanism [J]. Nature,1992, (359):710-712.
    [63]Zhou Hongfa. Preparation and Application Technologies of Catalyst Carriers [M]. Beijing.Petroleum Industry Press,2002,15-20.
    [64]Frederic Vaudry,Shervin Khodabandeh,Mark E Davis,et al..Synthesis of pure aluminum mesoporous materials. Chem Mater,1996,8 (7):1451-1464.
    [65]Hongting Zhao,Kat hryn L Nagy,Jacob S Waples, et al. Surfactant templated mesoporous silicate materials as sorbents for organic pollutant in water [J]. Envi ronl Scil Technoll,2000,34 (22):4822-4827.
    [66]Bagshaw S.A., Pinnavaia T.J. Mesoporous alumina molecular sieves [J]. Angew Chem Int Ed Engl,1996,35 (10):1102-1105.
    [67]Isabel Diaz, Identification of the volatile compounds of leaves and flowers in guavira [J]. Microporous and Mesoporous Materials,2004, (68):11-19.
    [68]Gonzalez-Pena, Sol-gel synthesis of mesostructured aluminas from chemically modified aluminum sec-butoxide using non-ionic surfactant templating [J]. Studies in Surface Science and Catalysis,2002, (142):1283-1290.
    [69]Yang P.D., Zhao D.Y., Margolese D.L., et al. Generalized syntheses of large2pore mesoporousmetal oxides with semicrystalline frameworks [J]. Nature,1998, (396):152-155.
    [70]Valange S., Guth J.L., Kolenda F., et al. Microporous and Mesoporous Materials, 2000,35 (36):597-607.
    [71]王恩波,胡长文,许林,等.多酸化学导论[M].北京:化学工业出版社,1998:25-36
    [72]曹小华,黎先财,柳闽生等.杂多酸型化合物及其研究展望[J].化工中间体,2005,36(2):82]2-8215.
    [73]王少鹏,薛建伟,刘春丽.分子筛负载杂多酸催化剂的研究[J].山西化工,2006,26(6):26-29.
    [74]Ivan Kozhevnikov.精细化学品的催化合成:多酸化合物及其催化[M].北京:化学工业出版社,2005: 10-13.
    [75]齐正保,程志民,朱蔓菁,等.多元校正紫外光度法同时测定甲硝唑与维生素B6[J].分析科学学报,2009,03(25):325-328
    [76]陈燕清, 倪水年, 王小波,等.多元校正一紫外吸收光度法同时测定苯酚、苯胺、对苯二酚[J].南昌航空大学学报自然科学版.2008,22(1):59-62
    [77]陈晓东,张向东,刘彦峰,等.2-十七烯基-N-氨乙基咪唑啉的极谱法定量测定研究[J].应用化工,2005,34(4):250-253
    [78]刘元清,贾丽,李志远,等.油田污水中咪唑啉缓蚀剂浓度检测技术研究[J].石油化工腐蚀与防护,2002,19(4):57-60.
    [79]北原文雄,早野茂夫,原一郎,等.表面活性剂分析和实验法[M].北京:轻工业出版社,1988.235
    [80]Adelina J Son, Bethsmuckeroy. Technicalconsiderations in the analysis of residual concentrationsof corrosion inhibitors [J].Materials Performance,1997(9):38-47.
    [81]冯泳兰,邝代治.1-(4-磺酸基苯基)-3-[4-(苯基偶氮)苯基]-三氮烯与季铵盐型阳离子表面活性剂的显色反应及应用[J].分析科学学报,1999(15):242-245.
    [82]吴美芝,刘亚利,曾明,等.溴百里酚蓝标记分光光度法测定废水中季胺盐型表面活性剂[J].精细化工,2002,32(6):55-58.
    [83]汤国平,沈含熙.利用新叠氮试剂(PTDAS)分光光度法测定阳离子表面活性剂[J].化学试剂,1996,18(5):285-287.
    [84]MINORI KAMAY, YOKO KANEKO, KUNIO NAGASHIMA. Simple method for spectrophotometer determination of cationic surfactants without liquid-liquid extraction [J]. Analytica Chimica Acta.1999 (384):215-218.
    [85]翟虎,陈小全,邵辉莹,等.多元校正-紫外分光光度法同时测定苯酚和间苯二酚[J].光谱实验室,2008,03:440-443
    [86]CHAI Shu-ling, YANG Li-yan, LI Xiao-meng, et al. Studies on the Ultraviolet Spectra of PU/PA Composite Emulsion[J]. Spectroscopy and Spectral Analysis.2005,25(5):757-759.
    [87]闫琰,叶芝祥,闫军,等.紫外光谱法同时测定水中苯酚、邻苯二酚、间苯二酚[J].化学分析计量,2008,02:22-24
    [88]于泳,曾鹏,杨兰英,等.紫外光谱法检测水中咪哗类离子液体的含量[J].光谱实验室,2008,02(25):114-117
    [89]孙元宝,魏贤勇.氟表面活性剂的合成工艺[J].精细石油化工进展,2003,4(3):6-10
    [90]朱顺根.含氟表面活性剂[J].化工生产与技术,1997,15(3):1-9
    [91]岳可芬,周春生,史真,等.新型咪唑啉两性表面活性剂的合成及性能测定[J].西北大学学报,2002,32(3):258-26().
    [92]Richmond H. Process for Preparation of Diacetoneacrylamide [P].US,4239885, 1980-12-16
    [93]陈晓东,冯霄,张向东,等.N-(二乙基二胺)全氟辛酰胺的合成与表征[J].应用化工,2006,35(1):33-34
    [94]王兆辉,王大喜.咪唑啉化合物生成机理的量子化学研究[J].石油学报(石油加工),1999,15(6):57-62
    [95]王大喜,王兆辉.多胺基烷基酰胺生成机理的量子化学研究[J].有机化学,2000,20(4)587-590
    [96]Espenson J H.,Chemical Kinetics & Reaction Mechanisms[M].New York,Mc-G-Hill Book Company,1981:138-139
    [97]樊毓斐.硫酸盐还原菌生长规律及石油管材微生物腐蚀防护的研究[D].西安:西北大学化学工科学系,1998,6.
    [98]Erko Stackebrandt, David A Stahl, Richard Devereux.Taxonomic Relationships[C].In:Larry L Barton.Sulfate-Reducing Bacteria [M].New York: Plenum Press,1995.
    [99]Gibson G R. Physiology and ecology of the sulfate-reducing bacteria [J]. Journal of Applied Bacteriology,1990,69:769-797.
    [100]刘鹤霞,赵景茂.CT10-1新型杀菌剂的研究与应用[J].腐蚀与防护,1990,(6):315-317.
    [101]方 浩.中原油田污水处理中化学药剂的应用[J].油田化学,1988,5(4):268-273.
    [102][日]微生物研究讨论会编.程光胜,李玲阁,张启先等译.微生物学实验方法[M].北京:科学出版社,1983:273.
    [103]韩建,方展强.水环境PFOS和PFOA的污染现状及毒理效应研究进展[J].水生态学杂志,2010,3(2):99-103
    [104]王利兵,赵青,李灼坤,等.食品包装材料中残留物全氟辛酸盐毒理学研究[J].食品科学,2008,29(10):586-592
    [105]李望昌,谢磊,刘颖,等.硫酰氟的杀虫药效及毒理学研究[J].中国国境卫生检疫杂志,2003,26(2):113-115
    [106]姬鄂豫,李爱魁,张银华,等.原油对碳钢腐蚀行为影响的研究[J].材料保护,2004,37(5):42-44
    [107]Hemandez S, Hernandez S, RinconH, et al. Flow Induced CO2 and H2S Corrosion Studies Using the Dynamic Field Tester in Crude Oil Wells[J]. Corrosion,2002, 58(10):889-892.
    [108]王慧龙.环境友好缓蚀剂的研究进展[J].腐蚀科学与防护技术,2002,14(5):265-279
    [109]段明峰,梅平,孙勇,等.新型缓蚀杀菌双季铵盐在油田中的应用[J].石油化工腐蚀与防护,2005,22(2):11-14
    [110]杨小平,贺泽元,向伟.磨溪气田的腐蚀与防腐[J].天然气工业,1998,18(5):68-71
    [111]孙仕彪.分光光度法测定水中总铁的影响因素及解决方法[J].检验医学与临床,2007,4(5):44-45
    [112]金瑜.邻菲哕啉分光光度法测定水中总铁的改进[J].污染防治技术,2010,23(2): 74-75
    [113]国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法[M].第4版,北京:中国环境科学出版社,2002:365-370
    [114]笪海文,洪陵成,刘爱平,等.流动注射分光光度法在线分析水中总铁[J].环境监测管理与技术,2009,21(4):48-50

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700