北京鸭视网膜节细胞的形态学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用Nissl染色法、视神经溃变试验和神经元逆行追踪标记辣根过氧化物酶(HRP)和标记荧光追踪染料DiI的技术,分析比较了不同日龄北京鸭视网膜节细胞层细胞的大小、形态类型、数量与密度及其分布的变化,为阐明水禽——北京鸭的视觉特征及其形成机理积累形态学资料。研究结果如下:
     1.视网膜节细胞层细胞形态多样,呈圆形、椭圆形和多角形等,由视网膜中央区至周边部随细胞大小递增(P8:1.7~3.0倍)而细胞密度梯度呈递减(P8:36%~47%)的变化,这种变化在颞侧周边部最明显,背侧周边部次之。随日龄增长,节细胞层细胞总数(P30/P0=1.4)和细胞大小(P30/P0=1.3)均递增而细胞平均密度递减(P30/P0=0.9)。
     2.RGCs在视网膜中央有一个高密度区(P0:8 860个/mm~2:P8:7 600个/mm~2),细胞大小由视网膜中央区至周边部递增(P8:1.1~2.2倍)而密度递减(P8:42%~49%),这种变化趋势在颞侧周边部最明显,并且伴随日龄增长,RGCs总数和平均密度均递减(P0:1.3×10~6个,5 370个/mm~2:P8:1.26×10~6个,4 620个/mm~2)而细胞大小递增,由62.16±23.28μm~2(P0)增至69.94±35.95/μm~2(P8)(CA)或133.74±75.65μm~2(P0)增至152.87±55.86μm~2(P8)(TP)。
     3.根据细胞体和树突野大小及树突分支特点,北京鸭RGCs被分为4型和6亚型,即小细胞体(81.25±24.51μm~2)和小树突野(14 446±8 702μm~2)的Ⅰ型,包括简单型Ⅰs亚型和复杂型的Ⅰc亚型;中等细胞体(201.17±65.99μm~2)和树突野(60 167±16 896μm~2)的Ⅱ型,也包括Ⅱs和Ⅱc两个亚型;中等细胞体(251.674±90.05μm~2)和大树突野(156 329±43 693μm~2)的Ⅲ型细胞,只有简单的Ⅲs亚型;大细胞体(471.20±72.31μm~2)和大树突野(189 320±42 438μm~2)的Ⅳ型细胞,只有复杂的Ⅳc亚型。各亚型比例分别是:Ⅰs亚型(28%)、Ⅰc亚型(32%)、Ⅱs亚型(14%)、Ⅱc亚型(8%)、Ⅲs亚型(13%)、Ⅳc亚型(5%)。各亚型RGCs在视网膜中央区和周边部出现的频率不同,中央区以小型细胞为主(77.2%),大型树突野细胞仅占10.5%;而在颞侧周边部大树突野的Ⅲs亚型细胞比例明显增多(占25.4%)。
     4.移位性无长突细胞(dACs)是位于视网膜节细胞层的小神经元,核深染,胞质很少,细胞体呈圆形或卵圆形,细胞大小均一,平均面积为23.65±3.97μm~2。dACs总数为0.64×10~6个,约占节细胞层细胞总数的17~30%,平均密度为1 720个/mm~2,在视网膜中央有一个dACs高密度区即中央高密度区(CA,约为3 860个/mm~2),且dACs的密度由视网膜中央区向视网膜周边部逐渐降低(TP,约为1 780个/mm~2;NP,约为1 360个/mm~2)。
The morphological type, size, number and density of cells in the ganglion cell layer (GCL) were studied by Nissl-staining, retrograde cell degeneration with axotomy of the optic nerve, retrograde cell labeling of horseradish peroxidase (HRP) and carbocyanine dye (OiI) in the retina of Beijing duck (P1, P8 and P30). It will supply important foundation for elucidating the visual characteristic and special visual mechanism of the waterfowl-Beijing duck. The results were demonstrated as follows:
    1. The cells in the ganglion cell layer (GCL) were round, oval and polygon in somata. From the central retina to the peripheral zone, the cell size increased as large as 1.7-3.0 times (P8), but the cell density decreased to 36%~47% (P8). The center-peripheral graduation was significant in TP. The total number of cells (P30/P0=1.4) and their sizes (P30/P0=1.3) increased with age, but the cell density on average decreased (P30/P0=0.9).
    2. One high-density area of the RGCs was observed in the central retina(CA)(P0:8 860 cells/mm2; P8: 7 600 cells/mm2). From the central retina to the peripheral zone, the size of RGCs increased as large as 1.1 ~ 2.2 times (P8), but the cell density decreased to 42%~49% (P8). The center-peripheral graduation was significant in TP. The total number and average density of RGCs (P0:1.3\×106 cells, 5 370 cells/mm2; P8: 1.26×106 cells, 4 620 cells/mm2) decreased with age, but the size of cells increased from P0 (62.16 ±23.28 um2 in CA, 133.74±75.65 um2 in TP) to P8 (69.94±35.95 um2 in CA, 152.87±55.86 um2 in TP).3. According to all sizes of somal area and dentritic field and dentritic branching pattern, the RGCs of Beijing duck were classified into 4 types and 6 subtypes. Type I cells had small somal area (81.25±24.51um2) and dentritic field (14 446±8 702 um2). They were further subdivided into 2 subtypes of Is and Ic. Type II cells had medium-sized soma (201.17±65.99 um2) and dentritic field (60 167±16 896 um2), and contained 2 subtypes of IIs and IIc. Type III cells had medium-sized soma (251.67±90.05um2) and large dentritic field (156 329±43 693 um2), and only contained a subtype of IIIs.Type IV cells had large soma (471.20±72.31 um2) and dentritic field (189 320±42 438 um2), and only contained a subtype of IVc. The proportion of each subtype was
    
    
    28% (Is), 32% (Ic), 14% (IIs), 8% (IIc),13% (IIIs), 5% (IVc). In the central retina (CA), the proportion of small type RGCs was 77.2%, but the large dentritic field RGCs only 10.5% in the temporal periphery (TP). The large dentritic field RGCs (subtype IIIs) were much more than in the central retina of Beijing duck (about 25.4%).
    4. The dACs of Beijing duck were found in the ganglion cell layer of retina, which had round or oval somata and their somata were small (23.65±3.97 um2 on average). Their karyon were stained homogeneously by cresyl violet. The total number of these cells was 0.64×106 cells and accounted for 17~30% of total cells in GCL. The cell density was 1 720 cells/mm2 on average. However, one high-density area was observed in the central retina (CA, 3 860 cells/mm2). The cell densities in the temporal periphery (TP) and the nasal periphery (NP) were 1 780 cells/mm2 and 1 360 cells/mm2. These results indicated that the size of dACs was no significant difference in the centrality and periphery, but a center-peripheral graduation was detected in the cell density.
引文
[1] 沈霞芬主编.家畜组织学与胚胎学(第三版)[M].北京:中国农业出版社,2000,213~217
    [2] 林大诚主编.北京鸭解剖[M].北京:北京农业大学出版社,1994,228
    [3] 马仲华主编.家畜解剖学及组织胚胎学(第三版)[M].北京:中国农业出版社,2003,185
    [4] 陈耀星,王子旭,邱春红,等.鸡视网膜颞侧周边部节细胞的形态类型[J].农业生物技术学报,2001,9(2):163~166
    [5] 陈耀星,王子旭.鸡视网膜移动性无长突细胞的分布[J].中国兽医学报,2001,20(4):373~376
    [6] 陈耀星,王子旭,内藤顺平.鸡投射视顶盖视网膜节细胞的形态学分类[J].解剖学报,2002,33(1):47~50
    [7] 丁汉波,黄浙,仝允栩,等.发育生物学[M].北京:高等教育出版社,1987,251
    [8] 刘桂香,王靖华.人眼视盘、视杯和视网膜中央血管的发育研究[J].山东医药,2001,41(20):14~15
    [9] 冯伯森,葛瑞昌,仝允栩.花背蟾蜍眼的形态发生的研究[J].两栖爬行动物学报,1984,3(3):5~15
    [10] 姜世英,唐宗湘,杨盛昌,等.鸟类和爬行类离顶盖通路的电生理研究[J].广西师范大学学报(自然科学版),2000,18(2):67~72
    [11] 邱观婷.视网膜发育发生学的研究进展[J].国外医学眼科学分册,2000,24(4):227~230
    [12] 瞿佳,周翔天,张銮龄,倪海龙,Ken Ashwell,吕帆.应用DiI染色晶体对人胚胎视神经发育过程的初步研究[J].中华眼科杂志,2002,38(9):519~520
    [13] 史剑波,徐锦堂,夏潮涌,狄静芳.豚鼠视网膜正常结构的定量研究[J].眼科研究,1999,17(2):98~100
    [14] 史萍,王子仁.小白鼠眼的形态发生的研究[J].兰州大学学报(自然科学版),1999,35(1):158-164
    [15] 唐宗湘.鸟类离项盖通路的结构和电生理特性[J].吉首大学学报(自然科学版),2000,21(4):21~25
    [16] 杨雄里.视网膜研究近年的重要进展[J].生物学通报,1992,4:1~4
    [17] 羊惠君,李爱冬,韦纯义,等.人胎视网膜神经元凋亡的研究[J].中华眼底病杂志,1997,13(2).66~69
    
    
    [18] 俞慧珠,叶百宽.小白鼠胚胎发生[M].北京:科学出版社,1985,97~99
    [19] 杨瑞华,陈景元,邓中荣,刘学东,刘秀红.猪视网膜神经节细胞的培养及超微结构[J].第四军医大学学报,2001,22(12):1092~1094
    [20] 殷咏仪,华茜.视网膜发育与形成的“镶嵌模型”[J].生物化学与生物物理进展,2001,28(2):137~139
    [21] 王靖华,田敏,王大博,等.人眼视网膜神经节细胞胚胎发育的观察[J].青岛大学医学院学报,2000,36(1):1~4
    [22] 吴奇久,李俊凤,肖悦梅.白暨豚视觉通道的组织学研究——视神经纤维计数和纤维直径谱[J].中国科学(B辑),1982,12(11):1001-1005
    [23] 张胜祥,李鹤,王子仁.斑马鱼视网膜-顶盖系统的组织学研究[J].解剖学报,2002,33(1):108~110
    [24] Ammermüller J, Kolb H. The organization of the turtle inner retina: I. ON- and OFF- center pathways[J]. J Comp Neurol, 1995, 358:1~34
    [25] Ashwell K W, Zhang L L.Prenatal development of the vestibular ganglion and vetibuocerebellar fibers in the rat[J]. Anat Embryol, 1998, 198:149~161
    [26] Binggeli R L, Panle W J. The pigeon retina: quantitaive aspects of the optic nerve and ganglion cell layer[J]. J Comp Neurol, 1969, 137:1~18
    [27] Boycott B B, W(?)ssle H. The morphological types of ganglion cells of the domestic cat's retina [J].J Physiol, 1974, 240:397~419
    [28] Brecha N, Karten H J. Accessory optic projections upon oculomotor nuclei and vestibulocerebellum[J]. Science, 1979, 203:913~916
    [29] Brecha N, Karten H J, Hunt S P. Projections of the nucleus of basal root in the pigeon: an autoradiographic and horseradish peroxidase study[J]. J Comp Neurol, 1980, 189:615~670
    [30] Bravo H, Pettigrew J D. The distribution of neurons projecting from the retina and visual cortex to the thalamus and rectum opticum of the barn owl,Tyto alba,and the burrowing owl,Speotyto cunicularia[J]. J Comp Neurol, 1981, 199:419~441
    [31] Ball A K, Dickson D H. Displaced amacrine and ganglion cells in the newt retina[J]. Exp Eye Res, 1983, 36:199~213
    [32] Budnik V, Mpodozis J, Varela F J and Maturana H R. Regional specialization of the quail retina: ganglion cell density and oil droplet distribution[J]. Neurosci. Lett, 1984, 51:145~150
    [33] Buhl E H, Peichl L. Morphology of rabbit retinal ganglion cells projecting to the medial terminal nucleus of the accessory optic system[J]. J Comp Neurol, 1986, 253:163~174
    [34] Baron G, Stephan H, and Frahm H D. Comparison of brain structure volumes in insectivora and primates. VI. Paleocortical components[J]. J Hirnforsch, 1987, 28(4):463~477
    
    
    [35] Bartheld C S, Cunningham D E, Rubel E W. Neuronal tracing with Dil : decalcification, cryosectioning, and photoconversion for light and electron microscopic analysis[J]. J Histochem Cytochem, 1990, 38:725~733
    [36] Boire D, Dufour J S, Theoret H, Ptito M. Quantitative analysis of the retinal ganglion cell layer in the ostrich, Struthio camelus[J]. Brain Behav Evol, 2001, 58(6):343~355
    [37] Bellintani-Guardia B, Ott M. Displaced retinal ganglion cells project to the accessory optic system in the chameleon (Chamaeleo calyptratus) [J]. Exp Brain Res, 2002, 145:56~63
    [38] Bozzano A, Catalan I A. Onto genetic changes in the retinal topography of the European hake, Merluccius meduccius: implications for feeding and depth distribution[J]. Marine Biology, 2002, 141:549~559
    [39] Bozzano A. Vision in the rufus snake eel, Ophichthus rufus: adaptive mechanisms for a burrowing life-style[J]. Marine Biology, 2003, 143: 167~174
    [40] Cowan W M, Adamson, Powell TPS. An experimental study of the avian visual systerm[J]. J Anat, 1961, 95:545~563
    [41] Chalupa L M., Williams R W, and Henderson Z. Binocular interaction in the fetal cat regulates the size of the ganglion cell population[J]. Neuroscience, 1984, 12(4): 1139~1146
    [42] Chert Y, Naito J. A quantitative analysis of cells in the ganglion cell layer of the chick retina[J]. Brain Behav Evol, 1999a, 53:75~86
    [43] Chen Y, Naito J. Morphological classification of ganglion cells in the central retina of chicks [J].J Vet Med Sci, 1999b, 61:537~542
    [44] Chen Y, Naito J. Regional specialization of ganglion cell layer of the chick retina[J]. J Vet Med Sci, 2000, 62:53~57
    [45] Dogiel A S. (?)ber das Verhalten der nerv(?)sen Elemente in der Retina der Ganoiden, Reptilien, V(?)gel und S(?)ugetiere[J]. Anat Anz, 1888, 3:133~143
    [46] Dogiel A S. Die Retina der V(?)gel. Arch Mikrosk Anat Entwicklungsgeschichte[J], 1895, 44:622~648
    [47] Dütting D, Gierer A, Hansmann G. Self-renewal of stem cells and differentiation of nerve cells in the developing chick retina[J]. Dev Brain Res, 1983, 10:21~32
    [48] Dann J F, Buhl EH. Retinal ganglion cells projecting to the accessory optic system in the rat[J]. J Comp Neurol, 1987, 262:141~158
    [49] Dann J F, Buhl E H. Morphology of retinal ganglion cells in the flying fox (Pteropus Scapulatus): a lucifer yellow investigation[J]. J Comp Neurol, 1990, 301:401~416
    [50] Dacey D M, Lee B B. The "blue-on" opponent pathway in palmate retina originates from a distinct bistratified ganglion cell type[J]. Nature, 1994, 367:731~735
    
    
    [51] Delhoyo J, Elliot A and Sargatal J. Handbook of the Birds of the World[M]. New World Vultures to Guineafowl. Barcelona: Lynx Edicions, 1994, 2
    [52] Doi M, Uji Y, Yamamura H. Morphological classification of retinal ganglion cells in mice[J]. J Comp Neurol, 1995, 356:368~386
    [53] Douglas R H, Collin S P, and Corrigan J. The eyes of suckermouth armoured catfish (Loricariidae, subfamily Hypostomus): pupil response, lenticular longitudinal spherical aberration and retinal topography[J]. J Exp Bio, 2002, (205): 3425~3433
    [54] Ehrlich D, Morgan I G. Kainic acid destroys displaced amacrine cells in post-hatch chicken retina[J]. Neurosci Lett, 1980, 17:43~48
    [55] Fukada Y. Rceptive field organization of cat optic nerve fibers with special reference to conduction velocity[J]. Vision Res, 1971, 11:209~226
    [56] Fukuda Y, Stone J. Retinal distribution and central projection of W, X and Y cells of the cat' s retina[J]. J Neurophysiol, 1974, 37:749~772
    [57] Fire K V, and Rosenfield-Wessels S. A comparative study of deep avian foveas[J]. Brain Behav Evol, 1975, 12:97~115
    [58] Farmer S G, Rodieck R W. Ganglion cells of the cat accessory optic system: morphology and retinal topography[J]. J Comp Neurol, 1982, 205:190~198
    [59] Fukuda Y, Hsiao C F, Watanabe M, et al. Morphological correlates of physiologically identified Y-,X,and W-cells in cat retina[J]. J Neurophys, 1984, 52:999
    [60] Famiglietti E V J. 'Starburst' amacrine cells and cholinergic neurons: mirror-symmetric ON and OFF amacrine cells of rabbit retina[J]. Brain Res, 1983, 261:138~144
    [61] Fekete D M, Perez-Miguelsanz J, Ryder E F, et al. Clonal analysis in the chicken retina reveals. tangential dispersion of clonally related cells[J]. Dev Biol, 1994, 166:666~682
    [62] Goldberg S. Studies on the mechanics of development if the visual pathways in the chick embryo[J]. Develop Biol, 1974, 36:26~43
    [63] Godement P, Vanselow J, Thanos S, et al. A study in developing visual systems with a new method of staining neurones and their processes in fixed tissue[J]. Development, 1987, 101:697~713
    [64] Ghosh K K, Goodchild A K, Seflon A E, Martin P R. Morphology of retinal ganglion cells in a new world monkey, the marmoset Callithrix jacchus[J]. J Comp Neurol, 1996, 366:76~92
    [65] Ghosh K, Grunert U. Synaptic Input to Small Bistratified (Blue-ON) Ganglion Cells in the Retina of a New World Monkey, the Marmoset Callithrix jacchus [J]. J Comp Neurol, 1999, 413:417~428
    [66] Guo X L and Sugita S. Topography of Ganglion Cells in the Retina of the Horse[J]. J vet med
    
    Sci, 2000, 62(11):1145~1150
    [67] Herman L M, Peacock M F, Yunker M P, Madsen C J. Bottlenosed dolphin: Double-slit pupils yields equivalent aerial and underwater diurnal acuity[J]. Science, 1975, 189:650~652
    [68] Hughes A .The topography of vision in mammals of contrasting life style: Comparative optics and retinal organization[M]. In: Handbook of Sensory Physiology: The Visual System in Vertebrates (Crescitelli F, ed), Berlin: Springer, 1977, Vol. Ⅶ/5, 613-756.
    [69] Hughes A, Vaney D I. Coronate cells: displaced amacrines of the rabbit retina[J]. J Comp Neurol, 1980, 189:169~189
    [70] Hughes A. Population magnitudes and distribution of the major modal classes of cat retinal ganglion cell as estimated from HRP filling and systematic survey of the soma diameter spectra for classical neurons[J]. J Comp Neurol,1981, 197:303~339
    [71] Hayes B E The structural organization of the pigeon retina [J]. Prog Ret Res, 1982, 1:197~226
    [72] Hayes B P, Holden A L. The distribution of displaced ganglion cells in the retina of the pigeon[J]. Exp Brain Res, 1983, 49(2):181~188
    [73] Hayes B P. Cell populations of the ganglion cell layer:displaced amacdne and matching amacrine cells in the pigeon retina [J]. Exp Brain Res, 1984, 56:565~573
    [74] Harman A M, Nelson J E, Crewther S G, Crewther D P. Visual acuity of the northern native cat (Dasyurus hallucatus)-behavioral and anatomical estimates[J]. Behav Brain Res, 1986,22:211~216
    [75] Hogan D, Williams R W. Analysis of the retina and optic nerves of achiasmatic Belgian sheepdogs[J]. J Comp Neurol, 1995, 352:367~380
    [76] Herbin M, Boire D, Ptito M. Size and distribution of retinal ganglion cells in the St. Kitts green monkey (Cercopithecus aethiops sabeus) [J]. J Comp Neurol, 1997, 383(4):459~472
    [77] Huxlin K R, Goodchild A K. Retinal ganglion cells in the Albino rat: revised morphological classification[J]. J Comp Neurol, 1997, 385:309~323
    [78] He S G, Masland R H. ON direction-selective ganglion cells in the rabbit retina: dendritic morphology and pattern of fasciculation[J]. Vis Neurosci, 1998, 15:369~375
    [79] Hogan D, Williams R W. Analysis of the retinas and optic nerves of achiasmatic belgian sheepdogs[J]. J Comp Neurol, 1999, 352:367~380
    [80] Hart N S. Vision in the peafowl (Ayes: Pavo cristatus) [J]. J Exp Bio, 2002, 205:3925~3935
    [81] Ikushima M, Watanabe M, Ito H. Distribution and morphology of retinal ganglion cells in the Japanese quail [J]. Brain Res, 1986, 376:320~334
    [82] Isayama T, Berson D M, Pu M. The theta ganglion cell type of cat retina [J]. J Comp Neurol., 2000, 417:32~48
    
    
    [83] Jacobson A G; Inductive processes in embryonic development[J]. Science, 1966, 152:25~34
    [84] Jonas J B, Gusek G C, Naumann GOH. Optic disc, cup and neuro retinal rim size, configuration and correlations in normal eyes[J]. Investigative ophthalmology visual science, 1988, 29(7):1151
    [85] Johnson P T, Geller S F, Reese B E. Distribution, size and number of axons in the optic pathway of ground squirrels[J]. Exp Brain Res, 1998, 118:93~104
    [86] Karten H J, Fite K V, Brecha N. Specific projection of displaced ganglion cells upon the accessory optic system in the pigeon(Columba livea)[J]. Proc Natl Acad Sci USA, 1977,74:1753~1756
    [87] Kock J H and Reuter T. Retinal ganglion cells in the crucian carp[J]. J Comp Neurol, 1978, 179:549~568
    [88] Kolb H, Nelson R, Noriani A. Amacrine cells, bipolar cells and ganglion cells of the cat retina: a Golgi study[J]. Vision Res, 1981, 21: 1081~1114
    [89] Koontz M A, Hendrickson L E, Brace S T. Immunocytochemical localization of GABA and glycine in amacrine and displaced amacrine cells of macaque monkey retina[J]. Vision Res,1993, 33:2617~2628
    [90] Lopasov G N, Stroea O G. Morphogenesis of the vertebrate eye[J]. Adv Morphog, 1961, 1: 331~370
    [91] Layer P G, Vollmer G. Lucifer yellow stains all displaced amacrine cells of the chicken retina during embryonic development[J]. Neurosci Lett, 1982, 31: 99~104
    [92] Long K O, Fisher SK. The distributions of photoreceptors and ganglion cells in the California ground squirrel, Spermophilus beecheyi[J]. J Comp Neurol, 1983, 221:329~340
    [93] Linden R. Displaced ganglion cells in the retina of the rat[J]. J Comp Neurol, 1987, 258:138~143
    [94] Muchnick N, Hibbard E. Avian retinal ganglion cells resistant to degeneration after optic nerve lesion[J]. Exp Neurol, 1980, 68:205~216
    [95] Montgomery N, Fite K V, Bengston L. The accessory optic system of Rana pipiens: neuroanatomical connections and intrinsic organization[J]. J Comp Neurol, 1981, 203:595~612
    [96] Mccourt M E, Jacobs G H. Spatial filter characteristics of optic nerve fibers in California ground squirrel (Spermophilus beecheyi) [J]. J Neurophysiol, 1984, 52:1181~1199
    [97] Mass A M, Supin A Y. Ganglion cell topography of the retina in the bottlenosed dolphin, Tursiops truncatus[J]. Brain Behav Evol, 1995, 45(5):257~265
    [98] Macneil M A, Heussy J K, Dacheux R F, Raviola E and Masland R H. The shapes and numbers
    
    of amacrine cells: matching of photofilled with Golgi-stained cells in the rabbit retina and comparision with other mammalian species[J]. J Comp Neurol, 1999, 413:305~326
    [99] Mey J, Thanos S. Development of the visual system of the chick. I. Cell differentiation and histogenesis[J]. Brain Res Rev, 2000, 32:343~379
    [100] Masland R H. Neuronal diversity in the retina[J]. Curr Opin Neurobiol, 2001, 11:431~436
    [101] Mass A M, Supin A Y. Visual field organization and retinal resolution of the beluga, Delphinapterus leucas (Pallas) [J]. Aquatic Mammals, 2002, 28:241~250
    [102] Mass A M, Supin A Y. Retinal topography of the Harp Seal Pagophilus groenlandicus[J]. Brain, Behavior and Evolution, 2003, 62:212~222
    [103] Nishimura Y. Determination of the developmental pattern of retinal ganglion cells in chick embryos by golgi impregnation and other methods[J]. Anat Embryol, 1980, 158:329~347
    [104] Nalbach H O, Wolf-Oberhollenzer F and Remy M. Exploring the Image in Vision, Brain and Behavior in Birds (ed. H. P. Zeigler and H. J. Bischof) [M]. Cambridge, Massachussets: MIT Press. 1993, 25~46
    [105] Naito J, Chen Y. Morphologic analysis and classification of ganglion cells of the chick retina by intracellular injection of Lucifer Yellow and retrograde labeling with DiI[J]. J Comp Neurol, 2004, 469(3):360~376
    [106] Oyster C W, Simpson J I, Takahashi E S, Soodak R E. Retinal ganglion cells projecting to the rabbit accessory optic system[J]. J Comp Neurol, 1980, 190(1):49~61
    [107] Ott M, Bellintani-Guardia B. The effect of retinal growth on the postnatal development and distribution of displaced retinal ganglion cells in the retina of the chameleon (squamata) [J]. Vis Neurosci, 2003, 20(3):273~283
    [108] Perry V H, Walker M. Amacrine cells, displaced amacrine cells and interplexiform cells in the retina of the rat[J]. Proc R Soc Lond B, 1980, 208:415~431
    [109] Pettigrew J D, Dreher B, Hopkins C S, Mccall M J, Brown M. Peak density and distribution of ganglion cells in the retina of microchiropteran bats: implication for visual acuity[J]. Brain Behav Evol, 1988, 32:39~56
    [110] Peichl L.Topography of ganglion cells in the dog and wolf retina[J]. J Comp Neurol, 1992, 324:603~620
    [111] Podugolnikova T A, Orlov O Y, Reuter T. Morphology of frog retina ganglion cells projecting to the basal optic nucleus[J]. Sensory Systems, 1992, 5:274~283
    [112] Reiner A, Brecha N, Karten H J. A specific projection of retinal displaced ganglion cells to the nucleus of the basal root in the chicken[J]. Neuroscience, 1979, 4:1679~1688
    [113] Reiner A. A projection of displaced ganglion cells and giant ganglion cells to the accessory
    
    optic nuclei in turtle[J]. Brain Res, 1981, 204:403~409
    [114] Reese B E, Cowey A. Large retinal ganglion cells in the rat: their distribution and laterality of projection[J]. Exp Brain Res, 1986, 61:375~385
    [115] Rockhill R L, Daly F J, MacNeil M A, et al. The diversity of ganglion cells in a mammalian retina[J]. J Neurosci, 2002, 22(9):3831~3843
    [116] Roska B,Werblin F. Rapid global shifts in natural scenes block spiking in specific ganglion cell types[J]. Nature Neurosci, 2003, 6(6):600~608
    [117] Stone J, Dreher B, Leventhal A. Hierarchical and parallel mechanism in the organization of visual cortex[J]. Brain Res Rev, 1979, 1:345~394
    [118] Stone J. Parallel Processing in the Visual System[M]. New York: Plenum Press, 1983
    [119] Stephan H, Frahm H D, and Baron G. Comparison of brain structure volumes in insectivora and primates. IV. Non-cortical visual structures[J]. J Hirnforsch, 1984, 25(4):385~403
    [120] Sanchez R W, Dunkelberger G R, Quigley H A. The number and diameter distribution of axons in the monkey optic nerve[J]. Invest Ophthalmol Vis Sci, 1986, 27:1342~1353
    [121] Tetreault N, Hakeem A, and Allman J. The Distribution and Size of Retinal Ganglion Cells in Cheirogaleus medius and Tarsius syrichta: Implications for the Evolution of Sensory Systems in Primates. http://allmanlab.caltech.edu/publications/TetreaultHakeemAllman 2003.pdf
    [122] Vaney D I. A quantitative comparison between the ganglion cell populations and axonal outflows of the visual streak and periphery of the rabbit retina[J]. J Comp Neurol, 1980, 189:215~233
    [123] Vaney D I, Peich I L, Boycott B B. Matching populations of amacrine ceils in the inner nuclear and ganglion cell layers of the rabbit retina [J]. J Comp Neurol, 1981, 199:373~391
    [124] Vitek D J, Schall J D, Leventhal A G. Morphology, central projections, and dendritic field orientation of retinal ganglion cells in the ferret[J]. J Comp Neurol, 1985, 241:1~11
    [125] W(?)ssle H. Sampling of visual space by retina ganglion cells[J]. London: Cambridge Canb University Press, 1986, 19~30
    [126] Wong ROL, Hughes A. The morphology, number and distribution of a large population of confirmed displaced amacrine cells in the adult cat retina[J]. J Comp Neurol, 1987, 255:159~177
    [127] Wathey J C, Pettigrew J D. Quantitative analysis of the retinal ganglion cell layer and optic nerve of the barn owl Tyto alba[J]. Brain Behav Evol, 1989, 33(5):279~292
    [128] Williams R, Cavada C, Reinoso-Suarez F. Rapid evolution of the visual system: a cellular assay of the retina and dorsal lateral geniculate nucleus of the spanish wild cat and the
    
    domestic cat[J]. J Neurosci, 1993, 13:208~228
    [129] Wylie D R, Linkenhoker B, Lau K L. Projections of the nucleus of the basal root in pigeons (Columba livea) revealed with biotinylated dextran amine[J]. J Comp Neurol, 1997,384:517~536
    [130] Yang G, Masland R H. Receptive fields and dendritic structure of directionally selective retinal ganglion cells[J]. J Neurosci, 1994, 14:5267~5280
    [131] Zhang D, Eldred W D. Anatomical characterization of retinal ganglion cells that project to the nucleus of the basal optic root in the turtle (Pseudemys scripta elegans)[J]. Neuroscience, 1994, 61:707~718
    [132] Zec N, Filiano J J, Kinney H C. Anatomic relationships of the human arcuate nucleus of the medulla: a DiI-labeling study[J]. J Neuropathol Exp Neurol, 1997, 56 : 509~522
    [133] Zsefvigh J O, Sbanvo T L, and Rtawilhelm M A. Amacrine Cells of the Anuran Retina: Morphology, Chemical Neuroanatomy, and Physiology[J]. Microsc Res Tech, 2000, 50:373~383

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700