中国狼蛛科(Lycosidae)主要类群的遗传多样性及分子系统发育研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究应用RAPD、DNA序列分析等分子标记技术,根据有关种群遗传学和动物系统学原理与方法,对我国狼蛛科主要类群的遗传多样性、分子系统发育关系及其在农药胁迫下所引起的遗传分化和分子适应性机理等方面进行了初步研究,获得了以下结果:
     1 进行了RAPD技术在蜘蛛遗传多样性研究中的方法探讨。利用蜘蛛的附肢作为其基因组DNA抽提的材料,且该改进的方法所抽提的蜘蛛基因组DNA的产量与纯度足以满足RAPD分析的要求;通过优化RAPD-PCR反应条件,可以获得清晰度高,重复性好的RAPD图谱以用于蜘蛛(如拟水狼蛛Pirata subpraticus拟环玟豹蛛(Pardosa pseudoan nulata)武昌獾蛛Trochosa wuchangensis等)的遗传多样性研究;在不投食饲养武昌獾蛛一个月以上的前提下,用随机引物S_(92)(5′CAGCTCACGA 3′)比较分析了武昌獾蛛的头胸部与其附肢各自的RAPD图谱的差异,差异不显著(P>0.05)。结果表明:蜘蛛的附肢和头胸部均可作为其遗传多样性研究材料,但以前者为材料可以有效防止异源DNA的干扰。因而,其基因组DNA在作为蜘蛛遗传多样性的RAPD分析模板时要优于头胸部。
     2 根据蜘蛛外生殖器结构特征和RAPD分子标记分析的结果表明:武昌獾蛛Trochosa wuchangensis自然种群存在明显种群内遗传变异现象。即使同一地理种群的武昌獾蛛也有多种变异类型,且该种内变异并不完全是因分布地域不同而产生的。尹长民教授等(1997)所报道的武昌獾蛛外生殖器结构可明显分为三大类型:(ⅰ)两垂兜间合抱部分梨形,长≦宽;纳精囊远端分叶时内叶稍短于外叶。(ⅱ)两垂兜间合抱部分梨形,长>宽;内叶明显短于外叶。(ⅲ)两垂兜间合抱部分窄长,长>宽;外叶明显细。作者实验中所获得的武昌獾蛛雌性成体RAPD谱带特征与尹老师以外生殖器形态特征为依据所划分的三种变异类型基本一致。同时对ⅰ型和ⅱ型内个体间的遗传相似度进行方差分析表明,ⅱ型内个体间不存在显著差异,但ⅰ型内个体间存在显著差异(P<0.05)。研究还表明性别不同的武昌獾蛛,其成体
    
    的RAPD谱带也有差异,即随机引物592扩增的结果在不同性别的武昌
    灌蛛相互间显示种的特异性,并发现所扩增的253 bp带为雄性武昌
    灌蛛的种的特异性谱带。引物552和引物52,对不同生长发育期的武昌
    灌蛛样本的RAPD一PCR扩增中都显示其相互间存在不一致的谱带特
    征。经统计分析发现成熟个体的谱带类型稳定,变化较小;未成熟个
    体的谱带类型不稳定,变异较大。
     3应用1 ZSr洲A基因序列分析探讨了狼蛛优势种群对长期农药
    胁迫的分子响应机制。通过对12SrRNA基因第三结构域的序列比对分
    析,研究显示:(i)拟水狼蛛厂丫了刀tasu如了了刁tfcus在长期农药胁迫
    下的12SrRNA基因第三结构域序列发生了明显改变,即碱基组成由
    315 bp减少为300 bp,转换/颠换为17/5,核昔酸变异百分数(p一
    distance=序列差异/序列大小)达到0.095,同源性仅为85.8%;(ii)
    拟环纹豹蛛儿厂由sa pse“由a朋u1二ta在长期农药胁迫下的12SrRNA
    基因第三结构域序列也发生改变,即碱基组成由301 bp减少为299
    bp,转换/颠换为11/10,核昔酸变异百分数为0.083,同源性为91 .7%;
    (iii)比较拟水狼蛛和拟环纹豹蛛在长期农药胁迫下,其12SrRNA基因
    第三结构域的序列所发生的改变,以拟水狼蛛所受的影响最明显,可
    见连续丢失几段4一10以上bp的片段,说明拟水狼蛛对农药的胁迫
    更为敏感,(iv)供试两种狼蛛标本的基因组DNA的四个碱基对中以A
    和T的变异频率最高,属农药敏感型碱基对。(v)根据拟水狼蛛和
    拟环纹豹蛛12SrRNA基因片段的碱基共同突变位点的规律,发现
    192一228片段中有37个位点是长期农药胁迫下狼蛛的12SrRNA基因
    片段中共同突变位点频率最高的区域。作者认为这就是该2种狼蛛对
    农药胁迫的敏感区。同时,发现在无直接农药胁迫的环境中,这两个
    狼蛛种群中的12SrRNA在192一咒8该狭窄区域内的相似性明显增加,
    其原因有待进一步研究。
     4将自测的我国蜘蛛目狼蛛科5属6个种和从互联网Genbank
    中检索到相关物种的线粒体基因组12SrDNA的序列进行同源性比较,
    计算核昔酸使用频率。然后据此进行分子分析,利用2个外群(漏斗
    蛛科的机敏漏斗A群了eI7adz’几P1’叮了z’s和缘漏斗刀gelena了2初右at)和
    
    2种建树方法(邻近法Neighbour Joining,NJ和最大简约法Maxi~
    Parsimony,MP)分析我国狼蛛科内的亲缘关系。获得平均为291.6bP
    的序列中,A+T平均含量为78.54%,而G+C含量只要21.50%,颠换
    取代(tranversion)的速度多数大于或接近转换取代(transition)
    的速度,其中161个核昔酸位点存在变异。研究结果表明:在蜘蛛目
    狼蛛科有差异的161 bp中,属内种间仅为1.08%,狼蛛科属间为
    6.85%一14.80%。所构建的分子系统树表明:科内的属和属内的种均
    优先聚在一起;狼蛛科现行分类系统中各亚科的演化关系顺序为:马
    蛛亚科一狼蛛亚科一豹蛛亚科;狼蛛科各属的演化关系顺序为:水狼
    蛛属一马蛛属(或水狼蛛属和马蛛属)一罐蛛属一狼蛛属一豹蛛属;
    水狼蛛属为最早分出的一支或者水狼蛛属和马蛛属最先聚为一族,二
    者关系较近,是较为原始的类群,同为马蛛亚科。这与传统的分类观
    点有所差别。所
Based on the molecular markers, including random amplified polymorphic DNA (RAPD) and analysis of DNA sequences, the genetic diversity and molecular phylogeny of the main groups of wolf spiders from China were studied by using the principle and methods of group genetics and analysis of the DNA sequences. The results were summarized as follows:
    1. The method of applicability of RAPD in study of genetic diversity of spiders was discussed. The appendix of spiders can be employed to extract their genomic DNA; The production and purity of genomic DNA of spiders, on the basis of the method, could completely satisfy RAPD research. The conditions of polymerase chain reaction (PCR) were optimized for the highly clear and repeatable RAPD bands in study of genetic diversity of spiders. The RAPD bands of raised without food for above a month Trochosa wuchangensis' cephaiothorax compared with its own appendix from random primers S92 amplified polymorphic DNA-PCR(P>0.05). The results showed:The appendix and cephaiothorax of spiders can be, as the stuff of extracted genomic DNA, both used to study their genetic diversity.But applicability of genomic DNA of appendix as RAPD-PCR models in study of genetic diversity of spiders is better than that of their own cephaiothorax, because of no interference from foreign DNA.
    2. The intraspecific variants of wolf spiders Trochosa wuchangensis were studied by structural features of genitalia combined with RAPD molecular mark technique. The results show that the intraspecific variants exist in the natural population of Trochosa wuchangensis. There are several kinds of
    
    
    intraspecific variants in Trochosa wuchangensis, even in the same geographic population. The intraspecific variants do not totally result from the different geological zone. Three types that were found in the epigynum of Trochosa wuchangensis population by structural features of genitalia are nearly the same as the types detected by RAPD technique. According to the structural features of genitalia , 3 different types of the epigynum were found as follows: ( i )The two hoods pear-formed, the lengththe width ;The inner shorter than the galea of spermatheca . (iii) The two hoods like gall bladder, the lengthHhe width;the galea slightness clearly. Type ii , according to analysis on variance from the genetic similarity index both typeii and type iii of the individual differences, is unsiglificant buttype i is siglificant (P<0.05). 253 bp is the specific size of the DNA band of male spiders Trochosa wuchangensis in the RAPD patterns by the primer S92. The different growth periods of wolf spiders Trochosa wuchangensis show the intraspecific variants. The DNA bands of the different growth periods of Trochosa wuchangensis are different from the RAPD patterns by the primer S82 and S266. The statistic data showed that the types of RAPD patterns of the adults are stable (less variant), but the types of RAPD patterns of the young spiders are unstable (more variant).
    3. Molecular response mechanism of predominance populations of the wolf spiders under long-period pesticide force were studied based on the analysed mitochondrial 12S rRNA gene sequence data. Comparing the third domain mitochondrial 12S rRNA gene sequences, the results show that: i .The third
    
    
    domain mitochondrial 12S rRNA gene sequences of wolf siders Pirata subpiraticus were changed obviously under long-period pesticide force, For example, 315 bp of the base pair composition of 12S rRNA gene failed into 300 bp, transisions/transversions was 17/5, the precent of nucleotide variance (P-distance = sequence difference/sequence size) was 0. 095, homology was only 85.8%. ii.The third domain mitochondrial 12S rRNA gene sequences of the wolf siders Pardosa pseudoannulata were also changed under long-period pesticide force, For example, 301 bp of 12S rRNA gene dropped into 299 bp, transisions/transversions was 11/10,the precent of nucleotide varia
引文
1 Saiki, p., K. Schart, S. J. Faloona et al. Enzymatic amplification of beta-globin genomic sequence and restriction site analysis for diagnosis of sickle cell enemia. Science, 1985, 230:1350~1354
    2 Williams, J. G.. K., A. R. Kubelik, K. J. A. Rafalski et al. DNA polymorphisims amplified by arbitrary primers are useful as genetic markes. Nucl. Acid. Res., 1990, 18(2): 6521~6535.
    3 Brown, W. N. Polymorphism mitochondrial DNA of human as revealed by restriction endonuclease analysis. Proc. Natl. Acad. Sci. USA, 1980, 77: 3605~3609
    4 Vos P., Hogers R., Bleeker M. et al. AFLP: a new technique for DNA frirgerprinting. Nuclein Acid. Res., 1995, 23(21):4407~4414
    
    
    5 Jeffreys, A. J., V. Wilson, S. L. Thein. Individual-specific "fingerprints" of human DNA. Nature, 1985, 316:76~79
    6 Li, WH. & D. Graur, Fundementals of molecular evolution. Sinauer Associates, Inc., Sunderland, Massachusetts, U. S. A. 1991
    7 Avise, J. C. Systematic value of electrophoretic data. Syst. Zool. 1994, 23(4):465~487
    8 孙涛,陈德牛,苏小记,软体动物系统学和进化生物学的细胞和分子生物学水平研究,动物学杂志,1995,30(2):75~86
    9 邱芳,伏健民,金德敏等.遗传多样性的分子检测.生物多样性,1998,6(2):143~150
    10 Markert C and Moller F. Multiple forms of enzymes: Tissue, ontogenetic and species patterns. Proc. Natl. Acad. Sci. USA, 1959, 45:753~763
    11 Prakash S, Lewontin R C, Hubby J L. A molecular approach to the study of genetic heterozygosity in natural populations/Ⅳ Patterns of genetic variation in cetrol, mariginal and isolated populations of Drosophila Pseudoobscura. Genetics, 1969, 61:841~845
    12 夏铭,遗传多样性研究进展,生态学杂志,1999,18(3):59~65.
    13 汪亚平,张国华.鲫鱼种群间同工酶的比较研究.水生生物学报,1996,20(3):287~288
    14 刘焕章,汪亚平.厚颌鲂种群遗传结构及哑基因问题.水生生物学报,1997,21(2):195~196
    15 Kat, PW, Genetic and morphological divergence among nominal species of North American Anodonta (Bivalvia: Unionidae). Malacologia, 1983, 23, 361~374
    16 Hoeh, W. R. Phylogenetic relationships among Eastern North American Anodonta (Bivalvia: Unionidae). Malacologia Review, 1990, 23: 63~82
    17 Nei. M. ed. Molecular population gen.etics and Evvolution. Ammsterdam and New York: Nnorth Hoolland Publ. Co., 1975.
    18 莫鑫,赵铁军,秦鹏春,杨子鳄的起源,中国科学B辑,1991(10):1047~1053
    19 Steven, D. W., M, S. Springer, J. Britten. Nucleicacids Ⅰ:
    
    DNA-DNA hybridization. In: "David, M. H. and C. Moritz ed. Molecular Systematics.Sunderland,Massachusetts,USA: Sinauer Associates Inc. Publishers, 1990. 169~204
    21 Brown, W M, The mitochondrial genome of animals, pp 95~130 in Molecular Evolutinary Genetics. Edited by R. J. Maclntyre. Plenum Press, New York. 1985, 28:365~372
    22 Bresh H F. Hybridization and introgression among species of sunfish (lepomis): analysis by mitochondrial DNA and allozyme markers. Genetics, 1984, 108:237~255
    23 O. Colin Stine Malacologia 1989, 30 (1-2): 305-315
    20 Welsh J, Michael M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res, 1990, 18(24): 7 213~7 218
    24 张云武,张亚平.微卫星极其应用.动物学研究,2001,22(4):315~320
    25 张辉,吴清江.鲫不同种系线粒体DNA物理图谱的构建.水生生物学报.2000,24(3):219~227
    26 Abouheif, E., Zardoya, R. and Meyer, A. Limitations of Metazoan 18S rRNA sequence data: implications for reconstructing a phylogeny of the animal kindom and inferring the reality of the Cambrian explosion. J. Mol. Evol.,1998, 47:394~405
    27 Belshaw, R., Fitton, M., Herniou, E. et al., Aphylogenetic reconstruction of the ichneumonoidea (Hymenoptera) based on the D2 variable region of 28S ribosomal RNA. Syst. Entomol., 1998,23: 109~123.
    28 Belshaw, R. and Quicke, D. L. J. A molecular phylogeny of the Aphidiinae (Hymenoptera: Braconidae). Mol. Phyl. Evol. 1997, 7:281~293
    29 Clary, D. O. and Wolstenholme, D. R. The ribosomal RNA genes of Drosophila mitochondrial DNA. Nucleic Acids Research, 1985,13:4029~4045
    30 Flook, P. K. and Rowell, G. H. F. The effctiveness of mitochondrial rRNA gene sequences for the reconstruction of the phylogeny of an insect order (Othoptera). Mol. Phyl. Evol., 1997.8:177~192
    
    
    31 Gutell, R. R. 1994. collection of small subunit (16S-and 16S) ribosomal RNA structures: Nucleic Acids Research, 1994, 22: 3502~3507
    32 Henriks. L. H., van Broeckhoven, C., Vandenberghe, A. et al., Primary and secondary structure of the 18S ribosomal RNA of the bird spider Eurypelma californica and evolutionary relationships among eukaryotic phyla. Eur. J. Biochem., 1988, 177:15~20
    33 Hillis, D. M., Mable, B. K. and Moritz, C. Applications of molecular systematics: the state of the field and a look to the future. In: Molecular Systematics. 2nd ed. By Hillis, D. M., Moritz, C. and Mable, B. K. Sinauer Associates, Inc. Publishers. p. 1996, 517
    34 Hsu, C. C. , Kotin, R. M. and Dubin, D. T. Sequences of the coding and flanking regions of the large ribosomal subunit RNA gene of MosquitoMitochondria. Nurleic Acids Research, 1984, 12:7771~7785
    35 黄原,分子系统学的研究程序.黄原著.分子系统学-原理、方法及应用.北京:中国农业出版社.1998,127~301
    36 Kwon, 0., Ogino, K. and Ishihawa, H. The longest 18S ribosomal RNA ever known: nucleotide sequence and presumed secondary structure of the 18S rRNA of the pea aphid Aryrthosiphon pisum. Eur. J. Biochem., 1991,202:827~833
    37 Landweber, L. F. gxperimentaiRNA evolution. Trends in Erology and Evolution, 1999, 14:353~358
    38 Larson, N., Olsen, G., J., Maidak, B. I. et al., The ribosomal database project. Nucleir Acids Research, 1993,21 (suppl.): 3021~3023
    39 Lewin, B. Protein synthesis. In: Genes Ⅵ (edited by Lewin B.). Oxford University Press. p. 1997,179~201
    40 Loxdale, H. D. and Lushai, G. Molecular markers in entomology. Bulletin of Entomological Research, 1998,88:577~600
    41 Maidak, B. L., Olsen, G. J., Larsen, N. et al., The RDP (ribosomal database project). Nucleic Acids Research, 1997, 25:109~110
    
    
    42 Michot, B. and Bachellerie, J. P. Comparison of large subunit rRNAs reveal some eucaryote-specific elements of secondary structure. Biochimie, 1987,69:11~23
    43 Michot, B., Qu, L. H. and Bachellerie, J. P. Evolution of large sub-unit rRNA structure: the diversification of divergent D3 domains among major phylogenetic groups. Eur. J. Biochem., 1990,188:219~229
    44 Olsen, G. J. and Woese, C. R. Ribosomal RNA: a key to phylogeny. Fasb. J., 1993,7:113~123
    45 Pelandakis, M. and Solignac, M. Molecular phylogeny of Drosophila based on ribosomal RNA sequences. J. Mol. Evol., 1993,37:525~543
    46 Schmitz, J. and Moritz, R. F. Molecular phylogeny of Vespidae(Hymenoptera) and the evolution of sociality in wsps. Mol. Phyl. Evol., 1998,9:183~191
    47 童克中,翻译:核糖体.童克中著.基因及其表达.北京:科学出版社.1998,178
    48 Van de Peer, Y., Neefs, J. M., DeRijk, P. et al. Reconstructing evolution from eukaryotic small-ribosomal-subunit sequences: Calibration of the molecular clock. J. Mol., 1993,37: 221~232
    49 Van de Peer, Y., van denBroeck, I., de Rijk, P. et al., Database on the structure of small ribosomal subunit RNA. Nucleic Acids Research, 1994,22:3488~3494
    50 Vossbrinck, C. R. and Friedman, S. A 28S ribosomal RNA phylogeny of certain cyclorrhaphous Diptera based upon a hypervariable region. Syst. Entomol., 1989,14: 417~431.
    51 Walker, T. A. and Pace, N. R. 5.8S ribosomaI RNA. Cell, 1983,33: 320~322
    52 Whiting, M. F., Carpenter, J. C., Wheeler, Q. D. et al., The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28Sribosomal DNA sequences and morphologv. Syst. Biol., 1997,46:1~68
    53 缪炜、余育和、沈韫芬,上海四膜虫和两株嗜热四膜虫的rRNA基因ITS-1序列及分子系统关系,动物学研究,2001,22(4):75~83
    
    
    54 周莉、桂建芳,银鲫两个雌核发育克隆间两性生殖子代的遗传多样性分析,实验生物学报,2001,24(3):169~175
    55 Navajas, M. and B. Fenton, The application of molecular markers in the study of diversity in acarology: A review. Experimental and Applied Acarology, 2000,24(10-11): p. 751~774
    56 Chen YJ, Zhang YP, Shen FR, Zhang YW, Yang DR, Nie L, Yang YX, The phylogeny of 5 Chinese peculiar Parnassius butterflies using noninvasive sampling mtDNA sequences. Ⅰ Chuan Hsueh Pao, 1999, 26(3): 203~223
    57 Liu J, Berry RE, Blounin MS, Molecular differentiation and phylogenyof entomopathogenicnematodes(rhabditida: heterorhabditidae)basedon ND4 gene sequencesof Mitochondrial DNA. J Parasitol 1999,85(4): 709~725
    58 Mardulyn P, Cameron SA, The major opsin in bees (Insecta: Hymenoptera): A promising nuclear gene for higher level phylogenetics. Mol Phylogenet Evol 1999,12(2):168~76
    59 Navajas M, Lagnel J, Gutierrez J, Boursot P Species-wide homogeneity of nuclear ribosomal ITS2 sequences in the spider miteTetranychusurticaecontrastswithextensive mitochondrial COI polymorphism. Heredity, 1998,80(Pt 6):742~52
    60 Reed RD, Sperling FA Interaction of process partitions in phylogenetic analysis: an example from the swallowtatil butterfly genus Papilio. Mol Biol Evol, 1999 ,16(2):286~97.
    61 Rodriguez-Trelles F, Tarrio R, Ayala FJ, Molecular evolution and phylogeny of the Drosophila saltans species group inferred from the Xdh gene. Mol Phylogenet Evol,1999,13(1):110~21
    62 Zehethofer K, Sturmbauer C, Phylogenetic relationships of Central European wolf spiders (Araneae: lycosidae) inferred from 12S ribosomal DNA sequences. Mol Phylogenet Evol. 1998,10(3):391~398
    63 颜亨梅,中国西南稻田蜘蛛群落结构及生态分布,湖南师范大学(自然科学学报),1991,14(1):78~83
    64 颜亨梅,王洪全,杨海明,中国稻田蜘蛛多样性研究,生物多样性研究进展,1996,440~445
    
    
    65 Klein Lank horst, R.M. et al. Isolation of nulecular markers for tomato(L, esculentum)using random amplified polymorphic (RAPD) , Theor Appl Genet, 1991,83:108~114
    66 张宏等,单引物PCR扩增DNA指纹图谱的稳定性研究,复旦学报(自然科学出版),1993,32(4):399~404
    67 Sambrook, FritschE F, Manlatis T. Motecular cloning a laboratory manual, New York: Cold Sping Harbor Laboratory Press. 1989.
    68 王智,颜亨梅,不同生态类型蜘蛛代表种基因组DNA的多态性,蛛形学报,1999,8(2):23~30
    69 徐湘等,应用RAPD技术对蜘蛛系统演化的初步研究,生命科学研究,1999,3(4):304~315
    70 Gvidet F.A Powerful new technique to quickly prepare hundreds of plant extracts for PCR and RAPD analysisNucleic Acids Res, 1994, 22(9):172~180
    71 Graham G C, Mayersp, Henry R T, A simplified method for the preparation of fungal genomic DNA for PCR and RAPD analysis. Biotechniques, 1994,16:48~50
    72 尹长民,中国狼蛛.湖南师范大学出版社,1997,163~168
    73 尹长民,鲍幼惠,王家福中国獾蛛属再研究,蛛形学报,1995,4(1):23~34
    74 尹长民,初论蜘蛛目的种内变异类型,蛛形学报,2001,10(2):1~7
    75 李思发,朱泽闻,邹曙明,赵金良,蔡完其鲂属团头鲂、三角鲂及广东鲂种间遗传关系及种内遗传差异.动物学报,2001,48(3):339~345
    76 P. Iturra, J.F. Medrano, M. Bagley, et al. Identification of sex chromosome molecular markers using RAPDs and fluorescent in situ hybridization in rainbow trout. Genetica 101:209~213
    77 N. Bello and A. Sanchez. 1999 The identification of sex-specific DNA marker in the ostrich using a random amplified polymorphic DNA (RAPD) assay. Molecular Ecology 1998,8:667~669
    78 Balazs Kovacs, Sandor E., Richard B., et al. Male-specific DNA markers from African catfish(Clarias gariepinus).Genetica. 2000,110:267~276
    
    
    79 邱涛,陆仁后,项超美等.用RAPD技术识别中华绒螯蟹的性别差异.水产学报,1998,22(2):175~177
    80 常重杰,周荣家,余其兴.两种泥鳅不同群体遗传变异的RAPD分析.动物学报,2001,47(1):89~93
    81 宋平,潘云峰,向筑等.黄颡鱼RAPD标记及其遗传多样性的初步分析.武汉大学学报,2001,47(2):233~237
    82 胡隐昌,宋平等.尼罗罗非鱼RAPD标记及其遗传多样性的分析.华中科技大学学报,2002,30(5):94~97
    83 C. McGowan and W.S. Davidson. The RAPD technique fails to detect a male-specific genetic marker in Atlantic Salmon. Journal of Fish Biology, 1998 ,53:1134~1136
    84 Lynch, M. The similarity index and DNA fingerprinting. Molecular Boilogy and Evolution, 1990 ,7:478~484
    85 Lynch, M. Analysis of population genetic structure by DNA fingerprinting. In:Burke, T.,G. Doll, A. J. Jeffreys and R. Wolf ed.DNA fingerprinting Approaches and Applications. Switerland: Basel, 1991,113~126
    86 Sneath, P.H.A. and R.R. Sokal ,Unweighted pair group method using arithmetic average. In: Sneath, P.H.A. and R.R. Sokaled. Numerical raxonomy. Freeman, 1973,96~99
    87 Wikinson. L. Systat:The System for Statistics. Evanston: SYSTAT .Inc.,1989,423~555
    88 Hickson R E, Simon C & Cooper A et al. Conserved sequence motifs, alignment and secondary structure for the third domain of animal 12Sr RNA , Mol. Biol. Evol,1996,13 (1): 150~169
    89 Simon, C.,Frati, F.,& Beckenbach, A..et al Evolution weighting and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers, Ann. Ent. Soc. Amer.,1994,87:651~701
    90 Haucke H R, Gellissen G. Different mitochondrial gene orders among insects:exchanged tRNA gene posi-tion in the COⅡ/ COⅢ region between an orthopteran and a dipteran species. Curr Genet, 1998,14(5):417~476
    91 Szynura J M, Lunt D H, Hewitt G M. The sequence and structure of the meadow grasshopper (Chorthippus parallelus) mitochondrial
    
    Sr-RNA, ND2, COⅠ, COⅡ,ATPase 8 and 9 tRNA genes. Insect Mol Biol, 1996,5(2):127~139
    92 DeSalle R. The origin and possible time of divergence of the Hawaiian Drosophilidae:evidence from DNA sequence. Mol Biol Evol, 1992,9(5):905~916
    93 Sheldon, F H, Jones E C and McCracken K G. 2000 Relative patterns and rates of evolution in heron nuclear and mitochondrial DNA. Mol Biol Evol, 2000,17:437~450
    94 吴琛,宋大祥,朱明生,从12SrRNA基因第三结构域序列分析探讨 蜘蛛若干重要类群的亲缘关系,蛛形学报,2002,11(2):65~73
    95 李剑泉,沈佐锐,赵志模等,拟水狼蛛的生物学生态学特性,生态学报,2002,22:(9) 1478~1484
    96 任竹梅,马恩波,郭亚平.蝗总科部分种类线粒体Cytb基因序列及系统进化研究,遗传学报,2002,29(4):314~321
    97 Cor J. Vink, Anthony D. Mitchell and Adrian M. Paterson. A preliminary molecular analysis of phylogenetic relationships of Australasian wolf spider genera (Araneae, Lycosidae).The journal of Arachnology, 2002,30:227~237
    98 Croom, H.B, R.G. Gillespie& S.R. Palumbi. Mitochondrial DNA sequences coding for a portion of the RNA of the small ribosomal subunits of Tetragnatha mandibulata and Tetragnatha hawaiensis (Araneae, Lycosidae). Journal of Arachnology, 1991, 19:210~214
    99 Fang, K.,C.-C. Yang, B.-W. Lue, S.-H. Chen & K.-Y. Lue. Phylogenetic corroboration of superfamily Lycosidae spiders (Araneae) as inferred from partial mitochondrial 12S and 16S ribosomal DNA sequences. Zoological Studies ,2000,39:107~113
    100 张亚洲,张亚平,栾云霞等,12SrRNA基因序列变异与六足总纲高级单元系统分类,科学通报,2000,45:(22)2434~2438
    101 宋大祥,蜘蛛目的系统分类和演化,湖北大学学报(自然科学版),1993,15(2):185~192
    102 宋大祥,蜘蛛目筛器类和无筛器类的亲缘关系,中国科学院系统与进化生物学学术讨论会论文摘要汇编,1995,18~19
    103 张亚平,熊超科的分子系统发生研究,遗传学报,1997,24(1):
    
    15~22
    104 周开亚,两栖爬行动物的分子系统发生,动物学研究,2001,22(5):397~405
    105 高天翔,张秀梅,吉崎悟朗等,日本绒螯蟹线粒体DNA的序列研究 Ⅰ.12SrRNA,青岛海洋大学学报,2000,30(1):43~47
    106 鲁亮,吴厚永,基于16SrRNA序列的新蚤属二齿新蚤种团部分种类的分子系统发育关系,昆虫学报,2001,44(4):548~554
    107 陈学新,朴美花,J.B.Whitfield,何俊华,基于28SrRNA D2序列的Rogadinae的分子系统发育。昆虫学报,2003,46(2):209~217
    108 印红,张道川,毕智丽等,蝗总科部分种类16SrDNA的分子系统发育关系,遗传学报,2003,30(8):766~772
    109 宋大祥,朱明生,陈军,河北动物志(蜘蛛类),河北科学技术出版社,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700