地震时高土石坝的弹塑性分析和抗震措施研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高土石坝抗震研究的重点和目标,主要是根据结构的破坏特征以及工程的破坏机理来提出合理的抗震设计方法和抗震措施,同时研究相应抗震措施的作用机理,从而达到解除地震灾害之虞。本论文结合国家自然科学基金项目《强震区高土石坝抗震措施研究》(50679093)和国家自然科学基金重大研究计划重点项目《高土石坝地震灾变模拟及安全控制方法研究》(90815024),通过程序二次开发,发展了FLAC非线性弹塑性分析方法,研究了高土石坝的动力反应特性和破坏机理,同时对振动台试验进行数值模拟并与试验结果对比分析,研究了土工格栅抗震加固措施的效果及影响因素,最后通过工程实例进行验证,论文的主要内容如下:
     (1)发展了高土石坝的动力弹塑性分析方法,与有限元结果相比较,验证了FLAC程序模拟高土石坝地震反应的合理性。对高土石坝的地震反应特性和破坏机理进行了系统研究,主要研究了地震动作用下坝体的剪应变、永久位移以及网格变形的变化规律,同时分析了坝高、坝坡和地震动峰值参数变化对大坝破坏性态的影响。
     (2)在二维分析的基础上,应用三维非线性动力弹塑性分析方法,研究了狭窄河谷中高土石坝的动力反应特性,通过计算分析,给出了不同河谷形状系数下高土石坝的剪应变和永久位移分布规律。
     (3)在土石坝坝坡模型振动台破坏试验基础上,采用数值分析方法,对坝坡的动力特性、稳定性以及加筋抗震措施的性能进行研究。采用动力弹塑性分析方法,对坝坡模型振动台试验进行数值仿真,通过类比计算工况,比较、分析了坝坡的破坏过程及其破坏性态,以及永久位移的变化规律;同时采用拟静力方法对坝坡的稳定性进行分析,通过设定滑裂面参数,比较滑裂面的深浅,分析了加筋对坝坡稳定性的影响,并与试验结果进行对比验证。
     (4)在高土石坝动力反应特性的基础上,建立了土工格栅加筋高土石坝的弹塑性分析模型,并利用该模型对土工格栅加筋高土石坝的受力情况、变形和破坏机理进行研究,分析了土工格栅的连接方式、长度、刚度以及铺设间距等参数对高土石坝变形的影响。
     (5)通过对两河口高心墙坝进行实例分析,研究了大坝的动力反应和永久变形并与已知数值的比较,研究了加筋抗震措施的效果,从稳定和变形的角度初步分析了高土石坝抗震加固后的极限抗震能力。
Reasonable seismic design methods and aseismic measures should be proposed according to the characteristic of damages and failure mechanism of structures, and anti-seismic mechanism of the corresponding measures should be studied, which are the key problems and aims in aseismic research on high earth-rockfill dam. The research is supported by the National Science Foundation of China "Study on Aseismic Meassures of High Earth-rockfill Dam in Strong Earthquake Zone" (No.50679093) and the Mega-project of Natural Science Foundation Program "Research on Earthquake Disaster Simulation and Safety Control Method of High Earth-rockfill Dam" (No.90815024). In this paper, the nonlinear elastoplastic analysis method of FLAC was used and the dynamic response characteristics and failure mechanism of high dam were studied firstly. Secondly, the numerical simulation was used and good agreements were obtained between the numerical results and those from shaking table tests. Thirdly, the effect of seismic of geogrid reinforcement measures was analysed. And finally an engineering example was verified using numerical simulation. The main contents of the current research are as follows:
     (1) The main purpose is to study the seismic response and failure mechanism of high earth-rockfill dams under earthquakes by using dynamic elasto-plastic methods. The results of the FEM verify the reasonableness of FLAC procedures in simulating the seismic response of high earth-rockfill dams. The main concerned aspects are the shear strain, the permanent deformation as well as the grid deformation during earthquakes. At the same time, the influences of parameters as dam height, slope and ground motion on failure modes of dams are systematically studied.
     (2) Based on two-dimensional analysis, the main purpose is to study the seismic response of high earth-rockfill dam in narrow valley by the method of three-dimensional nonlinear dynamic elasto-plastic analysis method. The distributions of shear strain and permanent deformation of different valleys of the dam are provided.
     (3) The seismic response, stability and reinforced the aseismic measures of earth-rockfill dam was studied based on shaking table test and numerical simulation. An elastic-plastic analysis method was applied to simulate and analyze the dynamic failure process and permanent deformation of earth-rockfill dam slope under seismic motion. At the same time, the stability of slope, the depth of slip surface and the effectiveness of reinforcement were investigated by the method of quasi-static. The calculated results and those obtained from shaking table tests are compared.
     (4) Based on the dynamic response of high earth-rockfill dam, a dynamic elasto-plastic analysis method for the high earth-rockfill dam slope reinforced with geogrids was set up. Based on this model, the behavior, deformation and failure mechanism of such a high earth-rockfilled dam slope, as well as the geogrid connection, the length, the spacing and the stiffness on the deformation of the high earth-rockfill dam are analyzed.
     (5) The Lianghekou high core rock-fill dam was taken as an example. The dynamic response of the dam and permanent deformation is analyzed and compared with the known values. At the same time, the effects of aseismic reinforcement measures are studied. And the maximum aseismic capability of dam is preliminarily evaluated from the stability and deformation after reinforcement.
引文
[1]贾金生,袁玉兰,李铁洁.2003年中国及世界大坝情况[J].中国水利,2004(13):25-33.
    [2]贾金生,袁玉兰,马忠丽.中国与世界大坝建设情况[C].水电2006国际研讨会论文集,昆明,2006.
    [3]祁庆和.水工建筑物(第三版)[M].北京:中国水利水电出版社.1997.
    [4]郭诚谦,陈慧远.土石坝[M].北京:水利电力出版社,1992.
    [5]顾淦臣.土石坝地震工程[M].南京:河海大学出版社,1989.
    [6]倪汉根,金崇磐.大坝抗震特性与抗震计算[M].大连:大连理工大学出版社,1994.
    [7]李湛.土石坝地震永久变形及抗震稳定性数值分析方法研究[D].大连:大连理工大学,2006.
    [8]M.Y.OZkall. A review of considerations on seismic safety of embankment and earth and rock-filldams[J].Dynamies and Earthquake Engineering,1998(17):439-458.
    [9]郭明珠,任凤华,滕海文,等.大坝强震震害特征分析[J].土木工程学报,2003,36(11):106-109.
    [10]Kokusho T.Cyclic Triaxial Test of dynamic soil properties for wide strain range[J]. Soil and Foundations,1980,20(2):45-60.
    [11]Goto S,Tatsuoka F,et al.A simple gauge for local small strain measurements in the laboratory[J].Soil and Foundations,1991,31(1):167-180.
    [12]Tatsuoka F,Shibuya S,Goto S,et al. Discussion on "The use of hall effect semiconductors on geotechnical instrumentation" by Clayton CRI,Khatrush S A,Bica A V D and Siddique A[J]. Geotechnical Testing Journal, ASTM,1990,13(1):63-67.
    [13]孔宪京,韩国城,娄树莲,等.土工试验新技术研究[C].辽宁省第二界青年学术会论文集,1995.
    [14]孔宪京,张涛,邹德高,等.中型动三轴仪研制及微小应变测试技术应用[J].大连理工大学学报,2005,45(1):79-84.
    [15]张金库,孔宪京,娄树莲.固结排水剪下粗粒料动残余变形[C].岩土力学与工程(第二届全国青年岩土力学与工程会议论文集),大连理工大学出版社,1995.9.
    [16]徐斌,孔宪京,邹德高,等.砂砾料液化机理与孔压特性的试验研究[J].东南大学学报(自然科学版)2005,35(SUP I):100-104.
    [17]Kong Xian-jing,Xu Bin,Zou De-gao,et al. Laboratory study on the behaviors of sand-gravel composites liquefaction Laboratory study on the behaviors of sand-gravel composites liquefaction. Soil Stress-Strain Behavior:Measurement, Modeling and Analysis [C]. Geotechnical Symposium in Roma,2006:645-652.
    [18]孔宪京,邹德高,贾革续,等.大型静、动三轴仪测试技术研究[C].第六届全国土动力学会议论文集,南京,2002,(5):533-539.
    [19]孔宪京,徐斌,邹德高,等.多级位移测试方法在三轴试验中的应用[C].第24届土工测试会议论文集,北京,2005:120-122.
    [20]孔宪京,贾革续.粗粒土动残余变形特性的试验研究[J].岩土工程学报,2004,26(1):26-30.
    [21]贾革续,孔宪京.土工三轴试验方法—静动耦合试验[J].世界地震工程,2005,21(2):1-6.
    [22]沈珠江,徐刚.堆石料的动力变形特性[J].水利水运科学研究,1996,6(2):143-150.
    [23]孔宪京,娄树莲,邹德高,等.连云港核电站海水取排水工程东护岸结构抗震试验与分析报告[R].大连理工大学,1998.
    [24]郭兴文,王德信,燕立群,等.水布垭混凝土面板堆石坝地震永久变形分析[J].河海大学学报,2001,29(6):56-60.
    [25]王玲玲,何蕴龙,费文平.水牛家心墙堆石坝地震永久变形及液化分析[J].岩土力学,2004,25(1):165-168.
    [26]王玲玲,何蕴龙,堆石坝地震反应分析[J].人民长江,2003,34(6):20-22.
    [27]顾淦臣,迟世春.大柳树混凝土面板堆石坝动力反应和永久变形分析[R].河海大学,大连理工大学,1997.
    [28]李万红,汪闻韶.无粘性土动力剪应变模型[J].水利学报,1993,(9):11-17.
    [29]高土石坝坝料及地基土动力工程性质研究[R].“八五”国家科技攻关报告,中国水利水电科学研究院,1995.
    [30]汪闻韶,金崇磐,王克成.土石坝的抗震计算和模型试验及原型观测[J].水利学报,1987,(12):1-16.
    [31]赵剑明,汪闻韶,常亚屏等.面板坝三维非线性动力分析研究[R].“九五”国家重点科技攻关(96-221-02-03-02)报告.中国水利水电科学研究院,2000.
    [32]赵剑明,汪闻韶,常亚屏,等.面板坝三维真非线性地震反应分析方法及模型试验验证[J].水利学报,2003,(9):12-18.
    [33]Finn WD L, Lee KW, Martin G R. An effective stress model for liquefaction[J].Proc.ASCE,1977,103 (GT6).
    [34]Prevost J H, Abdel Ghaffar A M, Lacy S J. Nonlinear dynamic analyses of an earth dam[J].Proc. ASCE,JGED,1985,111(7).
    [35]徐志英,周健.土坝地震孔隙水压力产生、扩散和消散的三维动力分析[J].地震工程与工程振动,1985,5(4):57-72.
    [36]沈珠江.理论土力学[M].北京:中国水利水电出版社,2000.
    [37]赵剑明,汪闻韶,张崇文.土石坝振动孔压影响因素的研究[J].水利学报,2000,(5):54-60.
    [38]刘颖,谢君斐.砂土震动液化[M].北京:地震工业出版社,1984.
    [39]谢定义.土动力学[M].西安:西安交通大学出版社,1988.
    [40]张建民,谢定义.饱和砂土振动孔隙水压力理论与应用研究进展[J].力学进展,1993,23(2):165-180.
    [41]SL203-97,水工建筑物抗震设计规范[S].北京:中国水利水电出版社,1997.
    [42]SL274-2001,碾压式土石坝设计规范[S].北京:中国水利水电出版社,2002.
    [43]常亚屏.高士石坝抗震关键技术研究[J].水力发电,1998(3):36-40.
    [44]Makdisis F I, Seed H B. Simplified procedure for estimating dam and embankments earthquake induced deformation[J]. Proc. ASCE, JGED,1978,104(GT7):849-867.
    [45]陈生水,沈珠江.强震区域堆石坝的地震永久变形分析方法[J].河海大学学报,1990,20(2):117-120.
    [46]Serff N, Seed H B, Markdisi F I, et al. Earthquake induced deformation of earth dams[C]. Report No. EERC76-4, University of California, Berkeley,1976.
    [47]刘汉龙,陆兆溱,钱家欢.土石坝地震永久变形分析[J].河海大学学报,1996,24(1):91-96.
    [48]赵剑明,常亚屏,陈宁.龙首二级面板堆石坝三维真非线性地震反应分析和评价[J].岩土力学,2004,25(2):388-393.
    [49]沈珠江.高面板堆石坝抗震措施有效性分析[R].南京:南京水利科学研究院,1993.
    [50]贾革续.粗粒土工程特性的试验研究[D].大连:大连理工大学,2003.
    [51]韩国城,孔宪京,栾茂田,等.面板堆石坝动力模型试验与动力分析方法研究[R].国家“七五”科技攻关总结报告.大连理工大学土木系抗震教研室,1989.
    [52]韩国城,孔宪京,栾茂田,等.粗颗粒动应力—应变关系试验研究[R].国家“八五”科技攻关总结报.大连理工大学土木系抗震教研室,1995.
    [53]韩国城,孔宪京,栾茂田,等.面板坝静-动力耦合分析及抗震结构形式与工程措施研究[R].国家“九五”科技攻关项目研究报告.大连理工大学抗震研究所,2000.
    [54]孔宪京,刘君,韩国城.面板堆石坝动力破坏模型试验与数值仿真分析[J].岩土工程学报,2003,25(1).
    [55]孔宪京,邹德高,邓学晶,等.高土石坝综合抗震措施及其效果的验算[J].水利学报,37(12):1489-1495.
    [56]沈珠江.高面板堆石坝抗震措施有效性分析[R].南京:南京水利科学研究院,1993.
    [57]牛运光.土坝安全与加固[M].北京:中国水利水电出版社,1998.
    [58]张启岳.土石坝加固技术[M].北京:中国水利水电出版社,1999.
    [59]《土工合成材料工程应用手册》编写委员会.土工合成材料应用手册[M].北京:中国标准出版社,1998.
    [60]李永红,王晓东.冶勒沥青混凝土心墙堆石坝抗震设计[J].水电站设计,2004,20(2):40-45.
    [61]李道田.青峰岭水库土石坝加固技术及加筋砾石料的应力应变特性研究田[D].南京:河海大学,2006.
    [62]孔宪京,迟世春,邹德高,等.糯扎渡高心墙坝坝料特性及结构优化研究课题研究报告[R].大连:大连理工大学研究报告,2005.
    [63]孔宪京,迟世春,邹德高,等.长河坝水电站砾石土心墙堆石坝动力有限元分析[R].大连:大连理工大学研究报告,2006.
    [64]赵剑明,汪闻韶.关于水利工程震害及抗震研究的几点思考[J].清华大学学报,2000,40(增1):91-95.
    [65]赵剑明,常亚屏,陈宁.加强高土石坝抗震研究的现实意义及工作展望[J].世界地震工程,2004(1):95-99.
    [66]顾淦臣.土石坝地震工程[M].南京:河海大学出版社,1989.
    [67]陈慧远.最新土石坝工程学[M].北京:水利电力出版社,1983.
    [68]刘波,韩彦辉FLAC原理、实例与应用指南[M].北京:人民交通出版社,2005.
    [69]彭文斌FLAC3D实用教程[M].北京:机械工业出版社,2008.
    [70]陈育民,徐鼎平FLAC/FLAC3D基础与工程实例[M].北京:中国水利水电出版社,2009.
    [71]李丹FLAC的原理、程序及其在高填路基变形与稳定分析中的应用[D].福州:福州大学,2006.
    [72]胡军.高士石坝动力稳定分析及加固措施研究[D].大连:大连理工大学,2008.
    [73]黄润秋,许强.显示拉格朗日差分分析在岩石边坡工程中的应用[J].岩石力学与工程学报,1995,14 (4):346-354.
    [74]Itasca Consulting Group, Inc. FLAC-2D (Fast Lagrangian Analysis of Continua in 2 Dimensions) Version 4.0, User manual[S].2002.
    [75]陈育民.邓肯张模型在FLAC3D中的开发与实现[J].岩土力学,2007,28(10):2123-2126.
    [76]王柏乐.中国当代土石坝工程[M].北京:中国水利水电出版社,2004.
    [77]孔宪京,娄树莲,邹德高,等.筑坝堆石料的等效动剪切模量与等效阻尼比[J].水利学报,2001,(8):20-25.
    [78]刘莹光.加筋技术在高土石坝中的应用[D].大连:大连理工大学,2006.
    [79]刘莹光,孔宪京,邹德高.高土石坝加筋抗震措施的快速拉格朗日差分分析[C].第15届全国结构工程学术会议论文集(第2册),2006.
    [80]陈生水,沈珠江.强震区域堆石坝的地震永久变形分析[J].河海大学学报,1990,18(12):117-120.
    [81]吴再光,韩国城.土石坝地震永久变形的危险性分析[J].岩土工程学报,1996,18(3):19-27.
    [82]韩国城,孔宪京.混凝土面板堆石坝抗震研究进展[J].大连理工大学学报(自然科学版),1996,36(6):708-720.
    [83]李永胜.边坡振动台模型试验及相关问题研究[D].大连:大连理工大学,2009.
    [84]朱晟,欧红光,殷彦高.狭窄河谷地形对200m级高面板坝变形和应力的影响研究[J].水力发电学报,2005,(4):73-77.
    [85]徐泽平,邵宇,胡本雄,等.狭窄河谷中高面板堆石坝应力变形特性研究[J].水利水电技术,2005,(5)30-33.
    [86]程嵩,张嘎,张建民,等.河谷地形对面板堆石坝应力位移影响的分析[J].水力发电学报,2008,(5)53-58.
    [87]宋文晶,王彭煦.河谷地形对面板坝防渗体系安全性的影响[J].水力发电学报,2008,(4):94-100.
    [88]毛文娟.强震区高土石坝三维动力反应分析[D].大连:大连理工大学,2008.
    [89]徐泽平.混凝土面板堆石坝应力应变特性研究[M].河南:黄河水利出版社,2005.
    [90]Clough RW, Pirtz D.Earthquake resistance of rock fill dams[J].Soil Mechanics and Foundations Division, ASCE.1956,82 (2):1-26.
    [91]Seed HB, Clough, RW. Earthquake resistance of sloping core dam[J]. Soil Mechanics and Foundations Division, ASCE.1963,89(1):209-242.
    [92]Sakaguchi M. A study of the seismic behavior of geosynthetic reinforced walls in Japan[J]. Geosynthet. Int.,1996,3(1):13-30.
    [93]Bathurst RJ, Cai Z, and Pelletier M. Seismic design and the performance of reinforced segmental retaining walls[J]. Geotech. Fabr. Rep.,1996,14:48-51.
    [94]Matsuo O,Tsutsumi T,Yokoyama K,Saito Y. Shaking table tests and analyses of geosynthetic-reinforced soil retaining walls[J]. Geosynthet. Int.,1998,5(1-2):97-126.
    [95]Sabermahani M, Ghalandarzadeh A, Fakher A. Experimental study on seismic deformation modes of reinforced-soil walls[J]. Geotextiles and Geomembranes,2009,27:121-136.
    [96]Han G, Kong XJ and Li JJ. Dynamic experiments and numerical simulations of model concrete-faced rock-fill dams[C], vol. Ⅵ. Proceedings of Ninth WCEE, Tokyo, Japan,1988:331-36.
    [97]Tamura C, Kong X, Konagai K, Luo X. Fundamental research on failure of concrete-faced rock-fill dams[J]. SEISAN-KENKYU,1992,44(5):1.
    [98]Kong X., Liu J. Dynamic failure numeric simulations of model concrete-faced rock-fill dam[J].Soil Dynamics and Earthquake Engineering.2002,(22):1131-1134.
    [99]Kong Xianjing, Zhu Tong, and Han Guocheng. Effects of measures for enhancing dynamic stability of concrete-faced rockfill dam[J]. Journal of Japan Dam Engineering.2000,10 (2):93-101.
    [100]Kutter BL, and James RG. Dynamic centrifuge model tests on clay embankments[J].Geotechnique, 1989,39(1):91-106.
    [101]Ohishi K,Saitoh K,Katagiri M,et al.Comparison of embankment behaviors in static tilting and shaking table tests[C].Proc.,1st Int. Conf. on Earthquake Geotechnical Engineering,Tokyo, 1995:1075-1080.
    [102]Lili Nova-Roessig,Nicholas Sitar.Centrifuge model studies of the seismic response of reinforced soil slopes [J] Journal of geotechnical and geoenvironmental engineering,2006,132(3):388-400.
    [103]Clough RW and Chopra, A.K.Earthquake stress analysis in earth dams[M].Proceedings,ASCE, 1966,92, No. EM2.
    [104]刘君,刘福海,孔宪京,等.PIV技术在大型振动台模型试验中的应用[J].岩土工程学报,2010,32(3):68-74.
    [105]孔宪京,李永胜,邹德高,等.加筋边坡振动台模型试验研究[J].水力发电学报,2009,28(5):152-157.
    [106]Yu Yuzhen,Xie Liquan,Zhang Binyin. Stability of earth-rockfill dams:Influence of geometry on the three-dimensional effect[J]. Computer and Geotechnics,2005,32:326-339.
    [107]Stark TD,Eid HT.Performance of three-dimensional slope stability analysis method in practice[J]. Geotech. Eng. ASCE.1998,124:1049-60.
    [108]Dawson, EM, Roth WH,Drcscher A.Slope stability analysis by strength reduction[J]. Geotechnique. 1999,49(6):835-840.
    [109]Ugai K. A Method of Calculation of Total Factor of Safety of Slopes by Elasto-Plastic FEM[J]. Soils and Foundations JGS,1989,29(2):190-195.
    [110]赵尚毅,郑颖人,张玉芳.极限分析有限元法讲座—Ⅱ有限元强度折减法中边坡失稳的判据探讨[J].岩士力学,2005,26(2):332-336.
    [111]栾茂田,武亚军,年延凯.强度折减有限元法中边坡失稳的塑性区判据及其应用[J].防灾减灾工程学报,2003,23(3):1-8.
    [112]连镇营,韩国城,孔宪京.强度折减有限元法研究开挖边坡的稳定性[J].岩土工程学报,2001,23(4):407-411.
    [113]Zienkiewicz O C,Humpheson C,Lewis R W.Associated and non-associated viscoplasticity and plasticity in soil mechanics[J]. Geotechnique,1975,25(4):671-689.
    [114]宋二祥.土工结构安全系数的有限元计算[J].岩上工程学报,1997,19(2):1-7.
    [115]程怡.高土石坝三维动力稳定分析研究[D].大连:大连理工大学,2010.
    [116]Zheng H, Liu DF, Li CG. Slope stability analysis based on elasto-plastic finite element method[J]. Int J NumerMeth Eng,2005,64:1871-88.
    [117]Zheng H, Sun GH, Liu DF. A practical procedure for searching critical slip surfaces of slopes based on the strength reduction technique[J]. Computers and Geotechnics.2009,36:1-5.
    [118]韩国城,孔宪京,李俊杰,等.面板堆石坝永久变形、面板应力及抗震措施研究.国家“八五”科技攻关项目研究报告[R].大连:大连理工大学工程抗震研究所.1995.
    [119]孔宪京,韩国城,李俊杰,等.地震时土石填筑坝破坏机理及抗震对策研究.国家自然科学基金项目(59479002)研究报告[R].大连:大连理工大学工程抗震研究所.1997.
    [120]欧阳仲春.现代土工加筋技术[M].北京:人民交通出版社,1991.
    [121]王钊.国外土工合成材料的应用研究[M].香港:现代知识出版社,2002.
    [122]杨果林.现代加筋土技术应用与研究进展fJ].力学与实践.2002,24(1):9-17.
    [123]陈忠达.公路挡土墙设计[M].北京:人民交通出版社,1999.
    [124]雷胜友.加筋土的强度理论及加筋土高挡墙[M].西安:西安地图出版社.2004.
    [125]栾茂田,李敬峰,肖成志,等.土工格栅加筋挡土墙工作性能的非线性有限元数值分析[J].岩石力学与工程学报,2005,24(14):2425-2433.
    [126]闰澎旺,BenBarr土工格栅与土相互作用的有限元分析[J].岩土工程学报,1997,19(6):56-51.
    [127]贺丽.塑料土工格栅加筋挡土墙的应用研究[D].云南:昆明理工大学大学硕士学位论文.2001.
    [128]Wilson-Famhy R F, Koerner R M, Sansone L J. Experimental behavior of polymeric geogrids in pullout[J]. Journal of Geotechnical Enginerring Division, ASCE,1994,12(4):661-677.
    [129]杨果林,肖宏彬.现代加筋土挡土结构[M].北京:煤炭工业出版社,2002.
    [130]Newmark NM.Effects of earthquakes on dams and embankments[C].5th Rankine Lecture, Geotechnique,1965,15(2):139-160.
    [131]Seed,HB.Considerations in the earthquake-resistant design of earth and rockfill dams[J]. Geotechnigue,1979,29(3):215-263.
    [132]Li Hongjun,Chi Shichun,Lin Gao,et al.A modified approach for determination of nonlinear properties in seismic response analyses for 200m high core rock-fill dams[J].Can.Geotech,J, 2008.45:1064-1072.
    [133]Finn WD Liam. Evolution of dynamic analysis in geotechnical earthquake engineering[C].New methods for liquefaction analysis,1999,1-18.
    [134]Cundall PA. A simple hysteretic damping formation for dynamic continuum simulations[C].4th International FLAC symposium on numerical modeling in geotechnique, Madrid, Spain:Itasca Consulting Group,2006,07-04.
    [135]范臻辉,王永和.土工格栅加筋高路堤边坡稳定性的弹塑性有限元分析[J].中南大学学报.2005,36(5):904-910.
    [136]李文勇,陈征宙,罗常青,等.基于FLAC的土工格栅在边坡中的受力变形机理研究[J].中国水运.2008,8(10):175-178.
    [137]钱家欢,殷宗泽.土工原理与计算[M].南京:河海大学出版社.1994,6.
    [138]吴景海,陈环,王玲娟,等.土工合成材料与土界面作用特性的研究[J].岩土工程学报,2001,23(1):89-93.
    [139]李敬峰.土工格栅加筋挡土墙的有限元数值分析与性能研究[D].大连:大连理工大学,2004.
    [140]孔宪京,邹德高,徐斌,等.两河口水电站可行性研究报告[R].大连:大连理工大学工程抗震研究所.2009.
    [141]两河口土石坝工程筑坝料动力特性试验研究报告[R].河海大学岩土工程研究所,2008.
    [142]两河口水电站工程场地地震安全性评价和水库诱发地震评价报告[R].中国地震局地质研究所,2004.
    [143]赵剑明,刘小生,陈宁,等.高心墙堆石坝的极限抗震能力研究[J].水力发电学报,2009,28(5):97-102.
    [144]赵剑明,温彦峰,刘小生,等.深厚覆盖层上高土石坝的极限抗震能力分析[J].岩土力学,2010,增刊1:41-47.
    [145]李国英,沈婷,赵魁芝.高心墙堆石坝地震动力特性及抗震极限分析[J].水利水运工程学报,2010(3):1-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700