稠密气固两相射流的实验研究与数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以粉煤气化气化技术为背景,采用高速摄像仪、粒子图像计算软件和Fluent等,对稠密气固两相射流过程中的颗粒弥散、颗粒运动特征等关键科学问题进行了实验研究,并建立了相关模型进行了数值模拟。具体总结如下:
     1.采用高速摄像仪拍摄了颗粒射流的运动状态,通过对所拍摄得到的图片进行分析获得了颗粒射流的弥散特征。结果表明:颗粒表观速度对颗粒流弥散宽度、颗粒流核心大小和颗粒弥散边界层大小等弥散特征量都有重要的影响;颗粒弥散宽度和弥散边界层大小首先随着距喷嘴距离的增大而呈线性增长然后保持一定大小不变;颗粒弥散边界层中颗粒的竖直速度分布可用抛物线表示;喷嘴角度能对颗粒径向速度产生一定的影响,进而影响颗粒弥散特征量的变化。
     2.对平行喷嘴中颗粒流的弥散特征以及弥散模式进行了分析,同时也对颗粒流在交叉射流中的弥散特征进行了分析。通过分析颗粒的受力情况导出了颗粒流未扰动长度的计算公式;提出了用于计算颗粒流弥散长度的卷吸模型,通过推导获得了弥散长度的表达式;分析了不同交叉角下颗粒流的最小直径和其出现的位置,并获得了其计算公式;引入了Strouhal数来划分波状弥散与振荡弥散,发现波状弥散范围内,第一个波的Strouhal数为0.03~0.07,而振荡弥散时Strouhal数为0.01CO20.02,过渡状态的Strouhal数为0.02~0.03。
     3.应用数值模拟的方法,研究了自由空间中颗粒流在同轴交叉射流中的弥散。采用Realizable k-ε模型模拟湍流,离散颗粒法模拟颗粒运动,颗粒间的碰撞采用概率碰撞模型。结果表明,随着交叉角的增大,气相的轴向速度越来越大,但轴线速度并不无限增大:气流和颗粒流交界处的湍动能高于其它位置,这有利于颗粒的弥散。在气固交界面,颗粒间的碰撞最为激烈。
     4.通过对稠密气固两相流方程的重整,在考虑空隙率对流场影响及颗粒间碰撞的作用下建立了颗粒射流在同轴气流中弥散的二维大涡-离散颗粒法模型(LES-DPM)。模拟获得了同轴射流中颗粒流弥散的整体流场特征,在喷嘴附近气流与颗粒流之间存在回流能导致颗粒对喷嘴的磨损。获得了喷嘴轴线处气体速度分布、颗粒的速度浓度分布以及碰撞频率随弥散模式的变化规律,轴线处颗粒速度、浓度和气体速度等能反应颗粒流的弥散状态;探讨了颗粒流弥散的机理,从气固相互作用(包括曳力系数的非线性性和操作压力)以及颗粒间的碰撞或颗粒间的能量传递揭示了颗粒流的弥散模式的产生是受两者相互作用的影响,且曳力系数的非线性性占主导地位。
This study is conducted to understand the fundamental questions of the dense gas-particle jet and to develop a numerical model. Using high speed camera, software of particle image velocimetry, and Fluent software, the characteristics of particles dispersion and particles motion are studied through experiment and simulation on the basis of pulverized coal gasification. The main contents and results are summartized as follows:
     1. The dispersion characteristics of the granular jet are obtanined using a high speed camera. The results show that the surperfical velocity of particles plays an important role in the characteristics of the near field of the granular jet (e.g., the diameter of granular jet core, the width of dispersed jet, and the thickness of boundary layer). The width of dispersed jet and the thickness of boundary layer linearly grow with the distance from the nozzle exit at first and then keep a constant. The velocity profile of boundary layer near the nozzle exit is parabolic distribution. In addition, the nozzle angle has an influence on the radial velocity of particles and sequentially affects the characteristics of the particle dispersion.
     2. The dispersion characteristics of the granular jet in the parallel-nozzle and cross-nozzle are analyzed. The dispersion modes in the parallel-nozzle are also analyzed. The calculational formula of the undistured length is obtained by analyzing the force acting on the particles. An entrainment model is used to calculate the dispersion length and the model successfully predicts the dispersion length. The minimum diameter of granular jet and its appearing-position are obtained by analyzing the granular jet in cross air jet and their calculational formulas are also obtained. It is found that the Strouhal number, Sth, can be used to distinguish the dispersion modes of the granular jet, when0.07> Sth>0.03, it belongs to the wave dispersion mode, when0.02> Sth>0.01, it belongs to the oscillating mode, and when0.03> Sth>0.02, it belongs to the transition state between the wave dispersion and the oscillating dispersion.
     3. The dispersion of the particles is invesgated by the numerical simulation. The Realizable k-ε model is used to model turbulence. The discrete particle method is employed to track particle motion and the probability-collision is used to consider the inter-particle collision. The results show that the axial velocity of air increses with the increase of the cross angle and will increase to a max value. The turbulent kinetic energy is highest on the interface between granular flow and air flow, which is in favor of the particle dispersion. The particle concentration decreases along the axial direction as a whole, and its profile agree with the Gauss function in the radial direction. The collision among particles is the most intense on the interface of the granular jet.
     4. A2D LES-DPM (large eddy simulation-discrete particle method) is developed to take account the dispersion modes of the granular jet in a parallel coaxial air. The void fraction and the iner-particle collision is introduced into the Fluent through re-organize the gas phase equations in Fluent. The global features of the flow field are obtained. It is found that there is invese flow between the air jet and granular jet near the nozzle, which would make the particles take off the interface of the granular jet and then wear the nozzle. The air velocity, particle velocity, particle concentration and the frequency of the collision between particles are also obtained. It is found that the above characteristics can reflect the state of the dispersion of the granular jet. By analyzing the interaction between air and particles (including the no linear of the drag coefficient and the operating pressure) and the inter-particle collision (or transmission of the energy between particles), the mechanics of the dispersion of the granular jet is investigated. The results suggest that both of the two interactions are important for the dispersion modes, and the nolinear of the drag cofficicent is dominant.
引文
[1]Barlow R. S., Morrison C. Q.. Two-phase velocity measurements in dense particle-laden jets[J]. Experiments in Fluids,1990,9(1-2):93-104.
    [2]Fan J. R., Sun P., Cen K. F.. Numerical study of a dense gas-solid jet flow[J]. Energy, 1998,23(10):823-833.
    [3]Fan J. R., Jin J., Zhang X. Y. et al. A numerical model for dense particle-laden jets[J]. Powder Technology,2001,115(3):256-264.
    [4]Dai Z., Gong X., Guo X. et al. Pilot-trial and modeling of a new type of pressurized entrained-flow pulverized coal gasification technology[J]. Fuel,2008,87(10-11): 2304-2313.
    [5]Guo X., Dai Z., Gong X. et al. Performance of an entrained-flow gasification technology of pulverized coal in pilot-scale plant[J]. Fuel Processing Technology,2007,88(5): 451-459.
    [6]Wardjiman C., Lee A., Sheehan M. et al. Shape of a particle curtain falling in stagnant air[J]. Powder Technology,2009,192(3):384-388.
    [7]Liu Z., Cooper P., Wypych P. W.. Experimental investigation of air entrainment in free-falling particle plumes[J]. Particulate Science and Technology,2007,25(4): 357-373.
    [8]Ansart R., Ryck A. d.,Dodds J. A.. Dust emission in powder handling:Free falling particle plume characterisation[J]. Chemical Engineering Journal,2009,152(2-3):415-420.
    [9]Ansart R., de Ryck A., Dodds J. A. et al. Dust emission by powder handling:Comparison between numerical analysis and experimental results[J]. Powder Technology,2009, 190(1-2):274-281.
    [10]Ansart R., Letourneau J.-J., de Ryck A. et al. Dust emission by powder handling: Influence of the hopper outlet on the dust plume[J]. Powder Technology,2011,212(3): 418-424.
    [11]Ogata K., Funatsu K., Tomita Y.. Experimental investigation of a free falling powder jet and the air entrainment[J]. Powder Technology,2001,115(1):90-95.
    [12]Janda A., Zuriguel I., Maza D.. Flow Rate of Particles through Apertures Obtained from Self-Similar Density and Velocity Profiles[J]. Physical Review Letters,2012,108(24): 248001.
    [13]Cheng X., Varas G., Citron D. et al. Collective Behavior in a Granular Jet:Emergence of a Liquid with Zero Surface Tension[J]. Physical Review Letters,2007,99(18):188001.
    [14]CLANET C.. Dynamics and stability of water bells[J]. Journal of Fluid Mechanics, 2001,430:111-147.
    [15]Huang Y. J., Chan C. K., Zamankhan P.. Granular jet impingement on a fixed target[J]. Physical Review E,2010,82(3):031307.
    [16]Sano T. G., Hayakawa H.. Simulation of granular jets:Is granular flow really a perfect fluid?[J]. Physical Review E,2012,86(4):041308.
    [17]Mobius M. E.. Clustering instability in a freely falling granular jet[J]. Physical Review E,2006,74(5):051304.
    [18]Royer J. R., Evans D. J., Oyarte L. et al. High-speed tracking of rupture and clustering in freely falling granular streams[J]. Nature,2009,459(7250):1110-1113.
    [19]Boudet J. F., Amarouchene Y., Bonnier B. et al. The granular jump[J]. Journal of Fluid Mechanics,2007,572:413-431.
    [20]Prado G., Amarouchene Y., Kellay H.. Experimental Evidence of a Rayleigh-Plateau Instability in Free Falling Granular Jets[J]. Physical Review Letters,2011,106(19): 198001.
    [21]Amarouchene Y., Boudet J.-F., Kellay H.. Capillarylike Fluctuations at the Interface of Falling Granular Jets[J]. Physical Review Letters,2008,100(21):218001.
    [22]Duran J.. Rayleigh-Taylor Instabilities in Thin Films of Tapped Powder[J]. Physical Review Letters,2001,87(25):254301.
    [23]Batchelor G. K.. Diffusion in free turbulent shear flows[J]. Journal of Fluid Mechanics, 1957,3(01):67-80.
    [24]Hinze J. O. Turbulence[M]. New York:McGraw Hill,1975.
    [25]Brucato A., Grisafi F., Montante G.. Particle drag coefficients in turbulent fluids[J]. Chemical Engineering Science,1998,53(18):3295-3314.
    [26]Warnica W. D., Renksizbulut M., Strong A. B.. Drag coefficients of spherical liquid droplets Part 2:Turbulent gaseous fields[J]. Experiments in Fluids,1995,18(4): 265-276.
    [27]Crowe C. T., Gore R. A., Troutt T. R.. Particle dispersion by coherent structures in free shear flows[J]. Particulate Science and Technology,1985,3:149-158.
    [28]Crowe C. T., Chung J. N., Troutt T. R.. Particle mixing in free shear flows[J]. Progress in Energy and Combustion Science,1988,14(3):171-194.
    [29]Anderson S. L., Longmire E. K.. Particle motion in the stagnation zone of an impinging air jet[J]. Journal of Fluid Mechanics,1995,299:333-366.
    [30]Longmire E. K., Eaton J. K.. Structure of a particle-laden round jet[J]. Journal of Fluid Mechanics Digital Archive,1992,236(-1):217-257.
    [31]Sakakibara J., Wicker R. B., Eaton J. K.. Measurements of the particle-fluid velocity correlation and the extra dissipation in a round jet[J]. International Journal of Multiphase Flow,1996,22(5):863-881.
    [32]Cerecedo L. M., Aisa L., Ballester J.. Experimental study on a non-dilute two-phase coflowing jet:Dynamics of particles in the near flow field[J]. International Journal of Multiphase Flow,2009,35(5):468-483.
    [33]Sbrizzai F., Verzicco R., Pidria M. F. et al. Mechanisms for selective radial dispersion of microparticles in the transitional region of a confined turbulent round jet[J]. International Journal of Multiphase Flow,2004,30(11):1389-1417.
    [34]Snyder W. H., Lumley J. L.. Some measurements of particle velocity autocorrelation functions in a turbulent flow[J]. Journal of Fluid Mechanics,1971,48(01):41-71.
    [35]Fleckhaus D., Hishida K., Maeda M.. Effect of laden solid particles on the turbulent flow structure of a round free jet[J]. Experiments in Fluids,1987,5(5):323-333.
    [36]Anjorin V. A. I., Tang H., Morgan A. J. et al. An experimental and numerical investigation into the dispersion of powder from a pipe[J]. Experimental Thermal and Fluid Science,2003,28(1):45-54.
    [37]秦军,李伟锋,代正华等.受限气固两相射流的实验研究和数值模拟[J].高校化学工程学报,2005,19(5):619-624.
    [38]罗坤,樊建人,郑水华等.圆湍射流中的拟序结构和颗粒弥散[J].化工学报,2006,57(6):1329-1333.
    [39]Gore R. A., Crowe C. T.. Modulation of turbulence by a dispersed phase[J]. Journal of Fluids Engineering, Transactions of the ASME,1991,113(2):304-307.
    [40]Mergheni M. A., Sautet J. C., Godard G.et al. Experimental investigation of turbulence modulation in particle-laden coaxial jets by Phase Doppler Anemometry[J]. Experimental Thermal and Fluid Science,2009,33(3):517-526.
    [41]Balachandar S., Eaton J.K.. Turbulent Dispersed Multiphase Flow[J]. Annual Review of Fluid Mechanics,2010,42(1):111-133.
    [42]Modarress D., Tam M., Elghobashi S.. Two-component LDA measurement in a two-phase turbulent jet[J]. AIAA Journal,1984,22(5):624-630.
    [43]Mostafa A. A., Mongia H. C., McDonell V. G. et al. An experimental and numerical study of particle-laden coaxial jet flows[J]. International Journal of Heat and Fluid Flow, 1990,11(2):90-97.
    [44]崔金雷,王希麟,容易.气固两相圆湍射流颗粒对气相流动的影响[J].工程热物理学报,2005,26(6):974-976.
    [45]范全林,张会强.两相圆湍射流中Stokes数的影响[J].燃烧科学与技术,1999,5(4):435-440.
    [46]Rehab H., Villermaux E., Hopfinger E. J.. Flow regimes of large-velocity-ratio coaxial jets[J]. Journal of Fluid Mechanics,1997,345(-1):357-381.
    [47]Bitting J. W., Nikitopoulos D. E., Gogineni S. P. et al. Visualization and two-color DPIV measurements of flows in circular and square coaxial nozzles[J]. Experiments in Fluids, 2001,31(1):1-12.
    [48]陈永斌,徐益谦.气固受限同轴射流颗粒弥散的实验研究[J].工程热物理学报,1993,14(1):102-105.
    [49]周华辉,许建良,李伟锋等.稠密气固两相同轴射流颗粒弥散特性[J].化工学报,2009(02):332-337.
    [50]周华辉.稠密气固两相同轴射流颗粒弥散特性[D].上海:华东理工大学,2009.
    [51]张安峰,周志敏,李涤尘等.同轴送粉喷嘴气固两相流流场的数值模拟[J].西安交通大学学报,2008,42(9):1169-1173.
    [52]Mostafa A. A., Mongia H. C., McDonell V. G. et al. Evolution of particle-laden jet flows: A theoretical and experimental study[J]. AIAA Journal,1989,27(2):167-183.
    [53]Fan J., Zhao H., Cen K... An experimental study of two-phase turbulent coaxial jets[J]. Experiments in Fluids,1992,13(4):279-287.
    [54]Fan J., Zhao H., Jin J.. Two-phase velocity measurements in particle-laden coaxial jets[J]. The Chemical Engineering Journal and the Biochemical Engineering Journal, 1996,63(1):11-17.
    [55]Pan H., Sparks T., Thakar Y. D. et al. The Investigation of Gravity-Driven Metal Powder Flow in Coaxial Nozzle for Laser-Aided Direct Metal Deposition Process[J]. Journal of Manufacturing Science and Engineering,2006,128(2):541-553.
    [56]Apte S. V., Mahesh K., Moin P. et al. Large-eddy simulation of swirling particle-laden flows in a coaxial-jet combustor[J]. International Journal of Multiphase Flow,2003, 29(8):1311-1331.
    [57]Gui N., Fan J., Zhou Z.. Particle statistics in a gas-solid coaxial strongly swirling flow: A direct numerical simulation[J]. International Journal of Multiphase Flow,2010,36(3): 234-243.
    [58]Wicker R. B., Eaton J. K.. Effect of injected longitudinal vorticity on particle dispersion in a swirling, coaxial jet[J]. Journal of Fluids Engineering-Transactions of the Asme, 1999,121(4):766-772.
    [59]Wicker R. B., Eaton J. K.. Structure of a swirling, recirculating coaxial free jet and its effect on particle motion[J]. International Journal of Multiphase Flow,2001,27(6): 949-970.
    [60]孙志刚.多相撞击流及稠密气固两相同轴射流研究[D].上海:华东理工大学,2010.
    [61]Ge W., Li J.. Macro-scale phenomena reproduced in microscopic systems-pseudo-particle modeling of fluidization[J]. Chemical Engineering Science,2003,58(8): 1565-1585.
    [62]Crowe C. T., Troutt T. R., Chung J. N.. Numerical Models for Two-Phase Turbulent Flows[J]. Annual Review of Fluid Mechanics,1996,28(1):11-43.
    [63]周力行.湍流两相流动与燃烧的数值模拟([M].北京:清华大学出版社,1991.
    [64]容易,张会强,王希麟.气固两相圆湍射流颗粒对气相湍流调制的机理分析[J].工程热物理学报,2007,28(5):791-794.
    [65]DeSpirito J., Wang L. P.. Linear instability of two-way coupled particle-laden jet[J]. International Journal of Multiphase Flow,2001,27(7):1179-1198.
    [66]林建忠,林江.气固轴对称射流中固粒扩散的研究[J].工程热物理学报,2000,21(2):234-237.
    [67]王兵,张会强,王希麟.颗粒在大涡结构中的弥散[J].力学学报,2005,37(1):105-109.
    [68]刘小云,罗坤,金军等.气固两相湍流射流中颗粒的统计特性[J].中国电机工程学报,2005,25(9):108-113.
    [69]Almeida T. G, Jaberi F. A.. Large-eddy simulation of a dispersed particle-laden turbulent round jet[J]. International Journal of Heat and Mass Transfer,2008,51(3-4):683-695.
    [70]Crowe C. T., Multiphase Flow Handbook.2006.
    [71]李静海,欧阳洁,高士秋等.颗粒流体复杂系统的多尺度模拟[M].北京:科学出版社,2005.
    [72]刘向军,石磊,徐旭常.稠密气固两相流欧拉-拉格朗日法的研究现状[J].计算力学学报,2007,24(2):166-172.
    [73]Tsuji Y., Tanaka T., Ishida T.. Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe[J]. Powder Technology,1992,71(3):239-250.
    [74]Tsuji Y., Kawaguchi T., Tanaka T.. Discrete particle simulation of two-dimensional fluidized bed[J]. Powder Technology,1993,77(1):79-87.
    [75]Xu B. H., Yu A. B.. Numerical simulation of the gas-solid flow in a fluidized bed by combining discrete particle method with computational fluid dynamics[J]. Chemical Engineering Science,1997,52(16):2785-2809.
    [76]Hoomans B. P. B., Kuipers J. A. M., Briels W. J. et al. Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidised bed:a hard-sphere approach[J]. Chemical Engineering Science,1996,51(1):99-108.
    [77]Tsuji Y., Tanaka T., Yonemura S.. Cluster patterns in circulating fluidized beds predicted by numerical simulation (discrete particle model versus two-fluid model)[J]. Powder Technology,1998,95(3):254-264.
    [78]Feng Y. Q., Yu A. B.. Assessment of Model Formulations in the Discrete Particle Simulation of Gas-Solid Flow[J]. Industrial & Engineering Chemistry Research,2004, 43(26):8378-8390.
    [79]Zhou Z. Y., Kuang S. B., Chu K. W. et al. Discrete particle simulation of particle-fluid flow:model formulations and their applicability[J]. Journal of Fluid Mechanics,2010,661:482-510.
    [80]Cundall P. A., Strack O. D. L.. A discrete numerical model for granular assemblies[J]. Geotechnique,1979,29(1):47-65.
    [81]Di Renzo A., Di Maio F. P.. Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes[J]. Chemical Engineering Science,2004, 59(3):525-541.
    [82]Kodam M., Bharadwaj R., Curtis J. et al. Cylindrical object contact detection for use in discrete element method simulations. Part Ⅰ-Contact detection algorithms[J]. Chemical Engineering Science,2010,65(22):5852-5862.
    [83]Zhu H. P.,Zhou Z. Y., Yang R. Y. et al. Discrete particle simulation of particulate systems: Theoretical developments[J]. Chemical Engineering Science,2007,62(13):3378-3396.
    [84]Weber M. E.. simulation of cohesive particle flows in granular and gas-solid systems[D]. Calorado:University of Colorado at Boulder,2004.
    [85]Helland E., Occelli R., Tadrist L.. Computational study of fluctuating motions and cluster structures in gas-particle flows[J]. International Journal of Multiphase Flow,2002, 28(2):199-223.
    [86]Oesterle B., Petitjean A.. Simulation of particle-to-particle interactions in gas solid flows[J]. International Journal of Multiphase Flow,1993,19(1):199-211.
    [87]Sommerfeld M.. Validation of a stochastic Lagrangian modelling approach for inter-particle collisions in homogeneous isotropic turbulence[J]. International Journal of Multiphase Flow,2001,27(10):1829-1858.
    [88]Gui N., Fan J. R., Luo K.. DEM-LES study of 3-D bubbling fluidized bed with immersed tubes[J]. Chemical Engineering Science,2008,63(14):3654-3663.
    [89]Chu K. W., Yu A. B.. Numerical Simulation of the Gas-Solid Flow in Three-Dimensional Pneumatic Conveying Bends[J]. Industrial & Engineering Chemistry Research,2008,47(18):7058-7071.
    [90]Waitukaitis S. R., Grtltjen H. F., Royer J. R. et al. Droplet and cluster formation in freely falling granular streams[J]. Physical Review E,2011,83(5):051302.
    [91]Yan J., Luo K., Fan J. et al. Direct numerical simulation of particle dispersion in a turbulent jet considering inter-particle collisions[J]. International Journal of Multiphase Flow,2008,34(8):723-733.
    [92]Zhao X. L., Li S. Q., Liu G. Q. et al. DEM simulation of the particle dynamics in two-dimensional spouted beds[J]. Powder Technology,2008,184(2):205-213.
    [93]Gui N., Fan J., Cen K.. Effect of local disturbance on the particle-tube collision in bubbling fluidized bed[J]. Chemical Engineering Science,2009,64(15):3486-3497.
    [94]Liu H., Lu H.. Numerical study on the cluster flow behavior in the riser of circulating fluidized beds[J]. Chemical Engineering Journal,2009,150(2-3):374-384.
    [95]Huilin L., Shuyan W., Yunhua Z. et al. Prediction of particle motion in a two-dimensional bubbling fluidized bed using discrete hard-sphere model[J]. Chemical Engineering Science,2005,60(12):3217-3231.
    [96]Zhou H., Flamant G., Gauthier D.. DEM-LES of coal combustion in a bubbling fluidized bed. Part Ⅰ:gas-particle turbulent flow structure[J]. Chemical Engineering Science, 2004,59(20):4193-4203.
    [97]FLUENT Inc, FLUENT 6.3 UDF Manual.
    [98]帕坦卡.传热与流体流动的数值计算.张政译[M].北京:科学出版社,1989.
    [99]陶文铨.数值传热学(第二版)[M].西安:西安交通大学出版社,2001.
    [100]Liu H., Cao W., Xu J. et al. Dispersion mode of granular jet in a coaxial air jet[J]. Powder Technology,2012,217(0):566-573.
    [101]Aranson I. S., Tsimring L. S.. Patterns and collective behavior in granular media: Theoretical concepts[J]. Reviews of Modern Physics,2006,78(2):641.
    [102]Forterre Y., Pouliquen O.. Flows of Dense Granular Media[J]. Annual Review of Fluid Mechanics,2008,40(1):1-24.
    [103]Brilliantov N. V., Albers N., Spahn F. et al. Collision dynamics of granular particles with adhesion[J]. Physical Review E,2007,76(5):051302.
    [104]Bertho Y., Giorgiutti-dauphine F., Raafat T. et al. Powder flow down a vertical pipe:the effect of air flow[J]. Journal of Fluid Mechanics,2002,459:317-345.
    [105]Moseler M., Landman U.. Formation, Stability, and Breakup of Nanojets[J]. Science, 2000,289(5482):1165-1169.
    [106]Khalitov D. A., Longmire E. K.. Simultaneous two-phase PIV by two-parameter phase discrimination[J]. Experiments in Fluids,2002,32(2):252-268.
    [107]Fischer H. B. Mixing in inland and coastal waters[M]. Academic Press,1979.
    [108]Middleman S. Modeling Axisymmetric Flows:Dynamics of films, jets, and drops[M]. Academic Press,1995.
    [109]Lohse D., van der Meer D.. Granular media:Structures in sand streams[J]. Nature, 2009,459(7250):1064-1065.
    [110]Jens E., Emmanuel V.. Physics of liquid jets[J]. Reports on Progress in Physics,2008, 71(3):036601.
    [111]Clift R., Grace J. R., Weber M. E. Bubbles, Drops, and Particles[M]. New York: Academic Press,1978.
    [112]Lasheras J. C., Hopfinger E. J.. Liquid jet instability and atomization in a coaxial gas stream[J]. Annual Review of Fluid Mechanics,2000,32:275-308.
    [113]Zeng L., Najjar F., Balachandar S. et al. Forces on a finite-sized particle located close to a wall in a linear shear flow[J]. Physics of Fluids,2009,21(3):033302-18.
    [114]Lee C. S., Park S. W.. An experimental and numerical study on fuel atomization characteristics of high-pressure diesel injection sprays[J]. Fuel,2002,81(18): 2417-2423.
    [115]Lasheras J. C., Villermaux E., Hopfinger E. J.. Break-up and atomization of a round water jet by a high-speed annular air jet[J]. Journal of Fluid Mechanics,1998,357(1): 351-379.
    [116]Desantes J. M., Payri R., Salvador F. J. et al. Influence of cavitation phenomenon on primary break-up and spray behavior at stationary conditions[J]. Fuel,2010,89(10): 3033-3041.
    [117]Varga C. M., Lasheras J. C., Hopfinger E. J.. Initial breakup of a small-diameter liquid jet by a high-speed gas stream[J]. Journal of Fluid Mechanics,2003,497:405-434.
    [118]Rudinger G.. Effective drag coefficient for gas-particle flow in shock tubes[J]. J. Basic Eng. Trans. ASME,1970,92D:165-172.
    [119]Eroglu H., Chigier N., Farago Z.. Coaxial atomizer liquid intact lengths[J]. Physics of Fluids A,1991,3(2):303.
    [120]FLUENT Inc, Fluent 6.3 User Guide.
    [121]T.Tanaka Y. T. Numerical simulation of gas-solid two-phase flow in a vertical pipe: on the effect of inter-particle collision[J]. Transfer ASME, Journal of Fluids Engineering,1991,121:123-128.
    [122]Triesch O., Bohnet M.. Measurement and CFD prediction of velocity and concentration profiles in a decelerated gas-solids flow[J]. Powder Technology,2001,115(2):101-113.
    [123]许建良.气流床气化炉内多相反应流动的实验与数值模拟研究[D].上海:华东理工大学,2008.
    [124]Buresti G., Talamelli A., Petagna P. Experimental characterization of the velocity field of a coaxial jet configuration[J]. Experimental Thermal and Fluid Science,1994,9(2): 135-146.
    [125]刘海峰,赵铁均等.应用Dual PDA研究同轴交叉射流轴线速度衰减[J].工程热物理学报,2001,22(4):441-443.
    [126]Li J., Kuipers J. A. M.. Effect of pressure on gas-solid flow behavior in dense gas-fluidized beds:a discrete particle simulation study[J]. Powder Technology,2002, 127(2):173-184.
    [127]Gidaspow D. Multiphase flow and fluidization:continuum and kinetic theory descriptions[M]. Academic Press,1994.
    [128]Zhu H. P., Zhou Z. Y., Yang R. Y. et al. Discrete particle simulation of particulate systems:A review of major applications and findings[J]. Chemical Engineering Science, 2008,63(23):5728-5770.
    [129]Ding J., Gidaspow D.. A bubbling fluidization model using kinetic theory of granular flow[J]. AIChE Journal,1990,36(4):523-538.
    [130]Ishii M., Hibiki T. Thermo-fluid dynamics of two-phase flow[M]. New York:Springer, 2006.
    [131]Goldschmidt M. J. V., Beetstra R., Kuipers J. A. M.. Hydrodynamic modelling of dense gas-fluidised beds:comparison and validation of 3D discrete particle and continuum models[J]. Powder Technology,2004,142(1):23-47.
    [132]Wu C. L., Zhan J. M., Li Y. S. et al. Accurate void fraction calculation for three-dimensional discrete particle model on unstructured mesh[J]. Chemical Engineering Science,2009,64(6):1260-1266.
    [133]Smagorinsky J.. General circulation experiments with the primitive equations[J]. Monthly weather review,1963,91(3):99-164.
    [134]Lilly D.. A proposed modification of the Germano subgrid-scale closure method[J]. Physics of Fluids,1992,4:633-635.
    [135]Tanaka T., Tsuji Y., Numerical simulation of gas-solid two-phase flow in a vertical pipe: On the effect of inter-particle collision..1991; 121:123-128.
    [136]Wen C., Yu Y. In Mechanics of fluidization, Chemical Engineering Progress Symposium Series,1966:100.
    [137]Saffman P. G.. The lift on a small sphere in a slow shear flow[J]. Journal of Fluid Mechanics,1965,22(02):385-400.
    [138]Holzer A., Sommerfeld M.. New simple correlation formula for the drag coefficient of non-spherical particles[J]. Powder Technology,2008,184(3):361-365.
    [139]Mei R.. An approximate expression for the shear lift force on a spherical particle at finite reynolds number[J]. International Journal of Multiphase Flow,1992,18(1): 145-147.
    [140]Li D. J.. Euler-lagrange simulation of flow structure formation and evolution in dense gas-solid flows[D]. Enschede:2003.
    [141]Wu C., Cheng Y., Ding Y. et al. CFD-DEM simulation of gas-solid reacting flows in fluid catalytic cracking (FCC) process[J]. Chemical Engineering Science,2010,65(1): 542-549.
    [142]容亮湾.非结构化网格上的稠密颗粒两相流数值模拟[D].广州:中山大学,2010.
    [143]Wee Chuan Lim E., Wang C.-H., Yu A.-B.. Discrete element simulation for pneumatic conveying of granular material[J]. AIChE Journal,2006,52(2):496-509.
    [144]Link J. M., Cuypers L. A., Deen N. G. et al. Flow regimes in a spout-fluid bed:A combined experimental and simulation study[J]. Chemical Engineering Science,2005, 60(13):3425-3442.
    [145]Ouyang J., Li J.. Particle-motion-resolved discrete model for simulating gas-solid fluidization[J]. Chemical Engineering Science,1999,54(13-14):2077-2083.
    [146]Ouyang J., Li J.. Discrete simulations of heterogeneous structure and dynamic behavior in gas-solid fluidization[J]. Chemical Engineering Science,1999,54(22):5427-5440.
    [147]van Wachem B.G.M., van der Schaaf J., Schouten J. C. et al. Experimental validation of Lagrangian-Eulerian simulations of fluidized beds[J]. Powder Technology,2001. 116(2-3):155-165.
    [148]Li J., Kuipers J. A. M.. Gas-particle interactions in dense gas-fluidized beds[J]. Chemical Engineering Science,2003,58(3-6):711-718.
    [149]Helland E., Occelli R., Tadrist L.. Numerical study of cluster formation in a gas-particle circulating fluidized bed[J]. Powder Technology,2000,110(3):210-221.
    [150]Happel J.. Viscous flow in multiparticle systems:slow motion of fluids relative to beds of spherical particles[J]. AIChE Journal,1958,4(2):197-201.
    [151]Di Felice R.. The voidage function for fluid-particle interaction systems[J]. International Journal of Multiphase Flow,1994,20(1):153-159.
    [152]Ergun S.. Fluid flow through packed columns[J]. Chemical Engineering Progress, 1952,48:89-94.
    [153]Choi H. G., Joseph D. D.. Fluidization by lift of 300 circular particles in plane Poiseuille flow by direct numerical simulation[J]. Journal of Fluid Mechanics,2001,438(1): 101-128.
    [154]Hill K. M., Yohannes B.. Rheology of Dense Granular Mixtures:Boundary Pressures[J]. Physical Review Letters,2011,106(5):058302.
    [155]Zhang J., Fan L.-S., Zhu C. et al. Dynamic behavior of collision of elastic spheres in viscous fluids[J]. Powder Technology,1999,106(1-2):98-109.
    [156]Muller P., Krengel D., Poschel T.. Negative coefficient of normal restitution[J]. Physical Review E,2012,85(4):041306.
    [157]Gollwitzer F., Rehberg I., Kruelle C. A. et al. Coefficient of restitution for wet particles[J]. Physical Review E,2012,86(1):011303.
    [158]Rami rez R., Poschel T., Brilliantov N. V. et al. Coefficient of restitution of colliding viscoelastic spheres[J]. Physical Review E,1999,60(4):4465-4472.
    [159]Langston P. A., Tuzun U., Heyes D. M.. Discrete element simulation of granular flow in 2D and 3D hoppers:Dependence of discharge rate and wall stress on particle interactions[J]. Chemical Engineering Science,1995,50(6):967-987.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700