水稻株1S温敏核不育基因及中1W温敏白条纹叶基因精细定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
株1S是当前我国广泛用于两系法杂交早稻组合配制的低不育起点温度高配合力的温敏核不育系。本研究以株1S为材料,对其花粉败育的细胞学、不育性状的经典遗传学、不育基因的精细定位进行了研究。水稻中1W温敏白条纹叶突变体来源于日本晴经EMS诱变。该突变体苗期低于28℃条件下表现白条纹叶,随着发育的进行以及温度的升高,其白条纹叶逐渐转变为与野生型日本晴几乎无差异的绿叶。本试验对中1W温敏白条纹叶的农艺性状、不同发育时期叶绿素含量、叶色不同部位叶绿体的亚显微结构、白条纹叶基因的遗传规律、精细定位等进行了研究,主要结果如下:
     1花粉败育细胞学观察表明,株1S花粉败育起始于小孢子早期,一直持续至花粉成熟期,由于绒毡层细胞解体迟缓,不能提供其发育所需的营养物质而导致花粉败育。株1S花粉败育花药壁亚显微结构观察进一步证实了这一研究结果。
     2育性经典遗传学分析表明,株1S不育基因与安农S-1,福龙S的不育基因部分等位;与C815S,培矮64S的温敏核不育基因完全不等位。株1S温敏不育性状受1对隐性核基因控制。
     3不育基因精细定位结果表明,株1S不育基因位于第2染色体短臂上,定位于In-Del标记In101与In91之间的30.2Kb的区域内。该基因暂命名为tms9。
     4生物信息学分析表明,在该30.2Kb的区域内存在7个候选基因(ORF),根据各候选基因在株1S可育和不育条件下的表达以及各候选基因测序,最终第6个候选基因(LOC_Os02g12290)被认为最有可能是株1S不育目标基因,进一步的转基因功能互补验证实验正在进行。
     5中1W温敏白条纹叶除株高显著低于野生型外,其他农艺性状与野生型无显著差异。
     6中1W温敏白条纹叶田间条件下四叶期、分蘖期、孕穗期的叶绿素含量显著低于野生型,抽穗期及以后则与野生型差异不显著。
     7中1W温敏白条纹叶白色部分叶绿体数量明显少于野生型;叶绿体结构异常,具体表现为内囊体数目较少,基粒片层排列疏松不连续,嗜锇小体较多,淀粉体较少。叶片转绿后,叶绿体结构与野生型无显著差异。
     8遗传分析表明:中1W温敏白条纹叶性状由1对隐性核基因控制。该基因定位在水稻第9染色体端粒附近SSR标记RM23742和RM23759之间约486.5Kb的区域内,该区域内含有5个BAC克隆子,该基因暂命名为wsl1。
ZhulS is a thermo-sensitive genic male sterile line of rice with low critical temperature of fertility alteration and excellent combining ability, which has been widely exploited as a female parent in Chinese two-line hybrid rice breeding. In this study, the cytological observations of pollen sterility, the classical genetic of male sterility trait were analysised and the thermo-sensitive genie male sterile gene of ZhulS was fine mapped, respectively. The rice thermo-sensitive white striped leaf mutant Zhong1W was mutated from cv. Nipponbare by EMS. Zhong1W showed white striped leaves at the seedling stage and tillering stage when the temperature was below28℃, then the white striped phenotype restored gradually to green until mature along with the temperature rising. In this study, the agronomic traits, chlorophyll content during different development stages, chloroplast ultrastructure within different leaf color parts, the classical genetic analysis and molecular mapping of Zhong1W leaf color mutant gene have been investigated. The all major study results are as follows:
     1The cytological observations of ZhulS pollen sterility indicated that the pollen abortion was dated from early microspore and which continued to pollen maturation, it can not provide the nutrients for microspore development because of the tapetum cell delayed disintegration which lead to pollen abortion. The anther wall cells ultrastructure observations during Zhu1S pollen abortion stage further confirmed the results of cytological observations, that due to the not timely disintegration of tapetum cells then the microspores can not get enough nutrients during the development stage which lead to pollen abortion.
     2Genetic analysis showed that Zhu1S thermo-sensitive genic male sterility was controlled by a single recessive nuclear gene. There was partly allelic sterile gene between Zhu1S and AnnongS-1and FulongS. However, there was no allelic sterile gene between Zhu1S and C815S and Peiai64S.
     3The thermo-sensitive genic male sterile gene of Zhu1S, which was named tms9temporarily, was finally mapped on the short arm of the chromosome2between the Indel markers Indel101and Indel91with the physic distance of30.2Kb.
     4There are seven candidate genes in the30.2Kb positioning interval according to the bioinformatics analysis. Finally, according to the results of candidate genes expression under the fertile and sterile conditions of Zhul S and the candidate genes sequencing, the sixth candidate gene (LOC_Os02g12290) was at last considered as the possible target gene of thermo-sensitive genic male sterile gene for Zhu1S, and futher genetically modified function complementary verification tests are underway.
     5At maturity, the plant height of the thermo-sensitive white striped leaf mutant Zhong1W was significantly shorter than that of the wild type. While the other agronomic characters between Zhong1W and its wild type showed no significant difference.
     6During the fourth leaf stage, tillering stage and booting stage, the Chlorophyll a content, Chlorophyll b content and the total Chlorophyll content of Zhong1W were all lower than that of its wild type, while during the heading stage, the Chlorophyll a content, Chlorophyll b content and the total Chlorophyll content between Zhong1W and its wild type have no significant difference.
     7The number of chloroplast in the white part of Zhong1W leaves was much less than that of its wild type, the thylakoids were vague and degraded, and the grana lamellar became more loosely-packed, discontinued and significantly reduced in number. In addition, the number of osmium corpuscle in the chloroplasts of Zhong1W was much more than that of its wild type, while the starch granule of which was significantly reduced. Within the green part of Zhong1W, the leaf color showed light green, and the number of chloroplast in the mesophyll cell was increased, and there were also some chloroplasts with well-developed grana lamellar structure similar to that of the wild-type in the mesophyll cells.
     8Genetic analysis showed that the rice thermo-sensitive white striped leaf mutant trait of ZhonglW was controlled by a single recessive gene. ZhonglW thermo-sensitive white striped leaf gene was finally mapped on the telomere region of chromosome9and positioned between SSR markers RM23742and RM23759, which are separated by approximately486.5kb. There are five BAC clones in the mapping interval. Zhong1W thermo-sensitive white striped leaf gene was temporarily named wsll.
引文
[1]石明松.对光照敏感的隐性雄性不育水稻的发现与初步研究[J].中国农业科学,1985,(2):44-48.
    [2]廖亦龙,王丰,李传国,等.两用核不育水稻的选育与利用研究进展[J].作物研究,2002,(5):216-219.
    [3]王长义,戚华雄,冯云庆,等.粳型光敏核不育系N5088S的选育与应用[J].湖北农业科学,1995,(6):5-12.
    [4]王守海,袁勤,许克农,等.粳型光温敏核不育系La7001S的育性转换及应用研究[J].安徽农业科学,1989,(3):1-6.
    [5]张受刚,黄显波,许旭明,等.广亲和两用不育系M901S选育初报[J].杂交水稻,1994(3):31-32.
    [6]张集文,卢碧林.水稻两系法广亲和性不育系2018S的选育及对不育系选择的思考[J].湖北农业科学,1993,(1):3-8.
    [7]罗孝和,邱趾忠,李任华.导致临界温度低的两用不育系培矮64S[J].杂交水稻,1992(4):27-29.
    [8]李任华,王象坤,罗孝和,等.光敏核不育系轮回422S的选育[J].杂交水稻,1995,(6):7-9.
    [9]牟同敏,卢兴桂,李春海,等.籼型核不育两用系W91607S的选育与利用[J].湖北农业科学,1995,(4):6-11.
    [10]王丰,彭慧普,伍应运,等.籼型低温敏核不育系GD-2S的选育研究[J].杂交水稻,1996,(4):12-14.
    [11]李仁瑞,李平,周开达,等.再生复育光温敏核不育水稻蜀光601S的选育与利用[J].四川农业大学学报1995,(4):428-431.
    [12]董凤高,朱旭东,熊振民,等.以淡绿叶为标记的籼型光-温敏核不育系M2S的选育[J].中国水稻科学,1995,9(2):65-70.
    [13]马来运,戴绍钧.两系籼型不育系湖农5S温光反应特性及其应用[J].湖北农业科学,1996,增刊:50-53.
    [14]谢戎,何光华,邓锡洪,等.籼型光(温)敏核不育系泸光2S选育研究[J].西南农 业学报,1996,(9):44-49.
    [15]魏耀林,杨振玉,张忠旭,等.北方早粳型光温敏不育系108S的选育与利用[J].杂交水稻,2000,(15):1-2.
    [16]陈世全,沈茂松,王培华.水稻籼型光温敏核不育系2602S的选育[J].杂交水稻,1998,14(1):8-10.
    [17]方国成,王长义.粳型光敏核不育系N95067S的选育与利用[J].湖北农业科学,1998,(5):7-10.
    [18]牟同敏,杨国才,李春海,等.籼型光温敏核不育系W9593S的选育[J].湖北农业科学,1999,(4):6-8.
    [19]廖亦龙,王丰,邹新华,等.籼型光温敏核不育系GD-1S的选育与利用[J].杂交水稻,2003,18(3):8-10.
    [20]张集文,吴晓智.苯达松致死标记两用不育系8077S的选育及其应用[J].杂交水稻,2000,15(6):5-8.
    [21]杨振玉,张国良,张从合,等.中籼型优质光温敏核不育系广占63S的选育[J].杂交水稻,2002,17(4):4-6.
    [22]李新民,曹月琴,陆文龙,等.粳型水稻光(温)敏核不育系261S的选育[J].上海农业学报,2001,17(4):31-34.
    [23]胡如英,赵明富,郑建华,等.水稻核不育系SE21S的选育与利用[J].福建农业学报,2001,16(3):1-4.
    [24]黎世龄.水稻光温敏核不育系“635S”的选育[J].江西农业学报,2001,13(4):8-11.
    [25]邹国兴,尹建华,揭银泉,等.籼型温敏核不育系“莲9S"的选育与应用[J].江西农业学报,2004,16(4):1-4.
    [26]廖亦龙,王丰,李曙光,等.无花粉型低温敏核不育系GD-7S的选育策略及其特征特性研究[J].中国稻米,2006,(6):15-17.
    [27]王美琴,胡振大,徐启才,等.籼型光温敏核不育系宣69S的选育与应用[J].安徽农业科学,2004,32(5):888-889.
    [28]向关伦,韦静仁,廖昌礼.低温敏优质光温敏核不育系茂康S10的选育[J].种子,2007,26(8):90-92.
    [29]杨联松,白一松.籼型优质光温敏核不育系1892S的选育[J].杂交水稻,2006,21 (3):15-16.
    [30]杨国才,卢兴桂,牟同敏,等.早籼温敏核不育系W9834S的选育与利用[J].杂交水稻,2006,21(2):17-18.
    [31]牟同敏,李春海.中籼型光温敏核不育系华201S的选育与应用研究[J].西南农业学报,2005,(18):36-40.
    [32]张从合,陈金节,蒋家月,等.带浅褐色稃壳标记的籼型光温敏核不育系新安S的选育[J].杂交水稻,2007,22(4):4-6.
    [33]王德正,杜士云,王守海,等.籼型水稻光温敏核不育系广茉S的选育及其应用[J].杂交水稻,2008,23(1):6-8.
    [34]全华,钟伟.水稻温敏核不育系湘州19S的选育[J].湖南农业科学,2007,(2):17-19.
    [35]吴爽,张书标,李成荃,等.长穗茎光温敏核不育系X07eS的选育及其生物学特性[J].核农学报,2005,19(4):255-259.
    [36]张志刚,罗孝和,罗珊.水稻光温敏核不育系P88S的选育与应用[J].种子,2008,27(11):123-125.
    [37]廖翠猛,张克明,欧阳爱辉,等.水稻光温敏核不育系1161S的选育[J].杂交水稻,2007,22(1):19-20.
    [38]邓国富,梁世荣,周萌,等.水稻广亲和两系核不育系桂科-1S的选育[J].种子,2008,27(5):98-100.
    [39]王士梅,朱启升,杨前进,等.含苯达松敏感基因的籼型光温敏核不育系绿敏S的选育及利用[J].杂交水稻,2010,25(2):6-7.
    [40]涂建,罗友金,董阳钧,等.优质籼型软米光温敏核不育系云软209S的选育[J].杂交水稻,2008,23(3):9-11.
    [41]邓国富,梁世荣,周萌,等.籼型水稻光温敏核不育系桂科-2S的选育[J].杂交水稻,2007,22(6):14-16.
    [42]卢华金,杨文清,阮柏苗,等.强优籼型光温敏核不育系温6310S的选育[J].种子,2009,28(5):111-113.
    [43]王季凤,陆作楣,施文娟,等.籼稻温敏核不育系6311S的选育[J].贵州农业科学,2010,38(11):19-21.
    [44]罗筱平,杨振玉.优质籼型水稻光温敏不育系紫广8S的选育与应用[J].杂交水稻,2011,26(1):7-8.
    [45]武晓智,张集文,费震江,等.中籼型水稻两用核不育系佳丰68S的选育及初步应用[J].湖北农业科学,2009,48(12):2941-2943.
    [46]王合勤,陈金节,张云虎,等.香型糯稻光温敏核不育系荃香糯S的选育[J].杂交水稻,2011,26(2):18-19.
    [47]武晓智,费震江,张集文,等.转Bt基因抗虫光温敏核不育系T16S的选育及特性分析[J].湖北农业科学,2010,49(12):2974-2977.
    [48]邓华凤,舒福北,袁定阳.安农S-1的研究及其利用概况[J].杂交水稻,1999,14(3):1-3.
    [49]郭武强,谭军,郭国强,等.籼型水稻温敏核不育系安湘S研究与应用概况[J].中国农学通报,2008,24(10):106-109.
    [50]邓华凤,李必湖,刘爱民,等.安农810S的选育及初步研究[J].作物研究,1996,10(1):8-10.
    [51]尹华奇,袁隆平,尹华觉.香型水稻两用核不育系香125S的选育和利用研究[J].湖南农业科学,1995,(1):8-9.
    [52]王守海,罗彦长,王德正,等.早籼低温敏核不育系399S的选育[J].安徽农业科学,2001,29(4):422-425.
    [53]王德正,王守海,罗彦长,等.籼型温敏核不育系2301 S的选育[J].杂交水稻,2001,16(5):8-10.
    [54]刘建丰,康春林,陈立云,等.籼稻温敏核不育系康201S的选育及其应用[J].杂交水稻,2002,17(1):9-10.
    [55]陈星霏,邱茂健,彭春山,等.籼型水稻温敏核不育系芷139S的选育与利用[J].杂交水稻,2004,19(2):10-12.
    [56]牟同敏,李春海.早籼水稻温敏核不育系M103S的选育与光温反应特性[J].华中农业大学学报,2003,22(3):213-218.
    [57]牟同敏,李春海.早籼型温敏核不育系M102S的选育与应用研究[M].2003年全国作物遗传育种学术研讨会论文集,2003,196-201.
    [58]杨占烈,黄宗洪,向关伦,等.披叶标记水稻温敏核不育系G156S的选育[J].种子,2005,24(12):105-107.
    [59]刘琼桁,吴旭祥,曾春,等.优质籼型水稻温敏核不育系228S的选育与利用[J].杂交水稻,2007,22(5):7-8.
    [60]宋克堡,宋泽观.水稻淡黄叶突变体安农标810S的发现及初步研究[J].杂交水稻,2007,22(6):71-73.
    [61]廖亦龙,王丰,黄德娟,等.籼型温敏核不育水稻GD-5S的选育与初步研究[J].杂交水稻,2008,23(1):9-12.
    [62]兰华雄.水稻优质低温敏核不育系福龙S2的选育与利用研究[J].中国农学通报,2008,24(9):63-68.
    [63]雷建国,余传元,肖宇龙,等.水稻优质温敏核不育系“科丰S”的选育及特性[J].江西农业学报,2006,18(1):35-37.
    [64]汪婉琳,朱启升,王士梅,等.籼型光温敏两系不育系绿102S的选育及特性[J].安徽农业科学,2010,38(18):9442-9488.
    [65]李维明,陈启锋,祁建民,等.籼稻光敏不育系HS-1的选育报告[J].福建农业大学学报,1996,25(3):253-259.
    [66]杨腾帮,许旭明,张受刚.具有隐性紫叶标记的籼型光敏核不育系明紫02S的选育[J].福建农业科技,2005,(1):3-5.
    [67]蒲选昌,吴元华,刘茂桃,等.水稻籼型温敏核不育系K16S的选育[J].贵州农业科学,2006,34(3):7-8.
    [68]陈志伟,林荔辉,周元昌,等.应用花培技术选育优质低温敏水稻核不育系金山S-1[J].江西农业大学学报,2005,27(5):648-653.
    [69]张建新,黄建鸿,陈建明,等.光身稻光温敏核不育系光153S的选育[J].杂交水稻,2006,21(6):11-13.
    [70]邓启云.广适性水稻光温敏不育系Y58S的选育[J].杂交水稻,2005,20(2):15-18.
    [71]唐文邦,陈立云,肖应辉,等.水稻光温敏核不育系9771S的选育[J].杂交水稻,2011,26(2):14-17.
    [72]唐文邦,陈立云,肖应辉,等.水稻两用核不育系C815S的选育和利用[J].湖南农业大学(自然科学版),2007,(33):26-31.
    [73]黄显波,邓则勤,唐江霞,等.香型软米两系不育系明香10S的选育研究[J].福建农业学报,2008,23(2):163-167.
    [74]刘建丰,李春庚.优质抗病水稻光温敏核不育系龙S的选育[J].杂交水稻,2010,25(3):3-4.
    [75]杨远柱,唐平徕,杨文才,等.水稻低温敏核不育系陆18S的选育及育性表现[J]. 湖南农业大学学报,2000,26(3):155-156.
    [76]杨远柱,唐平徕,杨文才,等.水稻广亲和温敏不育系株1S的选育及应用[J].杂交水稻,2000,15(2):6-8.
    [77]黄德宗,任兴华,陈荣华,等.优质水稻低温敏核不育系潭农S的选育与应用[J].杂交水稻,2008,23(3):12-14.
    [78]杨文才,石天宝,陈运泉,等.水稻低温敏两用核不育系株25S的选育[J].作物研究,2007,(3):199-201.
    [79]符辰建,秦鹏,胡小淳,等.水稻温敏核不育系湘陵628S的选育[J].中国农业科技导报,2010,12(6):90-97.
    [80]杨仁崔,王乃元,梁康迳,等.籼稻温敏核不育5460S的研究[J].福建农学院学报(自然科学版),1993,22(2):135-140.
    [81]蒋佐升,徐庆国,董延瑜.籼型两用不育系衡农S-1育性转换及育性遗传的研究[J].作物研究,1992,6(2):12-14.
    [82]蒋义明,荣英,陶光喜,等.粳稻新质源温敏核不育系·滇农S-2的选育[J].西南农业学报,1997,10(3):21-24.
    [83]刘向东,陈启锋,李维明,等.利用生物技术选育光温敏不育系研究初报-温敏不育新种质金新1S的选育与初步研究[J].北京农业大学学报,1993,19(增刊):42-45.
    [84]吴让祥,吴险峰,金宜祥,等.杂交水稻两系法新资源新光S的选育及其利用研究[J].安徽农业科学,1995,23(4):289-291.
    [85]黎世龄,高一枝.短光敏核不育水稻种质研究[J].宜春学院学报(自然科学版),2003,25(6):61-63.
    [86]蒙秀锋,李秀英.籼型水稻温敏核不育系贺S的选育及应用[J].杂交水稻,2001,(3):11-13.
    [87]郭国强,郭名奇,孟卫东,等.优质籼型早稻光温敏核不育系琼香-1S的选育与应用[J].广西农业科学,2005,36(5):399-400.
    [88]周勇,居超明,徐国成,等.优质早籼型水稻温敏核不育系HD9802S的选育与应用[J].杂交水稻,2008,23(2):7-10.
    [89]卢宝阳,万鹏程,姚永久,等.籼型水稻光温敏核不育系仙沙7S的选育及应用[J].中国稻米,2011,17(3):56-57.
    [90]蒙秀锋,黎金玲,黎海佩,等.水稻两用温敏核不育系孟S德选育与应用[J].广西农业科学,2010,41(9):900-902.
    [91]潘坤清.水稻雄性不育系花粉败育的细胞学观察[J].遗传学报,1981,(6):211-215.
    [92]湖南师范大学生物系水稻杂优组,湖南省长沙市农科所水稻组.水稻雄性不育系的花粉败育途径[J].中国农业科学,1978,(3):1-7.
    [93]丁颖,李乃铭,徐雪宾,等.水稻幼穗发育和谷粒充实过程的观察[J].农业学报,1959,10(2):59-85.
    [94]H Y Liu, C G Xu, Q F Zhang. Male and female gamete abortions and reduced affinity between the uniting gametes as the causes for sterility in an indica/japonica hybrid in rice [J]. Sexual Plan t Reproduction,2004,17(2):55-62.
    [95]张英涛,杨海东,朱希昭.绒毡层研究进展[J].植物学通报,1996,13(4):6-13.
    [96]傅建华,陈良碧,刘志玲,等.水稻花药绒毡层及乌氏体的超微结构观察.生命科学研究,1999,3:155-160.
    [97]T Wada, K Ogawa, T Ito, et al. Light microscopic observations on pollen and anther development in rice (Oryza sativa L.) stages from pollen mother cells to tetrads[J]. Japan J Crop Sci,1990,59 (4):769-777.
    [98]潘坤清,何丽卿.水稻424、131雄性不育系花粉败育与毡绒层细胞的关系[J]华南农业大学学报:自然科学版,1981,2(3):39-45.
    [99]K Suzuki, H Takeda, T Tsukaguchi, et al. Ultrastructural study on degeneration of tapetum in anther of snap bean (Phasedus vulgaris L.) under heat stress. Sex Plant Reprod 13:293-299.
    [100]K D Laser, N R Leisten. Anatomy and cytology of microsporogenesis in cytoplasmic male sterile angiosperms. Bot Rev,1972,38:425-454.
    [101]P Bedinger. The remarkable biology of pollen [J].Plant Cell,1992,4(8):879-887.
    [102]卢庆善,孙毅,华泽田.农作物杂种优势[M].北京:中国农业科技出版社,2002:240-269.
    [103]Raghavan V. Anther and pollen development in rice (Oryza sativa) [J]. Amer J Bot, 1988,75(2):183-196.
    [104]J P Mascarenhas. The male gametophyte of flowering plants [J]. Plant Cell, 1989,1(7):657-664.
    [105]B M JOHRI.EmbryoIogy of Angiosperms[M]. NewYorkTokyo:Springer-Verlag, Berlin Heidelberg,1984.
    [106]周一兵.水稻成熟花药和花粉的结构和组织化学研究[J].热带亚热带植物学报,1993,1(1):39-46.
    [107]Mc Cormick S. Control of male gametophyte development [J]. Plant Cell,2004,16 (Suppl):142-153
    [108]Z S Zhang, Y G Lu, X D Liu, et al. Cytological mechanism of pollen abortion resulting from allelic interaction of F1 pollen sterility locus in rice(Oryza sativa L.) [J]. Genetica,2006,127 (1/2/3):295-302.
    [109]梁承邺,梅建峰,何炳森,等,光温敏核不育水稻小孢子败育发生主要时期的细胞学观察[M].北京农业出版社,1992,141-144.
    [110]冯九焕,卢永根,刘向东,等.水稻(Oryza sativa L.)花粉及花药壁发育的超微结构研究[J].中国水稻科学,2002,16(1):29-37.
    [111]石明松,邓景扬.湖北光周期敏感核不育的发现、鉴定及其利用途径[J].遗传学报,1986,13(2):107-112.
    [112]向阳,李必湖,吴厚雄,等.光敏、温敏核不育水稻核不育基因等位性及基因对数的研究[J].种子,2002,124(4):37-39.
    [113]邓启云,盛孝邦.籼稻光温敏核雄性不育基因遗传研究[J]云南大学学报(自然科学版).1995,21:184-185.
    [114]廖亦龙,万邦惠.籼型光温敏核不育基因的等位性研究[J].华南农业大学学报(自然科学版),2000,21(3):132-135.
    [115]张华锋.水稻光温敏不育基因的遗传及等位性的初步研究[J].遗传育种,1998,17(2):112-114.
    [116]李必湖,邓华风.安农S-1的发现和初步研究[A],水稻光、温敏核不育及亚种间杂种优势利用研究论文选编[C].北京:农业科技部科学司编,1990:82-87.
    [117]朱英国.水稻雄性不育生物学[M]武昌:武汉大学出版社,2000,(4):205-208.
    [118]雷建勋,李泽炳.湖北光敏核不育水稻遗传规律研究[J].杂交水稻,1989,2:39-41.
    [119]靳德明,雷建勋.水稻光周期敏感雄性不育性的遗传研究[J].作物杂志,1988,3:8-10.
    [120]Q Zhang, B Z Shen, X K Dai. Using bulked extremes and recessive class to map genes for photoperiod sensitive genic male sterility in r ice[J].Proceedings of the National Academy of Sciences of USA,1994,91(18):8675-8679.
    [121]Q K Yang. Characterization and identification of the candidate gene of rice thermo-sensitive genic male sterile gene tms5 by mapping [J]. Planta,2007,225: 321-330.
    [122]Y G Wang, Q H Xing, Q Y Deng, et al. Fine mapping of the rice thermo-sensitive genic male sterile gene tms5, Theor Appl Genet,2003,107:917-921.
    [123]R C Yang, K J Liang, N Y Wang, et al. A recessive gene in indica rice 5460S for thermo sensitive genie male sterility [J].Rice Genet Newsl,1992,9:56-67.
    [124]杨远柱,符辰建,胡小淳,等.株1S温敏核不育基因的发现及超级杂交早稻育种研究[J].中国稻米,2007,(6):17-22.
    [125]B Wang, W Xu, J Z Wang, et al. Tagging and mapping the thermo-sensitive genie male sterile gene using molecular makers [J].Theor Appl Genet,1995,91:1111-114.
    [126]N Liu, Y Shan, F P Wang, et al. Identification of an 85-kb DNA fragment containing PMSI. a locus for photoperiod-sensitive genie male sterility in rice[J]. Mol Genet Genomies,2001,266:271-275.
    [127]M H Mei, L Chen, Z H Zhang, et al. pms3 is the locus causing the original photoperiod-sensitive male sterility mutation of "Nongken 58S"[J]. Science in China(Series C),1999,42 (3):316-332.
    [128]李香花,王伏林,陆青,等.水稻光敏核不育基因pms3的精细定位[J].作物学报,2002,28(3):310-311.
    [129]J H Ding, Q Lu, Y D Ouyang, et al. A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. PNAS, 2012,109 (7):2654-2659.
    [130]H Zhou, Q J Liu, J Li, et al. Photoperiod and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA. Cell Research,2012,22:649-660.
    [131]D M Zhu, X W Deng. A non-coding RNA locus mediates environment-conditioned male sterility in rice. Cell Research,2012, (3):1-2.
    [132]J J Xu, B H Wang, Y H Wu, et al. Fine mapping and candidate gene analysis of ptgms2-1, the photoperiod-thermo-sensitive genic male sterile gene in rice (Oryza sativa L.), Theor Appl Genet,2011,122:365-372.
    [133]Y F Zhou, X Y Zhang, Q Z Xue. Fine mapping and candidate gene prediction of the photoperiod and thermo-sensitive genic male sterile gene pms1(t) in rice,, Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) 2011,12 (6): 436-447.
    [134]B Wang, W W Xu, J Z Wang, et al. Tagging and mapping the thermo-sensitive genic male sterile gene in rice(Oryza sativa L.) with molecular makers[J].Theor Appl Genet,1995,91:1111-1114.
    [135]N V Dong, P K Subudhi, P N Luong, et al. Molecular mapping of a rice gene conditioning thermo sensitive genic male sterility using AFLP, RFLP and SSR techniques [J]. Theor Appl Genet,2000,100:727-734.
    [136]Yoshiaki, Yamaguchi, Ryoichi, et al. Linkage Analysis of Thermo sensitive Genic male sterility gene tms2 in rice (Oryza sativa L.) Breeding science,1997,47: 371-373.
    [137]Dong Sun Lee, L J Chen, Hak Soo Suh. Genetic characterization and fine mapping of a novel thermo-sensitive genic male-sterile gene tms6 in rice (Oryza sativa L.) [J]. Theor Appl Genet,2005,111:1271-1277.
    [138]H F Peng, Z F Zhang, B Wu, et al. Molecular mapping of two reverse photoperiod-sensitive genic male sterility genes (rpms1 and rpms2) in rice (Oryza sativa L.) Theor Appl Genet,2008,118:77-83.
    [139]J H Jia, D S Zhang, C Y Li, et al. Molecular mapping of the reverse thermo-sensitive genic male sterile gene (rtmsl) in rice. Theor Appl Genet,2001, 103:607-612.
    [140]Woo, Mi-Ok, Ham, et al. Inactivation of the UGPasel gene causes genic male sterility and endosperm chalkiness in rice (Oryza sativa L.) The Plant Journal,2008, 54:190-204.
    [141]R Z Chen, X Zhao, Z Shao, et al. Rice UDP-Glucose Pyrophosphorylase1 is essential for pollen callose deposition and its cosuppression results in a new type of thermo-sensitive genic male sterility. Plant Cell,2007,19:847-861.
    [142]X Y Yang, J G Li, M Pei, et al. Over-expression of a flower-specific transcription factor gene AtMYB24 causes aberrant anther development. Plant Cell Rep,2007,26: 219-228.
    [143]Q H Zhu, Kerrie Ramm, Ramani Shivakkumar, et al. The ANTHER INDEHISCENCE1 gene encoding a single MYB domain protein is involved in anther development in rice. Plant Physiology,2004,3:1514-1525.
    [144]赵莎,姚家玲.光敏核不育水稻花粉发育的细胞学研究与PCD检测[J].华中农业 大学学报.2007,26(3):283-288.
    [145]Sujin Ku, Hyejin Yoon, Hak Soo Suh, et al. Male-sterility of thermosensitive genic male-sterile rice is associated with premature programmed cell death of the tapetum. Planta,2003,217:559-565.
    [146]陈亮,梅明华.鉴定与水稻光敏核不育基因pms3连锁的AFLP-RFLP标记[J].厦门大学学报(自然科学版),2000,39(4):421-425.
    [147]Yoshiaki Yamaguchi, Ryoichi Ikeda, Hideo Hirasawa, et al. Linkage analysis of thermo-sensitive genic male sterility gene, tms2 in rice (Oryza sativa L.) [J]. Breeding science,1997,47:371-373.
    [148]Q Lu. Localization of pms3, a gene for photoperiod-sensitive genic male sterility, to a 28.4-kb DNA fragment [J]. Mol Gen Genomics,2005,273:507-511.
    [149]S J Ku, H J Yoon, H S Suh, et al. Male sterility of thermo-sensitive genic male sterile rice is associated with premature programmed cell death of the tapetum. Planta,2003,217:559-565.
    [150]Leeds, L J Chen, Suhhs. Genetic characterization and fine mapping of a novel thermo-sensitive genic male sterile gene tms6 in rice (Oryza sativa L.) [J]. Theor Appl Genet,2005,111(7):1271-1277.
    [151]J H Jia, D S Zhang, C Y Li. Molecular mapping of the reverse thermosensitive genic male sterile gene(rtms1) in rice [J]. Theor Appl Genet,2001,103:607-612.
    [152]M T Lopez, T Toojinda, A Vanavichit, et al. Microsatellite markers flanking the tms2 gene facilitated tropical TGMS rice line development. Crop Sci 2003,43: 2267-2271.
    [153]W Z Liu, Y P Fu, G C Hu, et al. Identification and fine mapping of a thermo-sensitive chlorophyll deficient mutant in rice(Oryza sativaL.). Planta,2007, 226:785-795.
    [154]U Eckhardt, B Grimm, S Ho"rtensteiner. Recent advances in chlorophyll biosynthesis and breakdown in higher plants. Plant Mol. Biol.2004,56:1-14.
    [155]M Delseny, J Salses, R Cooke, et al. Rice genomics:Present and future. Plant Physiol Biochem,2001,39:323-334.
    [156]F A Hoeberichts, E Vaeck, G Kiddle, et al. A Temperature-sensitive mutation in the Arabidopsis thaliana phosphomannomutase gene disrupts protein glycosylation and triggers cell death. Biol. Chem.2008,283:5708-5718.
    [157]B Yue, X W Cai, B Vick, et al. Genetic characterization and molecular mapping of a chlorophyll deficiency gene in sun-flower (Helianthus annuus). Plant Physiol.2009, 166:44-651.
    [158]M A Bevins, S Madhavan, J Markwell. Two Sweet clover (Melilotusalba Desr.) Mutants Temperature Sensitive for Chlorophyll Expression. Plant Physiol,1993, 103:1123-1231.
    [159]Z L Liu, S Yuan, W J Liu, et al. Mutation mechanism of chlorophyll-less barley mutant NYB. Photosynthetica,2008,46:73-78.
    [160]L Pasini, S Bruschini, A Bertoli, et al. Photosynthetic performance of cold-sensitive mutants of maize at low temperature. Physiol. Plant,2005,124:362-370.
    [161]S I Beale. Green genes gleaned. Trends Plant Sci,2005,10:309-312.
    [162]X Q Huang, H X Zhao, C L Dong, et al. Chlorophyll-deficit rice mutants and their research advances in Biology. Acta Botanica Boreali-Occidentalia Sinica,2005,25: 1685-1691. (in Chinese with an English abstract)
    [163]T Chen, Y D Zhang, L Zhao, et al. Physiological character and gene mapping in a new green-revertible albino mutant in rice. Genet. Genomics,2007,34:331-338.
    [164]Q Qian, X D Zhu, D L Zeng, et al. The study of a novel white-green material controlled by cytoplasmic gene. China Seeds,1996 (4):11-12. (in Chinese)
    [165]X Y Li, C T Wang, S W Li, et al. The discovery of a high chlorophyll content gene in rice. Southwest Chin J Agric Sci,2012,15(4):122-123. (in Chinese with English abstract)
    [166]N Iwata, T Omura, H Satoh. Linkage studies in rice(Oryza sativa L.) on some mutants for physiological leaf spots. Fac Agric Kyushu Univ.1978,22:243-251.
    [167]X L Li, X Q Sun, P R Wang, et al. Genetic analysis and gene mapping of a novel yellow-green leaf mutant in rice. Acta Agron Sin.2010,36 (6):1050-1054. (in Chinese with English abstract)
    [168]L Zhu, W Z Liu, C Wu, et al. Identification and fine mapping of a gene related to pale green leaf near centromere region in rice(Oryza sativa L.). Chin J Rice Sci, 2007,21(3):228-234. (in Chinese with English abstract)
    [169]L K Zhang, Z B Li, H Y Liu, et al. Study on morphological structure and genetic mapping of two novel leaf color mutants in rice. Sci Agric Sin,2010,43(2):223-229. (in Chinese with English abstract)
    [170]S C Yoo, S H Cho, S Hiroki, et al. Rice Virescent3 and Stripe1 Encoding the Large and Small Subunits of Ribonucleotide Reductase Are Required for Chloroplast Biogenesis during Early Leaf Development. Plant Physiology,2009,150:388-401.
    [171]C H Goh, K H Jung, K R Stephen, et al. Mitochondria provide the main source of cytosolic ATP for activation of outward-rectifying K channels in mesophyll protoplast of chlorophyll-deficient mutant rice (OsCHLH) seedlings. The Journal of Biological Chemistry,2004,279(8):6874-6882.
    [172]H T Zhang, J J Li, J H Yoo, et al. Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Mol. Biol.2006,62:325-337.
    [173]P R Wang, J X Gao, C M Wan, et al. Divinyl Chlorophyll(ide) a can be converted to monovinyl chlorophyll(ide) a by a divinyl reductase in rice. Plant Physiology.2010, 153:994-1003.
    [174]S Hiroki, K Kensuke, T Yuzuru, et al. The virescent-2 mutation inhibits translation of plastid transcripts for the plastid genetic system at an early stage of chloroplast differentiation. Plant Cell Physiol,2004,45(8):985-996.
    [175]Z M Wu, X Zhang, B He, et al. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol,2007,145: 29-40.
    [176]M Kazumaru, I Yukihiro, S Akiko, et al. OsHAP3 genes regulate chloroplast biogenesis in rice. The Plant Journal,2003,36:532-540.
    [177]M Ryouhei, S Yutaka, M Yu, et al. Defect in non-yellow coloring 3, an a/b hydrolase-fold family protein, causes a stay-green phenotype during leaf senescence in rice.The Plant Journal,2009,59:940-952.
    [178]R Q Yue, X F Wang, J Y Chen, et al. A rice stromal processing peptidase regulates chloroplast and root development. Plant Cell Physiol.2010,51(3):475-485.
    [179]M G Kodiveri, E S Kim, H J Cho, et al. OsPPRl, a pentatricopeptide repeat protein of rice is essential for the chloroplast biogenesis. Plant Molecular Biology,2005,58: 421-433.
    [180]N Su, M L Hu, D X Wu, et al. Disruption of a rice pentatricopeptide repeat protein causes a seedling-specific albino phenotype and its utilization to enhance seed purity in hybrid rice production. Plant Physiology,2012,159:227-238.
    [181]Y L Tang, J F Huang, R C Wang. Change law of hyperspectral data with chlorophyll and carotenoid for rice at different developmental stages Chin J Rice Sci,2004, 18(1):59-66. (in Chinese with English abstract)
    [182]田惠桥.被子植物有性生殖过程中的细胞程序死亡[J].植物生理与分子生物学 学报,2002,28(3):161·168.
    [183]田惠桥,肖诩华,刘文芳.光敏核不育水稻可育和不育花药的比较研究[M].肖诩华.光敏核不育水稻的光周期及其生理学.武汉:武汉大学出版社,1993,244-250.
    [184]P E Taylor, J A Glover, M Lavithis, et al. Genetic control of male fertility in Arabidopsis thaliana:structural analysis of postmeiotic developmental mutants [J]. Planta,1998,205:492-505.
    [185]C Zhang, F C Guinel, B A Moffatt. A comparative ultrastructural study of pollen development in Arabidopsis thaliana ecotype columbia and male sterile aptl-3[J]. ProtoPlasma,2002,219:59-71.
    [186]谢朝添,杨延红,邱义兰,等.白菜核雄性不育系可育和不育花药中Ca2+的分布[J].植物生理与分子生物学学报,2005,31(6):615-624.
    [187]谢潮添,杨延红,朱学艺,等.白菜细胞核雄性不育花药的细胞化学观察[J].实验生物学报,2004,37(4):295-302.
    [188]S Y Zhu, T K Luo, X L Zhang, et al. Comparison of 8 kinds of extraction methods on rice genomic DNA. Journal of An hui Agri. Sci.2009,37(5):1929-1931.
    [189]L Y Chen, Practice and creative ideals on super hybrid rice breeding. Journal of Hunan Agricultural University (Natural Sciences).2007,33:21-25.
    [190]L Y Chen, D Y Lei, W B Tang, et al. Thoughts and practices of some problems about research and application of two-line hybrid rice. Chin J Rice Sci.2010,24 (6): 641-646.
    [191]S J Ku, H J Yoon, H S Suh, et al. Male-sterility of thermo sensitive genic male-sterile rice is associated with premature programmed cell death of the tapetum. Planta.2003,217:559-565.
    [192]H F Peng, X H Chen, Y P Lu, et al. Fine mapping of a gene for non-pollen type thermo sensitive genic male sterility in rice (Oryza sativa L.). Theor. Appl. Genet. 2010,120:1013-1020.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700