水稻包穗突变体M893的形态、生理及遗传特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在构建水稻突变体库的研究中,通过组织培养诱变,在恢复系T893中发现一株突变体,该突变体在连续两年4代的异地栽培中始终不抽穗,幼穗紧包在叶鞘内不伸出,性状稳定,命名为M893。本研究以包穗突变体M893为试验材料,分别从农艺学、遗传学、生理学及分子生物学等方面进行了研究,主要结果如下:
     1、M893形态特性表现为:植株矮化、每穗颖花数减少,上3叶明显缩短,幼穗被叶鞘紧包,始终不能抽穗。主茎节间数与T893(对照)相比无显著变化,大多数为5个,但节间长度呈极显著缩短,倒1~倒5节间分别比对照缩短88.40%、83.92%、65.55%、45.04%和32.79%,倒1节间缩短长度和比例均为最大。
     2、倒1茎秆显微结构观察表明,M893居间分生组织区域细胞排列紧密整齐,类似于对照对应节间的细胞,M893与对照此部位的细胞长度无显著性差异。但节间中部突变体薄壁细胞纵向长度与对照相比呈极显著差异,M893平均10个细胞的长度为205.90μm,而野生型为309.37μm,表明M893倒1节由居间分生组织细胞分化的细胞延伸受阻,导致幼穗分化末期节间不能有效伸长。
     3、在幼穗分化Ⅳ期、Ⅵ期和Ⅷ期,对M893主茎倒1节间茎秆和叶片赤霉素(GA4)、吲哚乙酸(IAA)、脱落酸(ABA)及玉米素(Z)的测定结果表明:与对照相比,M893倒1节间茎秆中GA4和IAA含量均呈显著或极显著下降;ABA含量在幼穗分化Ⅳ期、Ⅵ期呈显著下降,但到了幼穗分化Ⅷ期,其含量极显著上升;Z的含量在两组材料中无显著变化。M893倒1叶的GA4、ABA及Z的含量与茎秆分析结果一致。
     4、幼穗分化Ⅷ期末分别用80 mg/L、120 mg/L、160 mg/L、200 mg/L四种浓度的赤霉素(GA3)溶液处理M893植株,倒1~倒3各节间长度在不同浓度处理间无显著性差异,节间未显著伸长,M893对赤霉素(GA3)的诱导呈钝感。
     5、通过长沙和海南两地共4季种植,M893均表现包穗特性,表明M893具有遗传稳定性。用M893与恢复系丙5060、丙4170、明恢81及T893、轮回422等杂交,Fl均表现抽穗结实正常,表明该突变性状为隐性。通过长沙和海南两地共6个F2群体以及突变体/丙5060的F3、F4代群体的遗传追踪分析,结果表明各个群体中正常株与包穗株数值均符合3:1的分离比例。由此证实该突变性状受1对隐性基因控制,并将该基因命名为Shpx。
     6、利用SSR标记,将Shpx定位于第2号染色体上,位于RM12680和RM12685二个标记之间,二个标记与基因的遗传距离分别是0.2cM、1.2cM;另一个标记RM6247与Shpx的遗传距离是0cM,表明RM6247与基因呈共分离,连锁紧密。
     7、通过M893及对照的基因表达图谱比较分析,获得了4个可能与包穗突变体形成的侯选相关基因:AK063150.1、9630.m04842、AF056027.1和AK070347.1,其中前3个基因为生长素调控相关基因,在突变体内处于低表达水平,其中AK063150.1在突变体的表达水平最低。AK070347.1为上调基因,具有类似脱落酸的抑制伸长功能。
A rice mutant with sheathed panicle from a restorer line T893 was obtained in tissue culture induction. The mutant, named as M893, kept sheathed panicle characteristics for four generations at two locations in two years, indicating that the character was genetically stable. In this paper, the morphological, physiological and genetic studies were carried out on the character, respectively. And the results are as follows:
     1. The main morphological, characteristics of M893 were:fully sheathed panicle, dwarf, small panicles, shortened upper 3 leaves. Compared with T893 (Check), the internode number of main stem of M893, which was almost 5, wasn't significantly different. But the length of all the 5 internodes from top first to top fifth, was shortened by 88.40%、83.92%、65.55%、45.04%and 32.79%at extremely significance, respectively. And the shortened length and proportion of top-first internode was the most.
     2. It showed that, compared with T893, the length of cell in intercalary meristem in top-first culm of M893 wasn't significantly different under microscope. And the cells in intercalary meristem arranged in line, similar to that of T893. However, the longitudinal length of parenchyma cell in top-first internode of M893 was extremely significantly different from that of T893. And the average length of 10 cells of M893 was 205.90μm, but that of T893 was 309.37μm. The result suggested that the cells in top-first internode of M893, which were originated from intercalary meristem by differentiation, didn't extend. Accordingly, the top-first internode didn't elongate effectively.
     3. At stageⅣ、ⅥandⅧof panicle differentiation, the contents of hormones in top-first internode and flag leaf of main stem, including GA4、IAA、ABA and Z, were determined, respectively. The result showed that, compared with the check, the content of GA4 and IAA in culm of M893 decreased significantly or extremely significantly, respectively. And the content of ABA decreased significantly at stageⅣand VI of panicle differentiation, but increased extremely significantly atⅦof panicle differentiation. The content of Z wasn't significantly different between M893 and T893. The results of analysis on the content of GA4、ABA and Z in flag leaf were similar to that in the culm.
     4. At the end of stageⅦof panicle differentiation, a population of M893 had been treated by gibbrellic acid(GA3) solution with different concentrations by 80mg/L、120mg/L、160mg/L and 200mg/L, respectively. The length of internode from top first to top third wasn't significantly different compared with T893, and the internode didn't elongate significantly. It showed that M893 was insensitive to gibberillic acid (GA3) induction.
     5. The trait of sheathed panicle was stable genetically during four-generation cultivation in Changsha and Hainan. All 6 populations of F1, originated from the crossing between the mutant and Bing5060、Bing4170、Minghui81、T893(wild type)、Lunhui422 respectively, headed normally, and it indicated that the trait was genetically recessive. The segregation ratio of 8 populations, including 6 populations of F2 and 2 populations of F3、F4 from the crossing between M893 and Bing5060, fitted the expected ratio of 3:1, which suggested that the trait of sheathed panicle was controlled by a pair of recessive genes. And the mutant gene was named as Shpx.
     6.The mutant gene shpx was mapped on the rice chromosome 2 by SSR markers. And it located among RM12680、RM6247 and RM12685. The genetic distances from the target gene to the markers RM12680、RM6247、RM12685 were 0.2cM、0cM and 1.2cM, respectively. The co-segregation between the marker RM6247 and the gene shpx indicated that RM6247 was linked tightly with shpx.
     7. The technology of cDNA chip was used to analyze gene expression difference between M893 and T893. Four candidate genes, including AK063150.1、9630.m04842、AF056027.1 (REH1) and AK070347.1, were selected preliminary, and it suggested that they are related to the mutant probably. Further analysis showed that AK063150.1、9630.m04842、AF056027.1 (REH1), which were classified as the regulatory gene of auxin, expressed very lower in M893, and AK063150.1 was the one expressed lowest. AK070347.1, classified as up-regulated gene, had a function on inhibitting to elongate, which was similar to ABA.
引文
[1]蔡健,兰伟.AFLP标记与水稻杂种产量及产量杂种优势的预测[J].中国农学通报,2005,21(4):39-43
    [2]陈红旗,陈宗祥,倪深,等.利用分子标记技术聚合3个稻瘟病基因改良金23B的稻瘟病抗性[J].中国水稻科学,2008,22(1):23-27
    [3]陈娟,潘开文,辜彬.逆境胁迫下植物体内脱落酸的生理功能和作用机制[J].植物生理学通讯,2006,42(6):1176-1182
    [4]陈忠明,王秀娥.水稻强优势恢复系9311粒重的诱变改良[J].分子植物育种,2005,3(3):353-356
    [5]邓化冰,邓启云,陈立云,等.马来西亚普通野生稻增产QTL的分子标记辅助选择及其育种效果[J].中国水稻科学,2007,21(6):605-611
    [6]邓其明,王颖姮,王世全,等.一份水稻寡分蘖近等基因系的构建及全基因组差异表达分析[J].中国水稻科学,2008,22(1):15-22
    [7]董愚得.植物生长物质.潘瑞炽主编,植物生理学(第四版)[M].北京:高等教育出版社,2001,174-176
    [8]傅达奇,李正国.植物激素乙烯[J].北方园艺,2001,139(4):33
    [9]高德友,赵新华,段祥茂,等.抽穗期洪涝对水稻产量及其构成因素的影响[J].耕作与栽培,2001,(5):31-47
    [10]高秀丽,杨剑波,景奉香,等.微测序基因芯片检测质粒pCAMBIA1301[J].中国水稻科学,2005,19(2):181-186
    [11]高志勇.应用基因芯片检测水稻基因表达的研究[J].安徽农业科学,2007,35(10):3007-3008
    [12]龚晓平,杨正林,赵芳明,等.一个水稻抽穗期主基因Hd(t)的遗传分析及分子定位[J].作物学报,2007,33(11):1906-1909
    [13]谷福林,翟虎渠,万建民,等.水稻矮秆性状研究及矮源育种利用[J].江苏农业学报,2003,19(1):48-54
    [14]郭龙彪,储成才,钱前.水稻突变体与功能基因组学[J].植物学通报,2006,23(1):1-13
    [15]郭媛,程保山,洪德林.粳稻SSR连锁图谱的构建及恢复系卷叶性状QTL分析[J].中国水稻科学,2009,23(3):245-251
    [16]韩庆典,陈志伟,邓云,等.水稻细菌性条斑病抗性QTL qBlsr5a的精细定位[J].作物学报,2008,34(4):587-590
    [17]何光华,侯磊,李德谋,等.利用分子标记预测杂交水稻产量及其构成因素[J].遗传学报,2002,9(5):438-444
    [18]侯雷平,李梅兰.油菜素内酯(BR)促进植物生长机理研究进展[J].植物学通报,2001,18(5):560-566
    [19]洪丽亚,黄儒珠.基因芯片技术及其在植物上的应用[J].生物技术通报,2002,8(4):30-32
    [20]胡江,曾大力,张光恒,等.水稻矮化突变体ddul的遗传分析和分子定位[J].中国水稻科学,2009,23(3):252-256
    [21]华蕾,袁筱萍,余汉勇,等.我国水稻主栽品种SSR多样性的比较分析[J].中国水稻科学,2007,21(2):150-154
    [22]黄文胜,潘良文,粟智平,等.基因芯片检测转基因油菜[J].农业生物技术学报,2003,11(6):588-592
    [23]黄耀祥.水稻矮化育种.中国稻作学[M].北京:中国农业出版社,1986,284-299
    [24]黄毅,李利华,陈莹,等.水稻杂种两优培9与亲本苗期基因表达比较分析[J].中国科学C辑(生命科学),2006,36(4):302-311
    [25]黄育民,王候聪,马磊.利用SSR标记辅助选择杂交组合亲本[J].分子植物育种,2004,2(1):43-47
    [26]季兰,杨仁崔.水稻茎伸长生长与植物激素[J].植物学通报,2002,19(1):109-115
    [27]江良荣.分子标记辅助渗入佳辐站基因组约800kb区间定向改良珍汕97B外观品质[J].分子植物育种,2004,2(3):453-454
    [28]江树业.水稻突变群体的构建及功能基因组学[J].分子植物育种,2003,1(2):137-150
    [29]金敏,李君文.基因芯片技术在环境微生物群落研究中的应用[J].微生物学通报,2008,35(9):1466-1471
    [30]金润洲,王景余,侯春香.粳稻离体细胞的耐冷性变异与遗传[J].吉林农业科学,1992,(2):6-9,50
    [31]金素娟,柳武革,朱小源,等.利用分子标记辅助选择改良温敏核不育系GD-8S的稻瘟病抗性[J].中国水稻科学,2007,21(6):599-604
    [32]匡勇,夏石头,匡逢春.脱落酸(ABA)对植物生长发育的促进效应[J].湖南农业科学,2009,(1):33-35,36
    [33]兰涛,郑军,吴为人,等.用微卫星标记构建两系稻培矮64S/E32的分子遗传连锁图[J].遗传,2003,(5):7-11
    [34]李朝灿,甘代耀,韦刚,等.水稻抗稻瘟病及高氨基酸突变体离体筛选的初步研究[J].科学通报,986,(24):61-64
    [35]李红宇,侯昱铭,陈英华,等.用SSR标记评估东北三省水稻推广品种的遗传多样性[J].中国水稻科学,2009,23(4):383-390
    [36]李进波,周飞,万丙良,等.利用SSR标记鉴别两系杂交稻鄂粳杂1号的真伪[J].湖北农业科学,2003,(1):23-25
    [37]李亮杰,周海鹏,占小登,等.水稻印尼水田谷型细胞质雄性不育恢复系R68的恢复基因初步定位[J].中国水稻科学,2007,21(5):547-549
    [38]李喜焕,王省芬,穆国俊.基因芯片技术及其在植物育种中的应用[J].河北农业科学,2003,7(2):44-49
    [39]李荧,梅捍卫,吴金红,等.水旱条件下近红外发射光谱预报水稻直链淀粉含量与粗蛋白含量的QTL分析[J].中国水稻科学,2007,21(2):123-130
    [40]黎毛毛,徐磊,任军芳,等.粳稻垩白性状的QTL检测[J].中国水稻科学,2009,23(4):371-376
    [41]刘红娟,刘洋,刘琳.脱落酸对植物抗逆性影响的研究进展[J].生物技术通报,2008,(6):7-9
    [42]刘梦梦,桑贤春,凌英华,等.水稻黄绿叶基因YGL4的遗传分析和分子定位[J].作物学报,2009,35(8):1405-1409
    [43]刘选明,杨远柱.利用体细胞无性系变异筛选水稻光温敏核不育系株1S矮秆突变体[J].中国水稻科学,2002,16(4):321-325
    [44]刘庄.水稻矮秆鞘包穗突变体结构研究[D].华南热带农业大学硕士论文,2007
    [45]柳武革,王丰,金素娟,等.利用分子标记辅助选择聚合Pi-1和Pi-2基因改良两系不育系稻瘟病抗性[J].作物学报,2008,34(7):1128-1136
    [46]罗珊,康玉凡,夏祖灵.种子萌发及幼苗生长的调节效应研究进展[J].中国农学通报,2009,25(2):28-32
    [47]罗远章,赵芳明,桑贤春,等.水稻新型卷叶突变体rl12(t)的遗传分析和基因定位[J].作物学报,2009,35(11):1967-1972
    [48]吕建珍,张晓丽,王海岗,等.东南亚与南亚稻属AA基因组种间的遗传多样性差异[J].中国水稻科学,2008,22(3):249-254
    [49]缪海珍,朱水芳,张谦,等.采用基因芯片技术筛选农作物转基因背景[J].复旦学报,2003,42(4):634-638
    [50]闵绍楷,汤圣祥.辐射诱变育种[J].中国稻米,1997,5:34-36
    [51]潘瑞炽.赤霉素的生物合成、代谢和作用机理.见:余叔问,汤章城主编,植物生理与分子生物学(第二版)[M].北京:科学出版社,1998,439-457
    [52]潘学彪,陈宗祥,左示敏,等.以分子标记辅助选择育成抗条纹叶枯病水稻新品种“武陵粳1号”[J].作物学报,2009,35(10):1851-1857
    [53]彭金荣.赤霉素与植物发育.见:许智宏,刘春明主编,植物发育的分子机理[M].北京:科学出版社,1997,162-171
    [54]彭锁堂,庄杰云,颜启传,等.我国主要杂交水稻组合及其亲本SSR标记和纯度鉴定[J].中国水稻科学,2003,17(1):1-5
    [55]钱前,熊振民,闵绍楷,等.水稻巨大胚基因的分子定位[J].中国水稻科学,1996,10(2):65-70
    [56]邵高能,唐绍清,焦桂爱,等.稻米蒸煮品质性状的QTL定位[J].中国水稻科学,2009,23(1):94-98
    [57]史齐.一种水稻矮化突变体的生理特性及调控研究[D].湖南农业大学硕士论文,2007
    [58]宋平,周燮.水稻节间伸长生长的机制[J].植物学通报,2000,17(1):46-51
    [59]宋平,高红胜,曹显祖,等.不同籼稻品种的矮生性与内源ABA水平及其结合蛋白的关系[J].西北植物学报,1998,18(3):380-385
    [60]松尾孝岭.稻学大成遗传篇[M].出版地:岛山渔业文化出版社,1990
    [61]苏红,印莉萍.插入突变在水稻功能基因组学中的研究进展[J].生物技术通报,2009,(5):1-4
    [62]孙焕明.水稻苍白叶突变体pgl3(t)的遗传分析和基因定位[D].扬州大学硕士论文,2008
    [63]孙立华,佘建明,吕学锋.用组织培养法筛选水稻抗白叶枯病突变体——Ⅰ.水稻愈伤组织抗白叶枯病病原菌的选择及其再生植株的抗病性鉴定[J].遗传学报,1986,(3):28-33,84
    [64]谈心,马欣荣.赤霉素生物合成途径及其相关研究进展[J].应用与环境生物学报,2008,(4):571-575
    [65]唐承成.普定稻叶鞘腐败病的发生与防治对策[J].植物医生,2009,(3):7
    [66]唐定中,王金陵.水稻纹枯病体细胞突变体的离体筛选[J].福建农业大学学报,1997,26(1):8-12
    [67]汤日圣,张远海,张盒榆,等.矮秆基因对水稻性状控制的机理探讨[J].中国农业科学,1991,21(2):51-56
    [68]王赟,肖晗,钱前,等.水稻稀穗突变体的遗传分析及基因的精细定位[J].科学通报,2008,48(15):1666-1670
    [69]王聪田,王国槐,青先国,等.水稻淡黄叶突变体安农标810S基因表达量的初步研究[J].杂交水稻,2007,22(4):67-70
    [70]王红红,李凯荣,侯华伟.油菜素内酯提高植物抗逆性的研究进展[J].干旱地区农业研究,200523(3):213-219
    [71]王继刚,张坤,徐启江,等.草原龙胆盐胁迫差减文库的构建及分析[J].园艺学报,2008,35(7):1075-1080
    [72]王曼玲,Rocha Pedro,李落叶,等.水稻多逆境诱导基因OsMsr4的克隆与表达分析[J].生物技术通报,2009,(7):68-75
    [73]王胜军,万建民,陆作楣.利用SSR分子标记划分杂交籼稻亲本群的研究[J].作物学报,2006,32(10):1437-1443
    [74]吴朝晖.SSR标记及其在水稻遗传育种中的研究进展[J].湖南农业科学,2007,(3):36-39
    [74]吴昆.水稻矮秆包穗突变体dsp1的遗传分析与基因定位[D].[扬州大学硕士论文],2009
    [75]夏启中,张明菊.基因芯片技术及其应用[J].襄樊职业技术学院学报,2005,4(3):1-7
    [76]辛业芸,张展,熊易平,等.应用SSR分子标记鉴定超级杂交水稻组合及其纯度[J].中国水稻科学,2005,19(2):95-100
    [77]刑俊杰,成志伟,杨剑,等.利用基因芯片技术分析水稻杂种优势的分子机理[J].杂交水稻,2005,20(4):59-61
    [78]许凌,张亚东,朱镇,等.不同年份水稻产量性状的QTL分析[J].中国水稻科学,2008,22(4):370-376
    [79]许州达,景瑞莲,甘强,等.用水稻基因芯片筛选小麦耐旱相关基因[J].农业生物技术学报,2007,15(5):821-827
    [80]徐孟亮,陈荣军,Rocha Pedro 1,等.一个新的水稻逆境响应基因OsMsrl的表达与克隆[J].作物学报,2008,34(10):1712-1718
    [81]徐秀红.一个植酸代谢相关水稻基因的定位、克隆与特性研究[D].浙江大学博士论文,2009
    [82]颜应成,袁隆平.水稻广谱广亲和系零轮的选育与研究[J].杂交水稻,1997,12(1):7-10
    [83]阎双勇,谭振波,李仕贵.水稻插入突变库构建研究进展[J].中国生物工程杂志,2004,24(6):48-53
    [84]叶梅荣,朱昌华,甘立军,等.激素间相互作用对植物茎伸长生长的调控综述[J].中国农学通报,2007,23(4):228-231
    [85]叶少平,张启军,李杰勤,等.用培矮64S/日本晴F2群体对水稻6个农艺性状的QTL定位[J].中国水稻科学,2007,21(1):39-43
    [86]于凤池.基因芯片技术及其在植物研究中的应用[J].中国农学通报,2009,(6):64-65
    [87]于婷婷,韩飞,周孟良.基因芯片在食品研究及检测领域中的应用[J].现代农业科技,2009,(14):318-319,321
    [88]袁隆平.水稻的雄性不育性[J].科学通报,1966,11(4):185
    [89]袁隆平.两系法杂交水稻研究的进展[A].见:两系法杂交水稻研究论文集[C],北京:中国农业出版社,1992,6-12
    [90]袁运动,程祝宽,刘保申,等.水稻矮秆突变体ipd1的遗传分析及其基因精细定位[J].山东农业大学学报(自然科学版),2009,40(1):1-6
    [91]曾波,李敏,杨祖荣,等.一个新的水稻花粉半不育性位点的定位分析[J].作物学报,2009,35(9):1584-1589
    [92]曾龙军.水稻矮秆基因D68的遗传分析及精细定位[D].扬州大学硕士论文,2007
    [93]郑崇珂,王春连,于元杰,等.水稻抗白叶枯病新基因Xa32(t)的鉴定和初步定位[J].作物学报,2009,35(7):1173-1180
    [94]郑国铝主编.生物显微技术[M].北京:人民教育出版社,1979
    [95]张锦文,谭亚玲,洪汝科,等.高原粳稻子预44抗稻瘟病基因遗传分析和定位[J].中国水稻科学,2009,23(1):31-35
    [96]张礼霞,王林友,张利华,等.用Rim2超级家族分子指纹鉴别杂交水稻及预测杂种优势[J].作物学报,2007,33(1):77-83
    [97]张培江,才宏伟.RAPD分子标记水稻遗传距离及其与杂种优势的关系[J].安徽农业科学,2000,28(6):698-700,704
    [98]张圣君.中子和电子束辐照对水稻等农作物育种的影响[J].上海大学学报(自然科学版),1999,5(5):388-392
    [99]张晓丽,郭辉,王海岗,等.中国普通野生稻与栽培稻种SSR多样性的比较分析[J].作物学报,2008,34(4):591-597
    [100]赵宝存,赵芊,葛荣朝,等.利用基因芯片研究小麦耐盐突变体盐胁迫条件下基因的表达图谱[J].中国农业科学,2007,40(10):2355-2360
    [101]赵庆勇,朱镇,张亚东,等.SSR标记遗传距离与粳稻杂种优势的相关性分析[J].中国水稻科学,2009,23(2):141-147
    [102]周海鹏,占小登,柴荣耀,等.具抗稻瘟病基因Pi25杂交稻恢复系的分子标记辅助选育[J].中国水稻科学,2008,22(6):590-596
    [103]周萍萍,尤元海,吴永宁,等.转基因大豆低密度基因芯片的检测方法研究[J].中国食品卫生杂志,2008,20(2):97-102
    [104]朱观林.水稻叶尖枯突变体wlt1的遗传分析与基因定位[D].扬州大学硕士论文,2009
    [105]朱克明.水稻包穗基因SHP6的遗传与定位[D].扬州大学硕士论文,2006:29-35
    [106]朱文银,李文涛,丁效华,等.水稻显性早熟基因Ehd的SSR标记定位[J].华北农学报,2009,4:7-10
    [107]朱作峰,孙传清,王象坤,等.水稻品种SSR与RFLP及其与杂种优势的关系比较研究[J].遗传学报,2001,28(8):738-745
    [108]Adkins S W, Kunauvatchaidach R, Godwin I D. Somaclonal variation in rice-drought tolerance and other agronomic characters[J].Aust J Bot,1995,43:201-209
    [109]Ahloowalia B S. Transmission of some aclonal variation in wheat[J].Euphytica, 1985,34:525-537
    [110]Akagi H, Yolozeki A,etal. Microsatellite DNA marker for rice chromosomes [J]. Theor Appl Genet,1996,90:1071-1077
    [111]Alonso J M, Stepanova, AN, Leisse, T J, et al.Genome-wide insertional muta-genesis of Arabidopsis thaliana[J]. Science,2003,301,653-657
    [112]Amar Kumar, Jefrey L. Bermetzen.Plant retrotranapoaons[J]. Annual Review of Genetics,1999,33:479-532
    [113]Amy N Bernardo, Peter J Bradbury, Hongxiang Ma, et al. Discovery and mapping of single feature polymorphisms in wheat using Affymetrix arrays. BMC Genomics 2009,10:251, doi:10.1186/1471-2164-10-251
    [114]Ashraf Chaudhrya M, Yoshidaa S, Vergaraa B S. Induced mutations for alumi-num tolerance after N-methyl-N-nitrosourea treatment of fertilized egg cells in rice (Oryza sativa L.) [J]. Environmental and Experimental Botany,1987,27(1): 37-43
    [115]Azpiroz LeehanR, Feldmann K A. T-DNA insertion mutagenesis in Arabidopsis: going back and forth[J]. Trends Genet,1997,13:152-156
    [116]Azuma T, Hirano T, Deki Y, et al. Involvement of the decrease in levels of absic acid in the internodal elongation of submerged floating rice[J]. J Plant Physiol, 1995,146:323-328
    [117]Banks T W, Somers D J, Jordan M C. Single feature polymorphism discovery using the wheat Affymetrix gene chip[C]. Plant and Animal Genomes XVI Conference,2008,1-3
    [118]Bevan M, Bancroft I, Bent E, et al. Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana[J]. Nature,1998,391(6666):485-488
    [119]Charcosset A, Essioux L.The effect of population structure on relationship betw-een heterocy stand heterozy gosity marker loci[J]. Theor Appl Genet,1994,89: 336-343
    [120]Chen X, Temnykh S, Xu Y, et al. Development of a microsatellite framework map providing genome-wide coverage in rice (Oryza Sativa L.)[J]. Theor Appl Genet,1997,(95):553-567
    [121]Chen Z G, Zhang J L, Zhang G Q. Identification of mutants caused by Ds insertion in rice[J]. International rice congress abstract, Beijing,China,2002, PP:30
    [122]Choi Y H, Yoshizawa K, Kobayashi M, et al. Distribution of endogenous gibber-llins invegetative shoots of rice[J]. PlantCell Physiol,1995,36(6):997-1001
    [123]Coram T E, Settles M L, Wang M, et al. Surveying expression level polymorphism and single-feature polymorphism in near-isogenic wheat lines differing for the Yr5 stripe rust resistance locus[J]. Theor Appl Genet,2008, 117(3):401-411
    [124]Chune C H, Ahn S N, Hong HC,et al. New mutants of specialty rice induced from Ilpumbyeo, a high-quality rice cultivar, by MNU(N-methyl-N-nitrosourea) treatment on fertilized egg cells[J]. Korean Journal of Breeding,2006,38(3): 154-160
    [125]Claude Schlienger, Rose-Marie Hofer, Paul-Emile Pilet. Critical study of coleoptile elongation controlled by IAA and ABA I.Growth kinetics and distri-bution[J]. Plant and Cell Physiology,1977,18(4):729-733
    [126]Clouse S D, Daniel M Z, Baker M E. Effect of brassinolide on gene expression in elongating soybean epicotyls[J]. Plant Physiol,1992,100:1377-1383
    [127]Clouse S D. Molecular genetic analysis of brassinosteroid action[J]. Physiologia Plantrum,1997,100:702-709
    [128]Daniel M Z, Clouse S D. Molecular cloning and characterization of a brassino-steroid-regulated gene from elongating Soybean epicotyls[J]. Plant Physiol,1994, 104:161-170
    [129]Dong C H, Hu X Y, Tang W P, et al. A putative A rabidopsis nucleopor2 in, AtNUP160, is critical for RNA export and required for plant tolerance to cold stress[J]. Molecular and Cellular Biology,2006,26 (24):9533-9543
    [130]Duan Y L, Wu W R, Liu H Q, et al. Genetic analysis and gene mapping of leafy head (lhd), a mutant blocking the differentiation of rachis branches in rice (Oryza sativa L.) [J]. Chinese Science Bulletin,2003,48(20):2201-2205
    [131]Giraud E, Hol H M, Clfton R, et al. The absence of alternative oxidase in Arabi-dopsis results in acute sensitivity to combined light and drought stress[J]. Plant Physiology,2008,147:595-610
    [132]Gof S A, Ricke D, Lan T H, et al. A draft sequence of the rice genome(Oryza sativa L. ssp. japonica)[J].Science,2002,296:92-100
    [133]Greco R, Ouwerkerk PBF, Taal AJC, et al. Early and multiple Ac transpositions in rice generated by an adjacent strong enhancer. Plant Mol[J]. Biol,2001,46: 215-227
    [134]Haga K, Takano M, Neumann R, et al.The rice COLEOPTILE PHOTOTROPI-SM1 gene encoding an ortholog of arabidopsis NPH3 is required for phototrop-ism of coleoptiles and lateral translocation of auxin[J]. Plant Cell,2005,17:103-115
    [135]Hager G, Debus H G, Edel H, et al. Auxin induces exocytosis and the rapid synthesis of a high-turnover pool of plasma-membrane H+-ATPase[J]. Planta, 1991,185:527-537
    [136]Hedden P. The genes of the green revolution[J]. Trends in Genetics,2003,19:5-9
    [137]He H, Serraj R, Yang Q. Changes in OsXTH gene expression, ABA content, and peduncle elongation in rice subjected to drought at the reproductive stage [J]. Acta Physiol Plant,2009,31:749-756
    [138]Heu M H, Shretha G L. Inheritance of gamadiness (incomplete panicle exertion) and internode contraction due to GA3 application in rice[J]. Korean J. Breed. 1983,15:12-16
    [139]Heu M H, Shretha G.. Genetic analysis of Sheathed panicle in a nepalese rice cultivar Gamadi[A]. In:Rice genetics I, Proceedings of the International Rice Gene-tics Symposium[C]. IRRI,Manila,Philippines,1986,317-322
    [140]Hiei Y, Ohta S, Komari T, et al. Efficient transformation of rice(Oryza sativa Z.)mediated by Agrobaterium and sequence analysis of boundaries of the T-DNA[J]. Plant J,1994,6:271-282
    [141]Hirochika H. Contribution rice functional genomics[J].Current Opinion in Plant Biology,2001,4:118-122
    [142]Hirochika H, Sugimoto K, Otsuki Y, et al. Retrotransposons of rice involved in mutations induced by tissue culture [J]. Proc Natl Acad Sci USA,1996,93:7783-7788
    [143]Hirohiko Hirochika, Emmanuel Guiderdoni, Gynheung An, et al. Rice mutant resources for gene discovery[J]. Plant Molecular Biology 2004,54:325-334
    [144]Hironori Fujisawa, Youko Horiuchi, Yoshiaki Harushima, et al. SNEP: Simultaneous detection of nucleotide and expression polymorphisms using Affymetrix GeneChip[J]. BMC Bioinformatics 2009,10:131, doi:10.1186/ 1471-2105-10-131
    [145]Hoffmann-Benrting S, Kende H. On the role of abscisic acid and gibberellin in the regulation of growth in rice[J]. Plant Physiol,1992,99:1156-1161
    [146]Huang D Q, Wu W R, Abrams S R, et al. The relationship of drought-related gene expression in A rabidopsis thaliana to hormonal and environmental factors[J]. Journal of Experimental Botany,2008,59 (11):2991-3007
    [147]Hu G, Fu Y, Si H, et al. Improvement of the actvation-tagging vector for rice trans formation and construction of rice mutant pool [A]. International rice congress abstract,Beijing,China,2002,PP:277
    [148]Iida S, Kusaba M, Nishio T. Mutants lacking glutelin subunits in rice:mapping and combination of mutated glutelin genes[J].Theoretical and Applied Genetics, 1997,94(2):177-183
    [149]Imwa T, Miyazaki C, Yamarnoto M, et al. Introduction and transposition of the maize transposable element Ac in rice (Oryza sativa L.)[J]. Mol Gen Genet,1991, 227:391-396
    [150]Inukai Y, Sakamoto T, Ueguchi-Tanaka M, et al. Crown rootlessl, which is esse-ntial for crown root formation in rice, is a target of an auxin response factor in auxin signaling[J]. Plant Cell,2005,17:1387-1396
    [151]Jeong D H, An S, Kang H G,et al. T-DNA insertional mutagenesis for activation tagging in rice[J]. Plant Physiol,2002,130:1636-1644
    [152]Jeon J S, An G. Gene tagging in rice:a high through-put system for functional genomics[J]. Plant Science,2001,161:211-219
    [153]Jeon J S, Lee S, Jung K H, et al. T-DNA insertional mutagenesis for functional genomics in rice[J]. Plant J,2000,22:561-570
    [154]Jia L Q, Zhang B T, Mao C Z, et al. OsCYT-INV1 for alkaline/neutral invertase is involved in root cell development and reproductivity in rice (Oryza sativa L.) [J]. Planta,2008,228 (1):51-59
    [155]Jiang H, Wang S, DangL, et al. A novel short-root gene encodes a glucosa-mine-6-Phosphate acetyltransferase required for maintaining normal root cell shape in rice[J]. Plant Physiol,2005,138:232-242
    [156]Yu J, Hu S N, Wang J, et al.A draft sequence of the rice genome (Oryza sativa L.ssp.indica)[J].Science,2002,296:79-92
    [157]Jung K H, Hur J, Ryu C H, et al. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system[J]. Plant Cell Physiol,2003,44:463-472
    [158]Lee J H, Lee S Y. Selection of stable mutants from cultured rice anthers treated with ethylmethane sulfonic acid.[J]. Plant Cell, Tissue and Organ Culture,2002, 71:165-171
    [159]Kaeppler S M, Phillips R L, Olhoft P. Molecular basis of heritable tissue cul-ture-induced variation in plants[A], In:Jain SM, Brar DS, Ahloowalia(Eds.), Somclonal variation and induced mutations in crop improvement[C]. Kluwer Academic Publishers, Dordrecht,1998,PP:467-486
    [160]Kende H, Knasp E, Cho H T. Deepwater rice:a model piant to study sterm elongation[J]. Plant physiol,1998,118:1105-1110
    [161]Kohayashi M, Sakurai A, Saka H, et al. Fluctuation of the endogenous IAA level in rice during its cycle[J]. Agric Biol Chem,1989,53(4):1089-1094
    [162]Kumamaru T, Satoh H, Iwata N, et al. Mutant for rice storage proteins. Ⅲ. Genetic analysis of mutants for storage proteins of protein bodies in the starchy endosperm[J] Japanese Journal of Genetics,1987,62:333-339
    [163]Laufs P, Autran D, Traas J. A chromosomal paracentric inversion associated with T-DNA integration in Arabidopsis[J]. Plant J,1999,18:131-139
    [164]Li J, Zhu S H, Song X W, et al. A rice glutamate receptor-like gene is critical for the division and survival of individual cells in the root apical meristem[J]. Plant Cell,2006.18:304-309
    [165]Li X Y, Qian Q, Fu Z M, et al. Control of tillering in rice[J]. Nature,2003,422: 618-621
    [166]Li Y H, Qian Q, Zhou Y, et al. BRITTLE CULM1,which encodes a COBRA-like protein, affects the mechanical properties of rice plants[J]. Plant Cell,2003, 15:2020-2031
    [167]Liu D, Zhang S, Fauquet C, Crawford M. The Arabidopsis transposon Tag1 is active in rice, undergoing germinal transposition and restricted, late somatic exci-sion[J]. Mol Gen Genet,1999,262:413-420
    [168]Maekawa M. Allelism test for the genes responsible for sheathed panicle [J]. RGN,1986,3:62-63
    [169]Maekawa M, Inukai T. Genes linked with d-2 in rice.Japan [J].J Breed,1992,42 (Suppl.2):212-213
    [170]Mantri N L, Ford R, Coram T E, et al. Transcriptional profiling of chickpea gen-es differentially regulated in response to high2salinity, cold and drought[J]. BMC Genomics,2007,8:303
    [171]McCallum C M, Comai L, Greene E A, et al. Targeting induced local lessions in genomes (TILLING) for plant functional genomics[J]. Plant Physiol,2000,123: 439-442
    [172]Metraux J P, Kende H. The role of ethylene in the growth response of Submerg-ed deep water rice[J]. Plant Physiology,1983,72:441-446
    [173]Miyahara K. Analysis of LGC-1, low glutelin mutant of rice [J]. Gamma Field Symposia,1999,38:43-52
    [174]Miyao A, Tanaka K, Murata K, et al. Target site specificity of the Tos17 retrotranspe son shows a preference for insertion within genes and against inse-rtion in retrotranspeson-rich regions of the Genome[J]. Plant Cell,2003,15: 1771-1780
    [175]Munoz F J, Labrador E, Dopico B. Brassinolides promote the expression of a new Cicer arietinum(3-tubulin gene involved in the epicotyl elongation [J]. Plant Mol Biol,1998,37:807-817
    [176]Murofushi N. Biosynthesis of gibberellins in rice and its dwarfism[J].Gamma Field Symposia,1992,31:11-23
    [177]Musgrave A, Jackson M B, Ling E. Callitriche stem elongation is controlled by ethylene and gibberellin[J]. Nature New Biol,1972,238:93-96
    [178]Mussig C. Brassinosteroid-promoted growth[J]. Plant Biol(Stuttg.),2005,7:110-117
    [179]Nacry P, Cami Ueri C, Courtial B, et al. Major chromosomal rearrangements ind-uced by T-DNA transformation in Arabidopsis[J]. Genetics,1998,149: 641-650
    [180]Nonomura K I, Miyoshi K, EiguchiM, et al. The MSP1 gene is necessary to restrict the number of cells entering into male and female sporogenesis and to initiate anther wall formation in rice[J]. Plant Cell,2003,15:1728-1739
    [181]Nonomura K I, Nakano M, Murata K, et al An insertional mutation in the rice PAIR2 gene, the ortholog of Arabidopsis ASY1, results in a defect in homologous chromosome pairing during meiosis[J]. Mol Genet Genomics,2004,271:121-129
    [182]Ohba T, Yoshioka Y, Machida C, et al. DNA rearrangement associated with the integration of T-DNA in tobacco:An example for multiple duplications of DNA around the integration target[J]. Plant J,1995,7:157-164
    [183]Oikawa T, Yoshida H, Kawata M. A role of OsGA20oxl, encoding an isoform of gibberellin 20-oxidase, for regulation of plant stature in rice[J]. Plant Mol Biol,2004,55:687-700
    [184]Panaud O, Chen X. Development of microsatellite markers and characteri-zation of simple sequence length polymorphism(SSLP) in rice (Oryza Sativa L.) [J]. Mol Gen Genet,1997,252:597-607
    [185]Phillips R L, Kaeppler S M, Olhoft P. Genetic instability of plant tissue cultures: breakdown normal controls[J]. Proc Natl Acad Sci USA,1994,91:5222-5226
    [186]Pilet P E, Saugy M. Effect on root growth of endogenous and applied IAA and ABA[J]. Plant Physiol,1987,83:33-38
    [187]Pinheiro M M, Zhou X R, Zhu Q H, et al. Isolation and characterization of a Ds-tagged rice (Oryza sativa L.) GA-responsive dwarf mutant defective in an early step of the gibberellin biosynthesis pathway[J]. Plant Cell Rep,2005,23: 819-833
    [188]Qian Q, Li Y H, Zeng D, et al. Isolation and genetic characterization of a fragile plant mutant rice(Oryza sativa L.) [J]. Chin. Sci. Bull.2001,46:2082-2085
    [189]Raskin I, Kende H. Regulation of growth in stem sections of deep water rice[J]. Planta,1984,160:66-72
    [190]Raskin I, Kende H. Role of gibberellin in the growth response of submerged deep water rice[J]. Plant Physiol,1984,76:947-950
    [191]Rayle D L, Cleland R E. The acid growth theory of auxininduced cell elonga-tion is alive and well[J]. Plant Physiol,1992,99(4):1271-1274
    [192]Ray S D. GA, ABA, phenol interaction in the control of growth:Phenolic compounds as effective modulators of GA-ABA interaction in radish seedlings[J]. Biologia Plantarum,1986,28:361-369
    [193]Romano C P, Cooper M L, Klee H J. Uncoupling auxin and ethylene effects in transgenic tobacco and arabidopis plants[J]. Plant Cell,1993,5:181-189
    [194]Ross E.Koning, Mandy M.Raab. Parameters of filament elongation in ipomoea nil(Convolvulaceae) [J].Amer.J.Bot,1987,74(4):510-516
    [195]Ross J J, O'Neill D P, Wolbang C M, et al. Auxin-gibberellin interactions and their role in plant growth[J], J Plant Growth Regul,2002,20:346-353
    [196]Rumi T, Nacki S, Susurral K. Brassinolide-induced elongation of inner tissues of segments of squash hypocotyls[J]. Plant Cell Physiol,1994,35(7):1103-1106
    [197]Sallaud C, Gay C, Larmande P, et al. High throughput T-DNA insertion mutagenesis in rice:A first step towards in silico reverse genetics [J]. Plant J. 2004,39:450-464
    [198]Satoh H, Qu L Q, Kumamaru T, et al. Glutelin mutants induced by MNU treat-ment in rice[J]. RGN,1997,14:81-84
    [199]Sato Y, Sentoku N, Miura Y, et al. Loss of function mutations in the rice home-obox gene OSH15 affect the architecture of internodes resulting in dwarf plants [J]. EMBO J,1999,18:992-1002
    [200]Schaap A P. Sequential chemilum inescent detection of two different nucleic-acids without reprobing[J]. Biolumin Chemilumin,1998,13(4):241-244
    [201]Shrestha G L. Gene location for "Gamadiness" in rice(Oryza sativa L.) [J]. Korean J. Crop Sci.1984,29:128-135
    [202]Spielmeyer W, Ellis M H, Chandler P M. Semidwarf (sd-1).green revolution rice, contains a defective gibberelin 20-oxidase gene[J].Proc Natl Acad Sci USA,2002,99:9043-9048
    [203]Stephen, et al. A Draft Sequence of the Rice Genome (Oryza Sativa L.ssp. jap-onica)[J].Science,2002,(296):92-100
    [204]Suge H. Ethylene and gibberellin:regulation of internodal elongation and nodal root development in floating rice[J]. Plant Cell Physiol,1985,26:607-614
    [205]Suge H, Tokairin H. Plant response to wind as affected by genetic backgrounds in rice plants[J]. Janpan Jour Crop Sci,1982,51(3):380-385
    [206]Susan R M, Leonid T Y, Xu Y B, et al. Development and mapping of 2240 new SSR marker for rice (Oryza Sativa L.) [J].DNAREAEACH,2002,(9):199-207
    [207]Szeverenyi I, Bachmarm D, Kolesnik T, et al. Transposon tagging in rice using Ac/Ds gene trap system[A].International rice congress abstract, Beijing, China, 2002,PP:328
    [208]Tadzunu Suzuki, Mitsugu Eiguchi,Toshihiro Kumamaru, et al. MNU-induced mutant pools and high performance TILLING enable finding of any gene mutation in rice[J]. Mol Genet Genomics,2008,279:213-223
    [209]Takeda K. Internode elongation and dwarfism in some gramineous plants[J]. Gamma Field Symp,1977,16:1-18
    [210]Tatiana Kolesnik, Ildiko Szeverenyi, Doris Bachmann, et al. Establishing an efficient Ac/Ds tagging system in rice:large-scale analysis of Ds flanking sequences[J]. The Plant Journal,2004,37(2):301-314
    [211]Temnykh S, Park W D, Ayres N, et al. Mapping and genome organization of microsatellite sequences in rice (Oryza Sativa L.).Theor Appl Genet,2000, (100):697-712
    [212]Tian H D, Kumamaru T, Takemoto Y, et al. Gene analysis of new 57H mutant gene, glup6, in rice[J]. RGN.2001,18:48-50
    [213]Tsugane K, MaekawaM, Takagi K, et al. An active DNA transposon nDart cau-sing leaf variegation and mutable dwarfism and its related elements in rice[J]. Plant J,2006,45:46-57
    [214]Veilhux R E, Johnson A A T. Somaclonal variation:molecular analysis,trans-formation, interaction and utilization[J]. Plant Breed Rev,1998,16:229-268
    [215]Walden R, Hayashi H, Schell J. T-DNA as a gene tag[J]. Plant J.1991,1: 281-288
    [216]Wang Y G, Xing Q H, Deng Q.Y, et al. Fine mapping of the rice thermosen-sitive genie male-sterile gene tms5[J].Theor. Appl.Genet,2003,107:917-921
    [217]Went F W. Auxin, the plant growth hormone[J]. Bot. Rev,1935,1(5):162-182.
    [218]Wong C E, Li Y, Labbe A, et al. Transcriptional profiling implicates novel inter-actions between abiotic stress and hormonal responses in the 12 lungiella, a close relative of A rabidopsis[J]. Plant Physiology,2006,140:1437-1450
    [219]Wu K S, Tanksley S D. Abundance polymorphism and genetic mapping of mic-rosatellites in rice[J], Mol Gen genet,1993,241:225-235
    [220]Xie Q, Linscombe R, Rush M C, et al. Registration of LSBR-5 sheath blight-resistant germ plasm lines in rice[J]. Crop Sci,1992,32:507
    [221]Xu W, Purugganan M M, Polisensky D H, et al. Arabidopsis TCH-4, regulated by hormones and the environment,encodes a xyloglucan endotransglycosylase [J]. Plant Cell,1995,7:1555-1567
    [222]Yang, G., Matsuoka, M., Iwasaki, Y. and Komatsu, S. A novel brassinolide-enhanced gene identified by cDNA microarray is involved in the growth of rice[J]. Plant Mol. Biol.2003,52,843-854
    [223]Yang T, Davies P J, Reid J B. Genetic dissection of the relative roles of auxin and gibberellin in the regulation of stem elongation in intact light-gown peas[J]. Plant Physiol,1996,110:1029-1034
    [224]Yarnarnuro C, Thara Y, Wu X, et al. Loss of function of a rice brassinosterioid insentive homolog prevents internode elongation and bending of the lamina joint[J]. Plant Cell,2000,191(2):1591-1606
    [225]Yin C, Gan L, Ng D, et al. Decreased panicle-derived indole-3-acetic acid redu-ces gibberellin A1 level in the uppermost internode, causing panicle enclosure in male sterile rice Zhenshan 97A[J]. J Exp Bot,2007,58:2441-2449
    [226]Zhang Q F, Gao Y J, Saghai Marcof MA, et al. Molecular divergence and hybrid performance in rice[J]. Mol Breeding,1995,1:133-142
    [227]Zhang Q F, Zhou Z Q, Yang G P, et al. Molecular matker heterosis gosity and hybrid performance in indica and japonica rice[J]. Theor Appl Genet,1996,93: 1218-1224
    [228]Zhi Hong, Miyako Ueguchi-Tanaka, Kazuto Umemura, et al. A rice brassinos-teroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of Cytochrome P450[J]. The Plant Cell,2003,15:2900-2910
    [229]Zhi Hong, Miyako Ueguchi-Tanaka, Sae Shimizu-Sato, et al. Loss-of-function of a rice brassinosteroid biosynthetic enzyme, C-6 oxidase, prevents the organized arrangement and polar elongation of cells in the leaves and stem[J]. The Plant Journal,2002,32(4):495-508
    [230]Zhu Z G, Fu Y P, Xiao H, et al. Ac/Ds transposition activity in transgenic rice population and DNA flanking sequence of Ds insertion sites [J]. Acta Botanica Sinica,2003,45:102-107

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700