沉淀聚合法制备聚酰亚胺微
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚酰亚胺微同时具有聚酰亚胺的优异性能(热稳定性、耐溶剂、耐磨性等)和高分子微在尺寸和结构上的优势,将在催化载体、分离纯化、离子交换等领域有着广阔的应用前景。目前,聚酰亚胺微的实验研究主要包括:聚酰亚胺实体微、聚酰亚胺/无机粒子纳米复合微、聚酰亚胺多孔微、聚酰亚胺中空微;制备的方法主要是悬浮聚合法、分散聚合法、再沉淀法等。但是这些制备方法存在过程繁琐、粒子粘结、粒径难控、使用大量的稳定剂等问题。
     采用沉淀聚合法制备聚酰亚胺微,具有过程简单、且不需添加如何稳定剂等特性。在沉淀聚合法制备聚酰亚胺微过程中,实验考查了几个方面:①沉淀聚合法制备聚酰胺酸微的影响因素;②聚酰胺酸亚胺化制备聚酰亚胺微的工艺条件优化;③聚酰亚胺微的热性能研究。研究表明:
     (1)沉淀聚合法制备聚酰胺酸微
     分别以四种不良溶剂(甲醇、乙醇、四氢呋喃、丁酮)作为反应体系,制备出四种聚酰胺酸微。结果显示,以丁酮为溶剂时得到的PAA粒子具有最好的形形貌;且粒径分布较窄,平均粒径为8.8μm。
     丁酮(MEK)与N-甲基吡咯烷酮(NMP)混合溶剂为反应体系(MEK与NMP的体积比20:1、18:1、15:1、13:1、10:1、8:1)时,制备出的聚酰胺酸微。结果显示当MEK与NMP的体积比为8:1时,粒子具有最好的型形貌;且为粒径最大,平均粒径为16.5μm。
     (2)聚酰胺酸亚胺化制备聚酰亚胺微的工艺条件优化
     采用两种不同的加热形式将聚酰胺酸微亚胺化,即等温度梯度加热(由室温梯度加热到350℃,从100℃开始停30min,后每升温50℃停留30min)和等时间间隔加热(由室温直接加热到350℃,每隔15min取一次样,总共去5次样),最后得到PI微。结果显示由等温度梯度加热得到的PI微形貌、粒径分布、反应程度均优于等时间间隔加热得到的PI微;等温度梯度加热得到的PI微的平均粒径为8.8μm,粒径分布较窄。
     (3)聚酰亚胺微的热性能
     本文尝试对聚酰亚胺微的热性能为做了初步的研究,利用凝胶渗透色谱(GPC)分析了三个分子量不同的PI微,再以DSC对其进行分析。结果表明数均分子量大的聚酰亚胺(a球,其玻璃化温度(Tg)也较高(aPolyimide (PI) microspheres have excellent performance of PI , such as high thermal stability, solvent resistance, wear resistance; and characteristics of microspheres in size and structural. In future, it is used in the catalyst carrier, purification, ion exchange. Currently, polyimide microspheres are mainly the following aspects: entity microspheres of polyimide; composite microspheres of polyimide/inorganic nanoparticle; porous microspheres of polyimide; hollow microspheres of polyimide. The ways of polyimide microspheres prepared are mainly suspension polymerization, dispersion polymerization, re-precipitation method. However, these problems are existed in process of polyimide microspheres prepared, such as complicated process, particles adhesion, particle size difficult to control, using a large number of stabilizing agents.
     Polymerization of precipitation has these features with the process simple, not adding stabilizing agents. Experiment examines the following aspects:①Preparation of polyamic acid (PAA) microspheres by polymerization;②Polyimide microspheres prepared with imidization of polyamic acid by the process conditions;③The thermal transition behavior of polyimide microspheres.
     (1) Preparation of polyamic acid (PAA) microspheres by precipitation method
     The polyamic acid (PAA) microspheres were prepared using the precipitation method in solvents such as methanol, ethanol, tetrahydrofuran (THF), Methyl ethyl ketone(MEK) N-metyl-2-pyrrolidone (NMP). Scanning electron microscopy (SEM) photographs show better PAA microsphere morphology while methyl ethyl ketone as solvent, and the average particle size is about 8.8μm. Subsequently, in order to get the larger size microspheres, methyl ethyl ketone (MEK) and N-methyl pyrrolidone (NMP) was used as mixed solvent for the reaction system. When the volume ratio of MEK and NMP was 8:1, the particles have better microspheres morphology, and average particle size is 16.5μm. The particle size increased with increasing the volume ratio of NMP.
     (2) Polyimide microspheres prepared with imidization of polyamic acid by the process conditions
     Based on the front work, selecting the PAA microspheres at the volume ratio of MEK and NMP 8:1, two different forms of heating their sub-amination, such as temperature gradient heating and other time intervals, eventually PI microspheres were obtained. SEM images show microspheres morphology of PI by the temperature gradient heating are better than by the other time intervals; infrared spectroscopy displays the temperature gradient heating better the thermal of PI microspheres performance by temperature gradient heating was better than by the other time intervals .
     (3) The thermal transition behavior of polyimide microspheres
     This article attempts to study the thermal preliminary behavior of polyimide microspheres. Gel permeation chromatography (GPC) analysis three different molecular weight of PI microspheres. The show that glass transition temperature (Tg) of polyimide microspheres increases with the number average molecular weight increasing.
引文
[1]邹盛欧.聚酰亚胺发展动向[J].化工新型材料,1999,27(3):3-6.
    [2]马光辉,苏志国.高分子微材料[M].北京:化学工业出版社,2005:8-63.
    [3] N.A.阿德洛瓦.聚酰亚胺[M].北京:机械工业出版社,1981:5-6.
    [4]李赤峰.聚酰亚胺的结构与其热性能的关系[J].化学推进剂与高分料,2004,2(6):24-28.
    [5]何天白,丁孟贤.聚酰亚胺新型材料[M].北京:科学出版社,1998:6-10.
    [6]梁国正,顾媛娟.双马来酰亚胺[M].北京:化学工业出版社,1996:95-112.
    [7] Ghosh M K, Miltal K.Polyimides: Fundamentals and Applications[M].NewYork: Marcel Dekker, Inc., 1996: 3-11.
    [8] Haruhiko O, Vladislav V, Kudrya V, Svedana I S.Polyimide membranes: applications, fbrications, and properties[J].Haruhiko ohya, 1996, 38 (4): 4-27.
    [9]彭秧锡.聚酰亚胺新型材料及其应用[J].化学教育,2004,6(4):7-8.
    [10]周其凤,范星河,谢晓风.耐高温聚合物及其复合材料—合成、应用与进展[M].北京:化学工业出版社,2004:30-32.
    [11]张清华,陈大俊,丁孟贤.聚酰亚胺纤维[J].高分子通报,2001,41(5):66-72.
    [12]杨晶晶,周宏伟,党国栋.陈春海.聚酰亚胺硅氧烷/聚酰亚胺两面异性复合膜的制备及性能研究[J].高等学校化学学报,2006.27(6):1579-1582.
    [13] Masa A K, Masa A S, Tour K S.Preparation ofmono-and multilayer films of aromatic polyimides using Langmuir-Blodgett Technique[J].Chemistry Letters, 1986, 15(5): 823-826.
    [14] Iwamoto M, Kakimoto M A.In polyimides fundamentals and applications[M].New York: Dekker, 1996: 815-816.
    [15] Imai Y.Rapid synthesis of polyimides from nylon-salt-type monomers[J].Adv Poly Sci, 1999, 140(22): 1-22.
    [16] Koji H, Hiroyuki F M.Monolayer behavior of poly(amic acid)alkylamine salts containing the dimethylsiloxane dtructure and their Langmuir blodgett films[J].Langmuir, 1998, 14(3): 2134-2138. .
    [17] Hyun Y, Mark D F, Joachim E K, et al.Temperature-dependent behavior of langmuirmonolayers of octadecyl-substituted preformed polyimides[J].Langmuir, 2000, 76(5), 16: 9792-9796.
    [18] Akatsuki T, Tanaka H, Toyama J, et al.Highly conductive langmuir–blodgett films of pyrolytic polyimide[J].Chemistry Letters, 1990, 34(9): 975-980.
    [19] Takahisa A, Hideaki T, Jiro T M.Properties of liquidcrystal cells of pyrolyzed polyimide langmuir-blodgett films[J].Thin Solid Films, 1992, 210(211): 458-460.
    [20] Yang B F, Zhou Y,Cai W L, et al.Thin SiC films prepared by pyrolysis of polyimide langmuir–blodgett films on silicon[J].Applied Physics Letters, 1994, 64(5): 1445-1447.
    [21] Yang B F, Cai W L, He P S, et al.Growth ofβ-SiC film by pyrolysis of polyimide langmuir–blodgett films on silicon[J].Journal of Applied Physics,1995,77(8): 6733-6735.
    [22] Jike M, Chon S H, Kakimoto K, et al.Synthesis of hyperbranched aromatic polyamide from aromatic diamines and trimesic acid[J].Macromolecules, 1999, 32(3): 2061-2064.
    [23] Perk S J, Kai L, Jin F L.Synthesis and characterization of hyper-branched polyimides from 2,4,6-triaminopyrimidine and dianhydrides system[J].Materials Chemistry and Physics, 2008, 108 (90): 214-219.
    [24] Huang C B, Wang S Q, Zhang H, et al.High strength electrospun polymer nanofibers made from BPDA–PDA polyimide[J].European Polymer Journal, 2006, 42(9): 1099–1104.
    [25] Nah C W, Han S H, Lee M H, et al.Characteristics of polyimide ultrafine fibers prepared through electrospinning [J].Polymer International, 2003, 52(9): 429–432.
    [26] Chang G S, Kin B C.Properties of carbon nanofibers prepared from electrospun polyimide[J].Journal of Applied Polymer Science, 2005, 97(13): 165–170.
    [27] Okubo M, Lu Y.Preparation of a heter geneous polymer film from the blend emulsion by the stepwise heterocoagulation method[J].Colloid and Surfaces, 1999, 153(8): 609-615.
    [28]张洪刚,陆书来,成国祥.悬浮聚合法制备磁性分子印迹聚合物微[J].功能高分子学报,2007,19(3):257-261.
    [29] Huang J X, Yuan X Y, Yu X L, et al.Dispersion copolymerization of methyl methacrylate and acrylic acid in polarmedia: effects of action parameters on the particle size and size distribution of the copolymermicrospheres[J].Polymer International, 2003, 52(9): 819-826.
    [30]王志英,范丽恒,杨成.无皂乳液共聚制备纳米微[J].化工新型材料,2006,34(3):43-45.
    [31]王红艳,倪忠斌,杨成.PSt种子与PSt/PAN复合颗粒的制备[J].高分子学报,2007,12(6):503-508.
    [32] Chen M Q, Serizawa T, Kishida A, et al.Particle size control of poly ( ethylene glycol) coated polystyrene nanoparticles by Macromonomer method[J].Journal Polymer Science PartA: Polymer Chemistry, 1999, 37 (13): 2155-2166.
    [33]陈明清,刘晓亚,杨成.分散共聚体系中高分子纳米颗粒的合成与反应机理[J].江南大学学报:自然科学版,2002,1(3):254-258.
    [34] Liu X Y, Jiang M, Yang S L, et al.Micelles and hollow nanospheres based onε-cap rolactone- containing polymers in aqueous[J].Angewandte Chemie International Edition, 2002, 114 (16): 2950-2953.
    [35]陈明清,陆剑燕,江金强.功能高分子微制备技术研究进展[J].江南大学学报,2008,7(1):320-324.
    [36]金凤友,王可答,樊铁波.微乳液聚合的原理及应用[J].绥化学院学报,2008,28(6):168-170.
    [37]杨超,黎钢,何彦刚.沉淀聚合机理及反应条件因素影响的研究[J].化学中间体,2005,15(12):22-25.
    [38]王艳峰,乐长高.有机纳米材料研究综述[J].化工时代,2005,19(8):56-59.
    [39] Kasai H, Oikawa H, Okada S, et al.Crystal growth of perylene microcrystals in the reprecipitation method [J]. Bulletin of the Chemical Society of Japan, 1998, 71(8): 2597-2601.
    [40] Suzuki M, Kasai H, Ishizaka T, et al.Fabrication of size-controlled polyimide nanoparticles[J].Journal of Nanoscience and Nanotechnology, 2007, 21(7): 2748-2752.
    [41] Chai Z K, Zhang X, Sun X F.Preparation of polymer microspheres from solutions [J].Journal of Polymer Science: Part B: Polymer Physics, 2003, 41(7): 159-165.
    [42] Wakabayashi K, Kohama S I, Yamazaki S C.Morphology control of various aromatic polyimides by using phase separation during polymerization[J].Polymer, 2007, 48(8): 458-466.
    [43]蒋远媛,阙正波,王晓东等.聚酰亚胺的微化[J].高等学校化学学报,2008,29(8):2091-2095.
    [44]浅尾胜哉和齐藤英纪.聚酰胺酸和聚酰亚胺细颗粒以及它们的制备方法[P].中国专利:99103698,2000-03-08.
    [45] Liu Q P, Gao L X, Gao Z W, et al.Preparation and characterization of polyimide/silica nanocomposite spheres[J].Materials letters, 2007, 61(7): 4456-4458.
    [46] Tae H K, Chang D K, Heessook C.Facile preparation of core-shell type molecularly imprinted particles:molecular imprinting into aromatic polyimide coated on silica spheres [J].Macromolecules, 2005, 38(9): 6423-6428.
    [47] Gufan Z, Takayuki I K, Hitoshi K S.Fabrication of unique porous polyimide nanoparticles using a reprecipitation method[J].The Chemistry of Materials, 2007, 19(6): 1901-1905.
    [48] Yayoi Y S, Katsuya A S, Kazuhiko Y M.Preparation of micron-sized aromatic polyamide particles using ultrasonic irradiation[J].Colloid&Polymer Science, 2007, 285(13): 535-541.
    [49] Keiji N G, Tomihiro T K, Takayoshi N M.Fabrication of highly spherical millimeter -sized poly(amic acid)capsules by removing non-volatile Solvent [J].Macromolecular Rapid Communications, 2001, 22(6): 1344-1347.
    [50] Shinji W, Kenji U, Kazuhiko K.Preparation of core-shell polystyrene-polyimide particles by dispersion polymerization of styrene using poly(amic acid)as a stabilizer [J].Macromolecular Rapid Communications, 2000, 21:1323–1326.
    [51] Xiong J Y, Liu X Y, et al.Surfactant free fabrication of polyimide nanoparticles [J].Applied Physics Letters, 2004, 85(23): 5733-5735.
    [52]张飞.聚酰亚胺/聚硅氧烷复合微粒子的制备与性质研究[D].武汉:武汉理工大学,2007.
    [53]张占文,王朝阳,钟发春.聚酰胺酸合成工艺研究[J].强激光与粒子束,2002,14(2):261-264.
    [54]杨丽彬,孙本惠,徐叶新.聚酰亚胺膜在不同醇/水体系中的溶胀特性[J].膜科学与技术,2008,28(2):44-47[J].
    [55]李生柱.聚酰亚胺的现状和将来[J].化工新型材料,1999,27(11):12-17.
    [56] Amy E E, Thomas C W, Melanie D B, et al.Structure-property relationships for a series of amorphous partially aliphatic polyimides[J].Journal of Polymer Science: Part B: Polymer Physics, 2002, 40(14): 1503-1512.
    [57] Yoshiyuki N, Tatsuo H, Toshisada T.Miscibility and Orientation Behavior of Poly (vinyl alcohol)/Poly(vinyl pyrrolidone) Blends[J].Journal of Polymer Science: Part B: Polymer Physics, 1990, 28(7): 355-376.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700