土壤中苏云金杆菌HBF-1菌株毒蛋白ELISA检测方法的建立及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以在我国分离获得的对丽金龟科幼虫高毒力的苏云金芽胞杆菌(Bacillus thuringiensis简称Bt)HBF-1为供试菌株,以其产生的杀虫晶体蛋白为检测目标,通过制备的抗Bt蛋白多克隆抗体,建立了土壤中HBF-1菌株毒蛋白含量的酶联免疫吸附分析(Enzyme-linked immunosorbent assay,ELISA)测定方法。
     抗原是影响抗体特异性和效价的重要因素。为了得到高纯度的杀虫晶体蛋白,本研究采用等电点法沉淀出晶体杀虫蛋白,用聚丙烯酰胺凝胶电泳进一步纯化粗提的杀虫晶体蛋白,得到分子量约为130kDa的电泳纯杀虫晶体蛋白,作为免疫用抗原。利用该抗原分四次对新西兰白兔进行免疫,获得了高特异性的抗血清,再用辛酸—硫酸铵盐析法,获得了高免血清中的免疫球蛋白IgG,SDS-PAGE电泳结果表明,提取的IgG纯度较高,其浓度达到5.6344mg/mL。采用改良的过碘酸钠法,用辣根过氧化物酶标记IgG,制备出标记率为0.28,克分子比为0.798的酶标抗体。
     通过利用直接法、间接法和双抗夹心法等ELISA方法检测土壤中Bt毒蛋白的含量,综合样品检测值的相关系数CV,EC_(50)及检测率三个方面,明确双抗体夹心ELISA法均优于其它两种方法,间接ELISA法次之,从而证明双抗夹心法是一种检测土壤中Bt毒蛋白含量较适宜的方法。明确了双抗体夹心ELISA法的最佳工作条件:抗体的包被量为7μg/mL;Bt杀虫晶体蛋白的3种提取液(Tris—硼酸、Na_2CO_3缓冲液、PBST)中,以Na_2CO_3缓冲液为最佳提取液;封闭液为0.1%明胶-PBST;酶标抗体的最适工作浓度为1:800稀释;待测样品的反应时间为37℃120min;酶标抗体的时间为37℃60min;底物显色时间为室温15min。通过对该ELISA法的特异性试验、交叉性试验和重复性试验验证,证明双抗体夹心ELISA法是一种特异、敏感、快速、操作简便的方法。
     利用优化的双抗夹心ELISA系统检测花生田里Bt蛋白的消长动态,结果表明利用双抗夹心ELISA法定量测定土壤中Bt蛋白的量能够明确反映出土壤中Bt毒蛋白含量的动态变化情况。在播种期施入Bt毒蛋白,原液及2倍稀释液土深20cm的处理在3d时达到最大含量,随后为平缓下降的趋势;原液和2倍稀释液土深2cm的处理在3d时蛋白含量上升,随后下降,在21d时检测量达到最高峰,随后下降至134d检测结束,在此过程中3~14d深土层20cm的蛋白含量明显高于浅土层2cm,随后除2倍稀释液21d、31d时有所例外,其余各处理均为深土层蛋白量高于浅土层。在开花前期施入Bt毒蛋白,四处理的蛋白含量3d达到最高,随后原液和2倍稀释液土深20cm的处理急剧下降,原液和2倍稀释液土深2cm的处理下降平缓。在开花后期施入Bt毒蛋白,四处理蛋白含量3~7d达到最高,随后呈平缓下降的趋势。因此,在不同施药时期,各处理深土层20cm的Bt蛋白量高于浅土层2cm。总之,在花生开花前期和开花后期进行灌根施药,土壤中Bt蛋白表达高峰期即为铜绿丽金龟(Anomala corpulenta Motschulsky)卵高峰期和幼虫一龄期、二龄初期,能够对金龟子幼虫达到最佳防治效果。
The purpose of this research was to study on the preparation of antigen of theinsecticidal crystal protein of Bt (Bacillus thuringiensis)strain HBF-1, the polyclonalantibody and an enzyme-linked immunosorbent assay (ELISA) was developed andperformed to determine the Bt protein in soil. The specific HBF-1 strain from Bt whichshowed high toxicity to Anomala corpulenta and A. exoleta.
     In this study, the crystal protein was obtained by isoelectric point deposition, and theextracted protein was purified by SDS-PAGE. The highly purified protein with molecularweight of 130 kDa was used as antigen to immune New Zealand Rabbit for four times, andthen specific antibody was acquired. Mainly immunoglobuling (IgG) of rabbit anti-Bt waspurified by caprylic acid-ammonium sulphate precipitation. The result of SDS-PAGEsuggested that it's one simple, efficient, rapid and low cost method for the purification ofIgG from antiserum, and the concentration of the purified IgG was 5.6344mg/mL. With thesodium periodate method antibody was labeled by HRP to make enzyme-labelled antibody.After tested, In the combination of enzyme-labelled antibody, HRP/Ab was 0.798, thecombination rate of enzyme was 0.28.
     In this research, Direct—ELISA, ID—ELISA, DAS—ELISA were experimented toassay the content of Bt protein in soil, Through comparison of CV, EC_(50) and the rate ofdetection, DAS—ELISA is the best method, and the DAS—ELISA for detection of the Btprotein was established. Through the specificity test blocking test, cross test, andduplication test, we can see clearly that the method of double sandwich ELISA is veryspecific, sensitive and stable. It offers that the assay has a promising application future.
     The method of DAS—ELISA was applied to detect Bt protein in the peanut field. Theresult showed that the content of the Bt protein which was detected by this method canincarnate the dynamics of the Bt protoxin in soil. when manuring the fermentation liquid ofHBF-1 in sowing time, concerned the sample of original liquid and double diluted liquid in the depth of 20cm, the detection of Bt protein reached the peak on the 3rd day, and then gotinto slowly degradation stage. Concerned the sample of 2cm, the dynamics of Bt protoxinis not stable before the 21st day, and reached the peak on the 21st day, and then slowlydegraded till 134th day, this experimentation was over. The result showed that in the periodof 3rd~14th day, the detection of Bt protoxin in the depth of 20cm is significantly higherthan that in the depth of 2cm, and then except the sample of double diluted in the period of21st~31st, the Bt protoxin in the depth of 20cm is more than 2cm. When manuring thefermentation liquid of HBF-1in flowering early time, the detection of protoxin reached thepeak on the 3rd day, and then the content ofprotoxin in the depth of 20cm degraded rapidly,though in the depth of 2cm the protoxin degraded slowly. When manuring the fermentationliquid of HBF-1 in flowering later time, the detection of Bt protoxin reached the peak onthe 3rd~7th, and then degraded all along with lower speed.
     Finally, it will be a best control to the larvae of scarbaeoid beetles when manuring thefermentation liquid of HBF-1 in flowering early time or later time, because in this periodthe expressing levels of Bt protoxin reached the peak and in time at peak egg stage, theduration of the 1st instar and 2nd instar of Anomala corpulenta Motschulsky.
引文
[1] 李海燕,朱延明,马凤鸣.植物抗虫基因工程的研究进展[J].东北农业大学学报,2000,31(4):399~405.
    [2] 张玲.Bt杀虫剂研究进展[J].中国生物工程杂志,2005(增):91~94.
    [3] 中国科学院微生物研究所.伯杰氏细菌鉴定手册[M].北京:科学出版社,1984.
    [4] Ishiwata S. On a kind of severe flacherie(sotto disease)[J]. Dainihon Sanshi Kaiho, 1901, 114: 1~5.
    [5] 喻子牛.苏云金杆菌[M].北京:科学出版社,1990.
    [6] Bjame Munk Hansen and Niels Bohse Hendriksen. Detection of Enterotoxic Bacillus and Bacillus thuringiensis strains by PCR analysis[J]. Appl. Envir. Microbiol, 2001, 67: 185~189.
    [7] de Barjac, et al. Mise an point surla classifications des Bacillus thuringiensis[J]. Entomphage, 1973, 18 (1): 5~17.
    [8] de Barjac, et al. Indentification of H-serotypes of Bacillus thuringiensis, In"Microbial Control of pest and plant Diseases 1970-1980"[M]. Academic press, 1981, 34~44.
    [9] Lecadet M. M, E Frachon, D V Cosmao, et al. Thiery updating the H-antigen classification of Bacillus thuringiensis[J]. Appl. Microbiol, 1999, 86: 66~67.
    [10] 李长友.对鳞翅目害虫高度力Bt菌株B-Hm-16和B-Pr-88的分子生物学研究[D].东北农业大学博士学位论文,2001.
    [11] 张用梅,杨一平,陈宗胜.聚丙烯酰胺凝胶电泳对几个苏云金杆菌变种营养细胞酯酶图谱的分析[J].微生物学通报,1979,6(1):6~8.
    [12] 张用梅,陈宗胜.苏云金杆菌的酯酶分析[J].微生物学报,1981,21(21):197~203.
    [13] 张用梅,陈宗胜,等.与苏云金杆菌各H-血清型相同但不产生晶体的芽胞杆菌的生化特性,酯酶型和毒力的比较[J].华中农学院报,1983,2:42~47.
    [14] 姚江.高效广谱苏云金芽孢杆菌Ly30株的分子生物学研究[D].中国农业科学院博士学位论文,2002.
    [15] Tang J D, Shelton AM, Van Rie J, et al. Toxicity of Bacillus thuringiensis spore and crystal protein to resistant diamondback moth (Plutella xylostella)[J]. Appl. Envir. Microbiol, 1996, 62: 564~569.
    [16] 刘梅,孙明,喻子牛.苏云金芽胞杆菌防治鞘翅目害虫的研究[J].中国生物防治,1998,14(1):38~42.
    [17] 高梅影,李荣森,戴顺英,等.杀鞘翅目苏云金芽抱杆菌新菌株及其杀虫剂的研究[J].微生物学报,1999,39(6):515~520.
    [18] Krieg A, Huger A. M, Schnetter W, et al. Bacillus thuringiensis var. tenebrionis: A new pathotype effective against larvae ofColeoptem[J]. Z. dngew. Entomol., 1983, 96: 500~508.
    [19] Charpentier. G, Tian L, Cossette J, et al. Characterzation of cell lines developed from the Colorado potato beetle, Leptinotarsa decemlineata Say.(Goleoptera: Chrysomelidae) [J]. In Vitro Cell Dev Biol Anim., 2002, 38(2): 73~78.
    [20] Goldberg L, Margalit J. Bacterial spore demonstrating rapid larvicial activity against Anopheles sergentii, Uranotaenia unguiculata, Culex univittatus, Aedes asgypti and Culex pipiens[J]. Mosq. News, 1997, 37: 355~358.
    [21] Promdonkoy B, Ellar D. J. Investigation of the pore-forming mechanism of acytolytic delta-endotoxin from Bacillus thuringiensis[J]. Bio. chem., 2003, 374 (Pt 1): 255~259.
    [22] Ohba M, Iwahana H, Asano S, et al. A unique isolate of Bacillus thuringiensis serovar japonensis with a high larvicidal activity specific for scarabaeid beetles[J]. Lett Appl Microbiol, 1992, 14: 54~57.
    [23] Suzuki, N. Hori, H. Tachibana, M. Asano, S. Bacillus thuringiensis Strain Buibui for Control of Cupreous Chafer, Anomala cuprea (Coleoptera: Scarabaeidae), in Turfgrass and Sweet Potato[J]. Biological Control, 1994, 4 (4): 361~365.
    [24] 冯书亮,王容燕,范秀华,等.一株对金龟子类幼虫具有杀虫活性的苏云金杆菌新分离株[J].中国生物防治,2000,16(2):74~77.
    [25] 岩花秀典,屈秀隆.类幼虫特异的杀虫.Bio Industry,1995,12(5):28-41.
    [26] Glatron M F, Rapoport G. Biosynthesis of the paraporal inclusion of Bacillus thuringiensis: half-life of its corresponding messenger RNA [J]. Biochimie, 1972, 54: 1291~1301.
    [27] Herbert BN, Gould HJ, Chain EB. Crystal protein of Bacillus thuringiensis var. tolworthi, subunit structure and toxicity to Pieris brassicae. Eur J Biochem., 1971, 24(2): 366~375.
    [28] Schnepf HE, and HR Whiteley. Cloning and expression of the Bacillus thuringiensis crystal protein gene in Escherichia coli. Proc. Nati. Acad. Sci., 1981, 78: 2893~2897.
    [29] Schnepf HE, HC Wong, and HR Whiteley. The amino acid sequence of a crystal protein from Bacillus thuringiensis deduced from the DNA base sequence. J. Biol. Chem., 1985, 260: 6264~6272.
    [30] Hofte H., and H. R. Whitetey. Insecticidal crystal proteins of Bacillus thuringiensis[J]. Microbiol. Rev., 1989, 53: 242~255.
    [31] Crickmore N., D. R. Zeigler, J. Feitelson, et al. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins[J]. Microbiol. Mol. Biol Rev., 1998, 62: 807~813.
    [32] Meadows, M. P. Bacillus thuringiensis in the environment: ecology and risk assessment, p. 193-220. In P. F. Entwistle, J. S. Cory, M. J. Bailey, and S. Higgs (ed.), Bacillus thuringiensis, an environmental biopesticide: theory and practice. 1993, Wiley. New York, N. Y.
    [33] Anwar H M, Ahmed S, and Hoque S. Abundance and distribution of Bacillus thuringiensis in the agricultural soil of Bangladesh [J]. J. Invertebr. Pathol., 1997, 70: 221~225.
    [34] Leckie S E, Prescott C E, Grayston S J, Neufeld J D and Mohn W W. Characterization of humus microbial communities in adjacent forest types that differ in nitrogen availability [J]. Microb. Ecol., 2004, 48(1): 29~40.
    [35] Wang J, Boets A, Van R J, Ren G. Characterization of cry1, cry2, and cry9 genes in Bacillus thuringiensis isolates from China [J]. 1. Invertebr. Pathol., 2003, 82(1): 63~71.
    [36] Smith RA, Couche GA. The phylloplane as a source of Bacillus thuringiensis variants[J]. Appl Environ MicrobiaL, 1991, 57: 311~315.
    [37] Saleh SM, Harris RF, Allen O N. Becocery of Bacillus thuringiensis from field soils[J], Invertebr Pathol, 1970, 15: 55~59.
    [38] Petras SF, Jr Casida LE. Survival of Bacillus thuringiensis spores in soil [J]. Appl Environ Microbiol,, 1985, 50: 1496~1501.
    [39] West AW. Fate of the insecticidal proteinaceous parasporal crystal of Bacillus thuringiensis in soil[J]. Soil Biol Biochem, 1984, 16: 351~360.
    [40] West A W, Burges H D. Persistence of Bacillus thuringiensis and Bacillus cereus in soil supplemented with grassormanure[J]. Plant Soil, 1985, 83: 389~398.
    [41] Venkatesw erlu G, Stotzky G. Binding of the protoxin and toxin proteins Bacillus thuringiensis subsp. kurstaki on clay minerals[J]. Curr Microbiol, 1992, 25: 225~233.
    [42] West A H, Bulges H D, Dixon T J, Wyborn CH. Survival of Bacillus thuringiensis and Bacillus cereus spore inocula in soil effects of pH, moisture nutrinent availability and indigenous microorganism[J]. Soil Biol Biochem, 1985, 1: 657~666.
    [43] West A H, Burgest H D, White R J, Wybom C H. Persistence of Bacillus thuringiensis parasporal crystical insecticidal activity in soil[J]. J Invertebr Pathol, 1984, 44: 128~133.
    [44] West A H, Bulges H D, Wyborn C H. Effect of incubation in natural and autoclaved soil upon potency and viability of Bacillus thuringiensis[J]. J Inverteb Pathol, 1984, 44: 121~127.
    [45] Griego V M, Spence K D. Inactivation of Bacillus thuringiensis spore by ultraviolet and visible light[J]. Appl Environ Microbiol, 1978, 35: 906~910.
    [46] Ignoffo CM, Garcia C. UV-photoinactivation of cells and spores of Bacillus thuringiensis and effects of peroxidase on inactivation[J]. Environ Entemol, 1978, 7: 270~272.
    [47] Saxena D, Flores S, Stotzky G. Insecticidal toxin in root exudates from Bt corn[J]. Nature, 1999, 402: 480~481.
    [48] Saxena D, Stotzky G. Insecticidaltoxin from Bacillus thuringiensis is released from roots of t ransgenic Bt corn in vitro and situ[J]. FEM S Microbiol Ecol, 2000, 33: 35~39.
    [49] Losey J E, Rayor L S, Carter M E. Transgenic pollen harms monarch larvae[J]. Nature, 1999, 399: 214.
    [50] H. TAPP and G. Stokey, Dot Blot Enzyme-linked hnmunosorbent Assay for monitoring the fate of insecticidal toxins from Bacillus thuringiensis in soil[J]. Applied and Environmental Microbiology, 1995, 61: 602~609.
    [51] Stotzky G. Persistence and biological activity in soil of insecticidal proteins from Bacillus thu-ringiensis and of bacteria DNA bound on clays and humic acids[J]. J. Environ. Q ual., 2000, 29: 691~705.
    [52] Tapp H and Stotzky G. Persistence of the insecticidal toxin from Bacillus thurin iensis subsp. ku rstaki in soil[J]. Soil Biol. Biochem., 1998, 30 (4): 471~476.
    [53] Tapp H, Calamai L, Sto tzky G. Adsorption and binding of the insecticidal proteins of Bacillus thriniensis subsp. ku rsti and subsp, tenebrionis on clay minetals. Soil Biol. Biochem., 1994, 26: 663~679.
    [54] Crecchio C and Stotzky G. Insecticidal activity and biodegradation of the toxin from Bacillus thringiensis subsp.kurstaki bound to humic acids from soil[J]. Soil Biol. Biochem., 1998, 30:463~470.
    [55] Crecchio C and Stotzky G. Biodegradation and insecticidal activity of the toxin from Bacillus thringiensis subsp.Kurstaki bound on complexes of montmorillonite-humic acids-Alhydroxypolymers[J]. Soil Biol. Biochem., 2001, 33:573~581.
    [56] Tapp H and Stotzky G. Insecticidal activity of the toxin from Bacillus thringiensis sub species kustaki and tenebrionis adsorbed and bound on pure and soil clays[J]. Appl. Environ. Microbiol., 1995, 61: 1786~1790.
    [57] Venkatewerlu G, Stotzky G. Binding of the protoxin and toxin proteins of Bacillus thuingiensis subsp. kurstaki on clay minerals[J]. Curr Microbiol, 1992, 25: 225~233.
    [58] Tapp H, Calanail, Stotzky G. Adsorption and binding of die insecticidal proteins from Bacillus thuringiensis subsp kurstaki and subsp tenebbrions on clay minerals. Soil Boil Biochem, 1994, 26 (6):663~679.
    [59] Stotzky G. Persistence and biological activity in soil of insecticidal proteins from Bacillus thuringiensis and of bacterial DNA bound on clay and humicacids[J]. J Environ Oual, 2000, 29: 691~705.
    [60] Aronson A, Beckman W, Dunn P. Bacillus thuringiensis and related insect pathogens[J]. Microbiol Rev, 1986, 50:1~24.
    [61] Bietlot H, Carey P R, Choma C, KaPlan H, Lessard T, Pozsgay M. Facile preparation and characterization of the toxin from Bacillus thuringiensis var kurstaki[J]. Biochem J., 1989, 26: 87~91.
    [62] West A W, Burges H D. Persistence of Bacillus thuringiensis and Bacillus cereus in soil supplemented with grass or manure[J]. Plant Soil, 1985, 83: 389~393.
    [63] Tapp H, Stotzky G. Monitoring the fate of insectical toxins from Bacillus thuringiensis in soil with flow cytometry[J]. Can J Microbiol, 1997, 43: 1074~1078.
    [64] Crecchio C, Stotzky G. Insecticidal activity and biodegradation of the toxins from Bacillus thuringiensis suhsp, kurstaki bound to humic acids from soil[J]. Soil Biol Biochem., 1998, 30: 463~470.
    [65] Pahn C J, Schaller D L, Donegan K K. Persistence in soil of tranagenic plant produced Bacillus thuringiensis var kurstaki delta-endotoxin. Can J Microbiol, 1996, 42(12):1258~1262.
    [66] James R R. Utilizing a social ethic toward the environnent in assessing genetically engineered insect-resistance in trees[J].Agric Human Values, 1997, 14:237~249.
    [67] Sexana D, Stotzky G. Bacillus thuringiensis toxin released from root exudutes and bilnass of Bt corn has no apparent effect on earthworms nematodes protozoga and fungi in soil[J]. Soil Biol Biochem., 2001, 33: 1225~1230.
    [68] Sexana D, Flores S, Stotzky G. Vertical movement in soil of insecticidal Cry1Ab protein from Bacillus thuringiensis[J]. Siol Biol & Biochem., 2002, 34: 111~120.
    [69] Koskella J, Stotzky G. Microbial utilization of free and clay-bound insectical toxins from Bacillus thuringiensis and their retention of insecticidal activity after incubation with microbes[J]. Appl Environ Microbiol, 1997, 63: 3561~3568.
    [70] Sins S R, Holden L R. Insect bioassay or detemining soil degradation of Bacillus thuringiensis. subsp. kurstrzki CrylAb protein in comtissue[J]. Environ Entomol., 1996, 25: 659~664.
    [71] Zwahlen C, Hillseck A, Gugerli P, Nentwig W. Degradation of the CrylAb protein within transgenic Bacillus thuringiensis corn tissue in the field[J].Mol Ecol, 2003, 12: 765~775.
    [72] Palm C J, Donegan K K, Harris D, Seidler R J. Quantification in soil of Bacillus thuringiensis var kurstakiδ-enelotoxin from transgenic plants[J]. Mol Ecol, 1994, 3: 145~151.
    [73] Head G, Surber J B, Watson J A, Martin J W, et al. No detection of CrylAc protein in soil after multiple years of transgenic Bt cotton(Bollgard) use[J]. Environmental Entomology, 2002, 31: 30~36.
    [74] Herman R A, Jeffrey J D, Halliday W R. Rapid degradation of the CrylF insecticidal Crystal protein in soil[J]. J Agric. Food. Chem., 2002, 50: 7076~7078.
    [75] 戴经元,钱江伟,邓英,等.协同凝集反应定量检测苏云金杆菌晶体蛋自白[J].华中农业大学学报,1998,17(3):237~240.
    [76] 崔金杰,夏敬源.转Bt.基因棉对棉铃虫抗性的时空动态[J].棉花学报,1999,11(3):141~146.
    [77] 贾士荣.植物基因工程原理与技术[M].大连:辽宁师范人学出版社,1998.127~585.
    [78] Sano T, Cassandra L, Smith CL, et al. Immuno PCR: ver sensitive antigen detection by means of specific antibody DNA conjugate. Science, 1992, 258: 120~122.
    [79] Chang T C, Huang S H. A modified immuno polymerase chain reaction for detection of bataglucuromidase from Escherichia coli. Immunol Methods, 1997, 208(1): 35~42.
    [80] Davey H W, Kell D B. Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analysis. Microbiol Rev., 1996, 60: 641~696.
    [81] Tapp H, Stotzky G. Monitoring the fate of insecticidal toxins from Bacilhts thuringiensis in soil with flow cytometry[J]. Can J Microbiol, 1998, 43: 1074~1078.
    [82] Engvall E, Perlmann P. Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglobulin G[J]. Immunochemistry, 1971, 8: 871~874.
    [83] Van Weeman BK, Schuurs AHWM. Immunoassay using antigen-enzyme conjugate[J]. FEBS Letters, 1971, 15: 232~236.
    [84] 焦奎,张书圣.酶联免疫分析技术及应用[M].北京:化学工业出版社,2004.
    [85] Wie, S. I., et al. Enzyme linked immunosorbent assay for detection and quantitation of the entomocidal parasporal crystalline protein of Bacillus thuringiensis subsp. kurataki and israelensis[J]. Appl. Environ. Microbiol., 1982, 43: 891~94.
    [86] Smith, R. A. and J. T. Ulrich. Enzyme-linked immunosorbent assay for quantitative detection of Bacillus thuringiensis crystal protein[J]. Appl. Environ. Microbiol., 1983, 45: 586~590.
    [87] 罗绍彬,阎建平,戴顺英,等.酶联免疫吸附测定(ELISA)检测苏云金杆菌伴胞晶体蛋白质研究[J].生物防治通报,1987,3(4):145~148.
    [88] 洪华珠,李星,等.酶联免疫吸附测定方法检测苏云金杆菌晶体蛋白质的研究[J].华中师范大学学报,1988,22(1):61~64.
    [89] 沈鞠群,杨团员,喻子牛.酶联免疫吸附测定法测定四种苏云金杆菌菌株的晶体蛋白含量[J].生物防治通报,1990,增刊,47~50.
    [90] Schnepf, H. E., Whiteley, H. R. Cloning and expression of the Bacillus thuringiensis crystal protein gene in Escherichia coli. Proc[J]. Natl Acad. Sci. USA, 1981, 78: 2893~2897.
    [91] 吴刚,崔海瑞,舒庆尧,等.Bt杀虫晶体蛋白基因及其转化基因育种研究进展[J].生物工程进展,2000,20(2):45~48.
    [92] 李杨,任改新.苏云金杆菌Cry基因的遗传分析及基因工程进展[J].微生物学通报,1996,23(1):37~43.
    [93] 张宏宇,邓望喜,喻子牛.苏云金杆菌的遗传多样性Ⅱ:杀虫晶体蛋白基因型[J].遗传,2000,22(2):125~128.
    [94] Kohler G, Milsten C. Continuous cultures of fused cells secreting antibody pre-defined specificity[J]. Nature, 1975, 256: 495~497.
    [95] 王保民,何钟佩,田晓莉.苏云金芽孢杆菌杀虫晶体蛋白CrylA单克隆抗体的制备及在转Bt基因棉毒蛋白检测上的应用[J].棉花学报,2000,12(1):34~39.
    [96] 朱路青,曹越平.转Bt基因大豆植株中Bt毒蛋白的表达[J].上海交通大学学报(农业科学版).2005,23(3):234~238.
    [97] Hidetaka Hori, Yoshiyuki Takahashi, Makoto Takahashi and Yutaka Wada. Detection of the Bacillus thuringiensis serovar japonensis strain Buibui protoxin with enzyme-linked immunosorbent assay and its application to detection of the protoxin in soil[J]. Appl. Entomol. Zool., 2000, 35(3): 401~411.
    [98] Palm C J, K Donegan, D Harris, et al. Quantification in soil of Bacillus thuringiensis var. kurstaki delta-endotoxin from transgenic plants[J]. Molec. Ecol., 1994, 3: 145~151.
    [99] Tuan S J, S S Kao and S L Hsuan. Use of sodium dodecyl sulfate-ployacrylamide gel electrophoresis to quantify CrylA protein of Bacillus thuringiensis subsp, kurstald cell extract. J. Plant Prot. (Taiwan) [J], 1993, 35: 139~148(in Chinese).
    [100] 冯书亮,壬容燕,王金耀,等.苏云金芽孢杆菌HBF-1菌株防治金龟科幼虫的效果评价[J].植物保护学报,2006,33(4):417~422.
    [101] 魏鸿钧,张治良,王荫长.中国地下害虫[M].上海:上海科学技术出版社,1989.
    [102] 严吉明.转Bt抗虫基因植物的酶联免疫检测技术研究[D].四川农业大学硕士学位论文,2002.
    [103] 崔林开.转Bt抗虫基因植物的酶联免疫检测技术研究[D].四川农业大学硕士学位论文,2004.
    [104] 沈法富,于元杰,尹承情等.利用Dot-ELISA检测Bt棉杀虫蛋白的研究[J].中国农业科学,1999,32(1):15~19.
    [105] Hidetaka Hori, Yoshiyuki Takahashi, Makoto Takahashi and Yutaka Wada. Detection of the Bacillus thuringiensis serovar japonensis strain Buibui protoxin with enzyme-linked immunosorbent assay and its application to detection of the protoxin in soil[J]. Appl. Entomol. Zool., 2000, 35(3): 401~411.
    [106] 陈松,吴敬音,周宝良等.转基因抗虫棉Bt毒蛋白表达量的时空变化[J].棉花学报,2000,12(4):89-93.
    [107] 陈松,吴敬音,沈新莲,等.苏云金杆菌HD-73杀虫蛋白的纯化及其多克隆抗体的制备[J].江苏农业学报,1999,15(4):203~205.
    [108] 王保民,何钟佩,赵继勋.抗虫棉Bt杀虫晶体蛋白免疫检测方法的研究[J].棉花学报,1998,10(4):220-221.
    [109] 殷震,刘景华.动物病毒学(第2版)[M].北京:科技出版社,1997.
    [110] 秦崇涛.转基因水稻中Bt蛋白ELISA检测方法的建立及检测[D],福建农林大学硕士学位论文,2002.
    [111] 李云河.转Bt基因棉花和水稻CrylAc杀虫蛋白在不同环境中的消长动态[D].河南农业大学硕士学位论文,2005.
    [112] 王建武,冯远骄,骆世明.Bt玉米抗虫蛋白表达的时空动态及其土壤降解研究[J].中国农业科学,2003,36(11):1279~1286.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700