内生菌螺旋毛壳(Chaetomium spirale)ND35防病促生作用初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
螺旋毛壳(Chaetomium spirale Zopf.)ND35是从健康毛白杨中分离得到的优势内生菌。本文通过对ND35在实验室、温室及大田等条件下,针对番茄、菜豆和黄瓜等几种蔬菜植物的防病、促生效果及其机制进行了初步研究,为今后生产中开发利用该生防菌提供理论依据。
     平皿对峙试验及显微观察结果表明,ND35对番茄灰霉病菌(Botrytis cinerea, Pers.)、番茄早疫病菌(Alternaria solani)、黄瓜猝倒病菌(Pythium aphanidermatum)、菜豆立枯病菌(Rhizoctonia solani)等病原真菌的生长具有不同程度的抑制作用,生长抑制率分别为54.0﹪,13.5﹪,55.1﹪和40.9﹪。对峙培养后期,ND35菌丝生长覆盖病原菌菌落,并伴随菌丝缠绕等重寄生现象。
     温室条件下,将ND35接种于黄瓜、番茄和菜豆幼苗根部,3d左右即能在根部定殖,7 d扩展到茎部、叶部。显微观察结果显示,无菌条件下ND35在48 hr~72 hr内即可完成对番茄和黄瓜胚根的侵染,菌丝穿透寄主细胞壁进入细胞。两种实验结果大致相同。
     ND35在番茄幼苗上定殖后,具有明显的促进植株生长的作用。幼苗株高、根长、地上部及根部鲜重都明显高于对照。对番茄幼苗中后期第3、4真叶净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)和胞间CO2浓度(Ci)等各项光合作用指标进行测定,结果表明ND35能够提高番茄幼苗的净光合速率(Pn)。
     大田栽培条件下,ND35对番茄产量的提高,具有一定的促进作用,生长中期植株可见花数、座果数分别比对照高75.8﹪和22.7﹪,单株平均产量比对照高14.5﹪。
     温室内盆栽试验结果显示,ND35与Rhizoctonia solani同时接种于菜豆幼苗根部,对菜豆立枯病的防治效果达到50.9﹪;ND35接种黄瓜幼苗根部3 d后,挑战接种Pythium aphanidermatum,对黄瓜猝倒病的防治效果达到80.7﹪。说明ND35对这两种植物具有保护作用。
     利用ND35对番茄幼苗进行根部接种3 d~10 d后,对叶部灰霉病抗性最强,防治效果为22.9﹪~35.6﹪。同时,叶片中与抗性反应有关的酶PAL、POD、PPO活性短期内升高。这表明ND35对番茄幼苗产生了诱导抗病性的作用。
The endophytic fungus Chaetomium spirale ND35 was isolated from healthy plants Populus tomentosa. The biological control activities and plant growth-promoting abilities of ND35 on tomato, bean and cucumber were studied in laboratory chamber, greenhouse and field. The investigations of the biocontrol mechanisms of ND35 will provide the theory foundations on exploitation of this new strain in agriculture in the future.
     The action of strain ND35 was preliminary investigated by the confronting bioassay on PDA plates and light microscopy observation. Strain ND35 exhibited different inhibitory effects on the mycelial growth of four pathogenic fungi , Botrytis cinerea, Alternaria solani, Pythium aphanidermatum and Rhizoctonia solani. The growth inhibition ratio was 54.0﹪, 13.5﹪,55.1﹪and 40.9﹪respectively. Furthermore, stain ND35 showed mycoparasitic phenomena, such as overgrowth in pathogen colonies and coiling around the hyphae of the pathogens.
     After being inoculated on the seedling roots of cucumber, tomato and bean in greenhouse, the mycelia of strain ND35 could colonize in roots in three days, spread into stems and leaves in seven days in greenhouse. Another experiment also showed the resemble results. The mycelia of strain ND35 could infest into the embryonic roots of cucumber and tomato in forty-eight hours to seventy-two hours under the sterilized conditions. The microscopy observation showed the mycelia expanded into the protoplast after their penetration of cell walls and membranes of the embryonic roots.
     The strain ND35 could promote the growth of the tomato plants after the colonization in them. The seedling hight, root length, fresh weight of seedling and root had more higher index than the control. After examining some photosynthesis index of the third and the forth leaves of the seedlings pre-treated with strain ND35 and non-treated control in their midanaphase, such as net photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (Gs) and intercellular CO2 concentration(Ci), we found the strain ND35 could enhance photosynthesis performances of the tomato seedlings.
     The field experiments indicated that strain ND35 could enhance tomato productivities. The quantities of developing flowers, nondeciduous fruits and the single plant productivity of the treated plants were 75.8﹪, 22.7﹪and 14.5﹪higher than the control respectively.
     In greenhouse, the pot biocontrol experiment showed that strain ND35 had good control effects on bean hypocotyl rot caused by R. solani and cucumber damping-off caused by P. aphanidermatum. Strain ND35 and Rhizoctonia solani were inoculated on the bean seedling roots simultaneously. The disease index decreased from 51.7 to 25.4. The control efficiency was 50.9﹪. The cucumber seedlings which were pre-treated with strain ND35 reduced the disease incidence from 68.9% to 13.3%. Its control efficiency was 80.7﹪.
     Another pot experiment in greenhouse showed that strain ND35 stimulated the tomato seedlings getting the disease resistance abilities against tomato gray mold caused by Botrytis cinerea. The best control effects on leaves appeared after the inoculation of strain ND35 on the roots from three days to ten days. The control efficiency was 22.9﹪~35.6﹪. Moreover, the enzyme activities in leaves associated with defense response were increased, including PAL, POD and PPO.
引文
1. 产祝龙, 丁克坚, 檀根甲等. 哈茨木霉对水稻恶苗病菌的拮抗作用[J]. 植物保护, 2003, 29(3):35~39.
    2. 陈捷, 高洪敏等. 黄瓜腐霉菌苗期猝倒病致病机制研究[J]. 植物病理学报, 1996, 26(1):55~61.
    3. 陈庆河, 翁启勇, 胡方平. 无致病力青枯菌株对番茄青枯病的防治效果[J]. 中国生物防治,2004, 20(1):42~44.
    4. 陈延熙等. 苹果炭疽病人工免疫研究[J]. 生物防治通报,1985, 1(1):16~18.
    5. 陈振明.2000. 木霉几丁质酶基因克隆以及毛壳菌转化,博士学位论文(浙江大学).
    6. 迟玉杰,杨谦,毛壳菌对植物病害的生物防治及存在的问题[J]. 农业系统科学与综合研究, 2002, 18(3):215~218.
    7. 董汉松. 植物诱导抗病性原理和研究[M]. 北京:科学出版社, 1995.
    8. 范青, 田世平, 徐勇. 丝孢酵母(Thichosporon sp.)的不同处理和接种时l间对苹果采后灰霉病和青霉病抑制效果的影响[J].中国农业科学, 2001, 34 (2):163~168
    9. 方中达.植病研究法.第 3 版[M]. 北京:中国农业出版社,1998.
    10. 高俊明,刘慧平,李新凤. 盾壳霉对核盘菌的重寄生机制研究[J]. 山西农业大学学报, 2002, 22(3):223~226.
    11. 高克祥,庞延东,秦乃花. 内生菌螺旋毛壳抗生素和水解酶的协同抗真菌作用[J]. 植物病理学报, 2006, 36 (4): 347~358 .
    12. 高立强, 杨家荣, 商鸿生. 重寄生菌——白粉寄生孢研究[J]. 西北农业学报, 2004, 13(4):41~44.
    13. 顾真荣, 魏春妹,马承铸. 枯草芽抱杆菌 G3 菌株抑制立枯丝核菌菌核形成的影响因子分析[J], 中国生物防治, 2005, 21(1):33~36.
    14. 郝林华, 陈靠山, 李光友. 牛蒡寡糖对黄瓜幼苗诱导抗病性的研究[J]. 高技术通讯, 2004. 9:43~48.
    15. 何月秋,和志娇,杨艳丽等,哈茨木霉 Th-A 和 Th-B 的存活力与定殖能力的测定[J]。云南农业大学学报,2004, 19(3):279~303.
    16. 黄云,叶华智,严吉明等. 重寄生菌葡酒锈生座孢Tuberculina vinosa和白蜡锈生座孢T, fraxinis的寄生专化性[J]. 植物病理学报,2005, 35(6):481~485.
    17. 纪明山, 李博强等. 绿色木霉TR-8菌株对尖镰孢的拮抗机制[J]. 中国生物防治, 2005, 21(2):104~108.
    18. 姜道宏,李国庆,付艳平. 盾壳霉控制油菜菌核病菌再侵染及其叶面存活动态的研究[J]. 植物病理学报, 2000, 30(1):60~65.
    19. 金红星,杨谦. 球毛壳菌部分表达序列标签的生物信息分析.[J] 高技术通讯, 2004, 14(7):34~37.
    20. 李保聚, 朱国仁. 番茄灰霉病发展症状诊断及综合防治[J].植物保护, 1998, 24 (6 ): 18~20.
    21. 李明远, 李兴红, 严红等. 蔬菜灰霉病的发生与防治[[J]. 植保技术与推广, 2002, 22 (1 ):31~39.
    22. 李世东, 刘杏忠. 食菌核葚孢霉——一种有潜力的菌核病生防菌[J]. 中国生物防治, 2000, 16(4):177~182.
    23. 梁军锋,薛泉宏等,7株放线菌在辣椒根部定殖及对辣椒叶片PAL与PPO活性的影响[J]. 西北植物学报, 2005, 25(10):2118~2123
    24. 林 丽,田世平,秦国政. 两种拮抗酵母菌对桃果实贮藏期间主要病害的防治效果[J]. 中国农业科学, 2003, 36(12):1535~1539.
    25. 刘波,刘经芬. 灰霉病菌对苯并咪唑类杀菌剂抗药性监测及抗性生理的研究[J],莱阳农学院学报,1996 , 8 (3 ) : 217~222.
    26. 刘志华,杨谦. 球毛壳菌60S核糖体蛋白L10a基因克隆与特性分析.微生物学通报,2006, 33 (1): 24-28.
    27. 刘志华,杨谦. 球毛壳菌过氧化物膜蛋白过敏原基因克隆、序列分析及原核表达[J].中国生物工程杂志,2006, 26(4):40~45.
    28. 楼兵千, 张炳欣, Maarten R, Rosemary W, Pau I H. 黄瓜苗期猝倒病生物防治[J]. 植物保护学报, 2002, 29(2):109~113.
    29. 马炳田, 文成敬,几种核盘菌菌核重寄生真菌生物防治潜能的研究[J]. 中国农学通报, 2002, 18(6):58~63.
    30. 马辉刚,李瑞明,胡水秀. 番茄灰霉病菌的生物学特性研究[[J]. 江西农业大学学报, 1998, 20(2):207~209.
    31. 缪华军,李国庆. 盾壳霉抗杀菌剂vinclozolin的诱变及突变体的生防潜力[J]. 中国生物防治, 2006, 22(1):73~77.
    32. 莫明和,董琳茜等. 立枯丝核菌重寄生真菌的筛选[J]. 植物病理学报, 2002, 32(1):84~88.
    33. 牛晓磊, 薛泉宏等. 6 株生防放线菌对辣椒疫霉的皿内拮抗研究[J]. 西北农林科技大学学报, 2005, 33(1):55~57.
    34. 乔宏萍, 宗兆锋, 用重寄生菌防治植物病害[J]. 中国生物防治,2002, 18(4):176~179.
    35. 宋桂经, 孙彩云, 宋小焱. 康氏木霉BY-88分生孢子的抑菌作用及其抑菌物质的分离[J]. 中国生物防治, 1998, 14(2):68~71.
    36. 孙勇(2003)论文,绿色木霉的拮抗机理发酵条件生物防治的研究,西北大学。
    37. 田淑慧,黄瓜立枯病拮抗木霉菌筛选及主要生防机理研究[M]. 山东农业大学硕士学位论文, 2006, p22.
    38. 童蕴慧, 纪兆林等, 灰霉病生物防治研究进展[J]. 中国生物防治, 2003(8):131~135.
    39. 王升吉, 尚佑芬, 杨崇良等. 新型农用杀菌剂防治番茄灰霉病的试验研究[[J]. 中国植物病害化学防治研究(第2卷). 北京:中国农业出版社, 1999:220~221.
    40. 王文桥,马志强,张小风等. 植物病原菌对杀菌剂抗性风险评估「J].农药学学报,2001,3(1):6~11.
    41. 吴崇明. 绿色粘帚霉防治柑橘青绿霉病研究[J]. 江西植保, 2005, 28(3):100~101.
    42. 吴岳轩, 等. 杂交稻对白叶枯病的诱导抗性与细胞内防御系统关系的初步研究[J].植物病理学报, 1996, 26(2):127~131.
    43. 薛应龙,欧阳光察,澳绍根,植物苯丙氨酸解氨酶的研究 IV.水稻幼苗中 PAL 活性的动态变化[J],植物生理学报, 1983, 9(3):301~305.
    44. 杨秀荣, 杨依军. 利用拮抗木霉菌防治立枯病的研究[J]. 天津农学院学报, 2001, 8(1):9~12.
    45. 张洁, 李天来. 日光温室亚高温对番茄光合作用及叶绿体超微结构的影响[J]. 园艺学报, 2005, 32(4):614~619.
    46. 张龙翔,张庭芳,李令媛. 生化实验方法和技术(第 2 版)[M], 北京:高等教育出版社.1997.
    47. 张琴芳, 代光辉等. 非致病性镰刀菌Fusarium oxysporum菌株47(FO47)对番茄枯萎病的防治效果[J]. 上海交通大学学报, 2004, 22(1):17~21.
    48. 张秀华等. 植物病毒弱毒株及其应用[J]. 植物病理学报, 1980, 10(1):49~54.
    49. 张拥华,高会兰等. 粉红粘帚霉67-1菌株寄生核盘菌研究[J]. 植物病理学报, 2004, (3):211~214.
    50. 赵继红, 李建中. 灰霉菌菌丝体提取物诱导番茄抗病性的初步研究[J]. 河南农业科学, 2003, 10:55~56.
    51. 朱广廉,钟海文,张海琴. 植物生理学实验指导[M], 北京:科学出版社.1990.
    52. Altomare. C., Norvell, W. A., Bj?rkman, T. & Harman, G. E. Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22[J]. Appl. Environ. Microbiol, 1999, 65:2926~2933 .
    53. Bakker, A. W. Schippers. Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp-mediated plant growth-stimulation. Soil Biol. Biochem[J]. 1987, 19:451~457 .
    54. Benhamou N, Garand C and Goulet A. Ability of nonpathogenic Fusarium oxysporum strain Fo47 to induce resistance against Pythium ultium infection in cucumber [J]. Appl. Environ. Microbiol. 2002, 68 (8):4044-4060.
    55. Bernard N L. Evolution dans la symbiose. Les orchide’es et leur champignous Commenseux [J]. Ann. Sci. Nat. Bot. Biol., 1909,9: 1 ~ 196.
    56. Bigirimana, J. et al., Induction of systemic resistance on bean(Phaseolus vulgaris) by Trichoderma harzianum. Med. Fac.Landbouww. Univ. Gent 62,1997: 1001~1007 .
    57. Carl N. Mayers, Kian-Chung Lee et al. Salicylic acid- induced resistance to cucumber mosaic virus in squash and Arabidopsis thaliana: contrasting mechanisms of induction and antiviral action[J]. Molecular plant-microbe interactions, 2005, 18(5):428~434.
    58. Cohen-YR. Beta-aminobutyric acid-induced resistance against plant pathogens[J]. Plant-Disease, 2002, 86:(5):448~457.
    59. Cullen D, Berbee FM, Andrews JH. Chaetomin – a new antibiotic substance produced by Chaetomium cochliodes. J. Bacteriol. 1984; 48: 531~536.
    60. De Meyer, G., Bigirimana, J., Elad, Y. & Hofte, M. Induced systemic resistance in Trichoderma harzianum T39 biocontrol of Botrytis cinerea[J]. Eur. J. Plant Pathol. 1998, 104:279~286 .
    61. Di Pietro A. Studies on the biology of Chaetomium globosum Kunze and its mode of action as an antagonist of Pythium ultimum Trow. (Ph.D. thesis). University of Basel, Switzerland, 1990: 87 pp.
    62. Dik A. J., Verhaar M. A. and Belanger R. R.. Comparison of three biological control agents against cucumber powdery mildew (Sphaerotheca fuliginea) in semi-commercial-scale glasshouse trials[J]. European journal of plant pathology,1998,194:413~423.
    63. Durrant W. E. and Dong X.. Systemic acquired resistance[J]. Annu. Rev. Phytopathol, 2004, 42:185~209.
    64. Elad Y, Chet I, Boyle P, et al. Parasitism of Trichoderma spp. on Rizoctonia solani and Sclerotinium rolfsii scanning electron microcopy and fiuorescence microscopy[J]. Phytopathology, 1983, 73: 85~88.
    65. Elad, Y. Mechanisms involved in the biological control of Botrytis cinerea incited diseases[J]. Eur. J. Plant Pathol,1996, 102:719~732.
    66. Elliston J et al. Protection of bean against anthracnose by Colletotrichum species nonpathogenic on bean[J]. Phytopathol. Z. 1976, 86:117 ~126.
    67. Ezzi M. I, Lynch J. M. Cyanide catabolizing enzymes in Trichodermaspp[J]. Enzymol. Microb. Technol, 2002, 31:1042~1047.
    68. Fan Q, Tian S P. Postharvest biological control of grey mould and blue mold on apple by Crytococcus albidus (Saito) Skinner.[J] Postharvest Biology and Technology, 2001, 21(3): 341 ~350.
    69. Farquhar G D, Sharkey T D. Stomata conductance and photosynthesis[J]. Ann. Rev. Plant Physiology, 1982, 33:317.
    70. Faull J L. Production of an isonitrile antibiotic by an UV-induced mutant of Trichoderma harzianum[J]. Phytochem, 1994, 36(5):1273~1276.
    71. Fraser R S S. Pathogenesis-related proteins-in the biochemistry of virus-infected plants[J]. Research Study Press,1987, 71.
    72. Freeman S, Minz D, Kolesnik I et al. Trichoderma biocontrol of Colletotrichum acutatum and Botrytis cinerea and survival in Strawberry [J]. European Journal of Plant Pathology, 2004, 110:361~370.
    73. Freeman S, Minz D, Kolesnik I et al. Trichoderma biocontrol of Colletotrichum acutatum and Botrytis cinerea and survival in Strawberry [J]. European Journal of Plant Pathology, 2004, 110:361-370.
    74. Gary E. Harman, Charles R. Howell, et al. Trichoderma species – opportunistic, avirulent plant symbionts[J]. Nature Reviews, 2004, 2: 43~56.
    75. Ghisalbert E L, Antifungal antibiotics produced by Trichoderma spp[J]. Soil Biology&Biochem, 1991, 23(11):1011~1020.
    76. Gorlach, J., Volrath, S., knauf, B. G., et al. Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat[J]. Plant Cell, 1996, 8(4): 629~643.
    77. Hamid. mezane , Ientse van der sluis , et al. b,Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants[J]. Molecular plant pathology, 2005, 6(2):177~185.
    78. Han Jigang, Sun Lei, et al. Characterization of a novel plant growth-promoting bacteria strain Delftia tsuruhatensis HR4 both as adiazotroph and a potential biocontrol agent against various plant pathogents[J]. Systemic and applied microbiology, 2005, 28:66~76.
    79. Hare SJ, Masilamany P, Charest PM. Increased peroxidase activity in bean seedlings protected from Rhizoctonia solani infection with non-pathogenic binucleate Rhizoctonia species [J]. Phytopathology, 1994, 84:1083.
    80. Harman GE., Petzoldt R, Comis A., and Chen J. Interactions between Trichoderma harzianum strain T22 and maize inbred line Mo17 and effects of these interactions on diseases caused by Pythium ultimum and Colletotrichum graminicola [J]. Phytopathology, 2004, 94(2):147~153.
    81. Hideyuki Suzuki, Yiji Xia, et al. Signals for local and systemic responses of plants pathogen attack[J]. Journal of experimental botany, 2004, 55(395):169~179.
    82. Howell, C. R. Cotton seedling preemergence damping-off incited by Rhizopus oryzae and Pythium spp. and its biological control with Trichoderma spp[J]. Phytopathology, 2002, 92:177~180.
    83. Huang Li G Q, H C,Acharya S N. Antagonism and biocontrol potential of Ulocladium atrum and Coniothyrium minitans on Sclerotinia sclerotiorum[J]. Biological Control, 2003, 28:11~18.
    84. Hwang J.& Benson D. M. Expression of induced resistance in poinsietta cuttings against Rhizoctonia stem rot by treatment of stock plants with binucleate Rhizoctonia[J]. Biol Control, 2003, 27:73~80.
    85. Ichikawa K, Kawasaki S, Tanaka C, Tsuda M. Induced resistance against Fusarium diseases of Cymbidium species by weakly virulent strain HPF-1(Fusarium sp.) [J]. J. Gen Plant Pathol. 2003, 69:400-405.
    86. Inbar J., Menendez A. & Chet I. Hyphal interaction between Trichoderma harzianum and Sclerotinia sclerotiorum and its role in biological control[J]. Soil Biol. Biochem, 1996 28:757~763.
    87. Jabaji-Hare SH, Chamberland H, Charest PM et al.. Cell wall alterations in bean seedlings protected from Rhizoctonia root rot by binucleateRhizoctonia species[A]. in: Abstr. Book Proc. Int. Congr. Plant Pathol, 1994, 6:288.
    88. Joseph D. Clarke, Sigrid M. Volko, et al. Roes of salicylic acid ,jasmonic acid, and ethylene in cpr-induced resistance in arabidopsis[J]. Plant cell, 2000, 12:2175~2190.
    89. Kanokmedhakul S., Kanokmedhakul K et al. Antimycobacterial anthraquinone-chromanone compound and diketopiperazine alkaloid from the fungus Chaetomium lobosum KMITL-N0802. Planta Med. 2002, 68(9):834~836.
    90. Kazunori Ichkawa Shigeki Kawasaki Chihiro Tanaka. Induced resistance against Fusarium diseases of Cymbidium species by weakly virulent strain HPF-1(Fusarium sp.)[J]. J Gen Plant Pathol, 2003, 69:400~405.
    91. K?hl G J T J, Powell J A, Rabbinge R, Modeling spatial characteristics in the biological control of fungi at leaf scale: competitive substrate colonization by Botrytis cinerea and the saprophytic antagonist ulocladium atrum. Phytopathology, 2005, 95(4):439~448.
    92. Koike, N. et al. Induction of systemic resistance in cucumber against several diseases by plant growth-promoting fungi: lignification and superoxide generation[J]. Eur. J. Plant Pathol, 2001, 107, 523~533.
    93. Kris Audenaert, Geert B. De Meyer and Monica M. Hōfte. Abscisic acid determines basal susceptibility of tomato to Botrytis cinerea and suppresses salicylic acid-dependent signaling mechanisms[J]. Plant Physiology, 2002,128(2):491~501. [J]
    94. Lindsey, D. L. & Baker, R. Effect of certain fungi on dwarf tomatoes grown under gnotobiotic conditions. Phytopathology, 1967, 57:1262~1263.
    95. Lindsey, D. L. & Baker, R. Effect of certain fungi on dwarf tomatoes grown under gnotobiotic conditions[J]. Phytopathology, 1967, 57:1262~1263.
    96. Lumsden R. D., Isolation and localization of the antibiotic gliotoxinproduced by Gliocladium virens from alginate prill in soil and soilless media[J].Phytopathology, 1992, 82:230~235.
    97. Lutchmeah R S, Cooke R C. Aspect of antagonism by the mycoparasite pythium oligandrum [J]. Trans. Brit. Mycol. Soc. 1984, 83: 156~162.
    98. Mandal S, Srivastava K D, Aggarwal R, Singh DV. Mycoparasitic action of some fungi on spot blotch pathogen (Drechslera sorokiniana) of wheat. Indian Phytopath. 1999; 52: 39~43.
    99. Mandeel Q, Baker R. Mechanisms involved in biological control of Fusarium wilt of cucumber with strains of nonpathogenic Fusarium oxysporum[J]. Phytopathology, 1991, 81: 462~469.
    100.Mandeel Q, Hassan ZM, El-Meleigi MA, Baker R. Penetration and colonization of cucumber roots by pathogenic and nonpathogenic Fusarium oxysporum[J]. Phytopathol Mediterr, 1994, 33: 137~145.
    101.Martin Hell, Richard M. Bostock. Induced Systemic Resistance (ISR) against pathogens in the context of induced plant defence[J]. Annals of botany, 2002, 89(5):503~512.
    102.Miroslav Orober, Jürgen Siegrist et al. Mechanisms of phosphate-induced disease resistance in cucumber[J]. European journal of plant pathology, 2002,108:345~353.
    103.Morgen W M. The effect of night temperature and glasshouse ventilation on the incidence of Botrytis cinerea in a late-planted tomato crop[J]. Crop protection, 1984, 3:243~251.
    104.Nobutaka SOMEYA, Masami NAKAJIMA, et al. Induced Resistance to rice blast by antagonistic bacterium, Serrratia marcescents strain B2[J]. J. Gen. Plant Pathol, 2002,68:177~182.
    105.Picard K, Ponchet M, Blein J-P etc. Oligandrin A proteinaceous molecule produced by the mycoparasite Pythium oligandrum induces resistance to Phytophthora parasitica infection in tomato plants[J]. Plant Physiology, 2000, 124: 379~395.
    106.Picard K, Tirilly Y, Benhamou N. Cytological effects of cellulases in theparasitism of Phytophthora parasitica by Pythium oligandrum[J]. Applied and Environmental Microbiology, 2000, 66:4305~4314.
    107.Qaher A. Mandeel. Influence of plant root exudates,germ tube orientation and passive conidia transport on biological control of fusarium wilt by strains of nonpathogenic Fusarium oxysporum[J]. Mycopathologia, 2006,161:173~182.
    108.Ralph L, Nicholson M. Phenolic compounds and their role in disease resistance[J]. Ann. Rev. Phytopathol.,1992, 30: 369~389.
    109.Roseli Chela Fenille, Nilton Luiz de Souza and Eiko Eurya Kuramae. Characterization of Rhizoctonia solani associated with soybean in Brazil[J]. European journal of plant pathology, 2002, 108:783~792.
    110.Rudresh D L, Shivaprakash M K, Prasad R D. Tricalcium phosphate solubilizing abilities of Trichoderma spp. in relation to P uptake and growth and yield parameters of chickpea (Cicer arietinum L.) [J]. Canadian Journal of Microbiology, 2005,51(3):217~222.
    111.Schirmb?ck, M. et al. Parallel formation and synergism of hydrolytic enzymes and peptaibol antibiotics, molecular mechanisms involved in the antagonistic action of Trichoderma harzianum against phytopathogenic fungi. Appl[J]. Environ. Microbiol, 1994, 60:4364~4370.
    112.Schweizer,P., Buchala,A., Metraux. P. Gene-expression patterns and levels of jasmonic acid in rice treated with the resistance inducer 2,6-dichloroisonicotinic acid[J]. Plant Physiology, 1997,115(1):61~70.
    113.Selgel O P., Pathogenesis-related proteins in lima bean leaves infected with tobacco ringspot virus and their distribution within and around local lessions[J]. Plant Cell Report, 1992, 12:25.
    114.Ting Fang Hsieh, Jenn Wen Huang and Tom Hsiang. Light and scanning electron microscopy studies on the infection of oriental lily leaves by Botrytis elliptica[J]. European Journal of Plant Pathology[J], 2001, 107:571~581.
    115.Tuzun S, Kuc J. Persistence of induced systemic resistance to blue moldin tobacco plant desired via tissue culture[J]. Phytopathology, 1987, 77:1032~1035.
    116.Vannacci G, Harman GE. Biocontrol of seed borne Alternaria raphani and A. brassicola. Can. J. Microbiol. 1987; 34: 850~856.
    117.Vigelsang R, Barz W. Purification, characterization and differential hormonal regulation of a β-1,3-glucanase and two chitinases from chickpea (Cicer arietinum )[J].Planta1993. 189:60
    118.Walther D, Gindrat D. Biological control of damping off of sugarbeet and cotton with Chaetomium globosum or a fluorescent Pseudomonas sp. Can. J. Microbiol. 1988; 34:631~637.
    119.Weinding R. Studies on a lethal princiole effective the paramitic action of Trichodermuc lignorum on Rhizoctonia soloni and other siol fangi[J]. Phytopathology, 1932, 22: 837~845.
    120.Whipps M,Gerlagh M. Biology of Coniothyrium minitans and its potential for use in disease biocontrol[J]. Mycol. Res., 1992,96(11):897~907.
    121.Willem F. B.,Cammue B. P. A, De Bolle M F C, et al. Antimicrobial peptides from plants[J].Critical reviews in plant sciences, 1997, 16(3):297~323.
    122.Yedidia, I. et al. Concomitant induction of systemic resistance to Pseudomonas syringae pv. lachrymans in cucumber by Trichoderma asperellum (T-203) and the accumulation of phytoalexins. Appl. Environ. Microbiol. (in the press).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700