水稻苗期叶色突变体的蛋白质组分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
叶色变异是高等植物中突变频率较高且易于辨别的突变性状,在理论研究和实际应用方面都具有重要的意义。其中的一些叶色变异型以其表型明显可分辨的特点,可作为一种形态标记性状在植物遗传、育种研究中得以有效利用,在功能基因组学研究方面,它们已成为深入开展植物色素合成、叶绿体发育等相关基因功能研究的理想材料。
     本研究组于1996年从水稻花药培养的白化苗中获得能够自然转绿的植株,经多代选择培育成性状稳定的可自然转绿型白化苗突变体,将之与光温敏不育系培矮64S杂交,从后代中获得具有白苗复绿性状的光温敏不育株系白02S。本研究以白02S和培矮64S为材料,分别从叶色表型特征、叶绿体超微结构、蛋白质和mRNA表达水平等方面对该性状进行较为系统的研究,以期部分阐明其白化复绿机理。主要研究结果如下:
     1.白02S和培矮64S的形态学和超微结构观察表明,白02S苗期前三叶均为白色,第四叶及之后长出的叶片均为正常绿色,第四叶长出后,健在的白化叶有部分转绿,其白化表型明显可辨期为30天以上。培矮64S作为白02S的对照,在整个苗期都显示正常的绿色。利用透射电镜对白02S转绿前后两个时期的叶绿体超微结构进行观察,白02S的白化叶叶绿体表现发育迟缓,没有观察到完整的叶绿体双层膜及类囊体片层,四叶期复绿后,出现了完整的叶绿体结构,叶绿体数量较多,具有清晰的叶绿体双层膜结构,以及内部相互连接的基粒类囊体,与对照培矮64S无差异。结果表明白化性状产生的原因是叶绿体发育和叶绿素合成相关的基因发生改变,导致初期类囊体发育受阻,而不是其它色素改变所致。
     2.提取白02S和培矮64S的二、三叶期的叶片蛋白,经2D-PAGE分离后,构建了白02S突变体转绿前后的差异蛋白质的表达谱;通过比较蛋白质表达谱之间的差异蛋白,再经MALDI-TOF/MS分析和数据库检索鉴定发现白02S突变体的白化期有62个差异蛋白质点,其中44个上调蛋白,18个下调蛋白;对差异蛋白进行了功能分类和生物信息学分析发现,除了部分未知蛋白质,大部分已知蛋白参与了信号转导、植物的光反应、渗透胁迫调节、糖酵解--三羧酸循环--e-传递系统(EMP-TCA-ETS)代谢途径、光合作用、光呼吸和光合磷酸化等的生理过程。这表明白化过程是一个多种信号和代谢途径的调节的结果。
     3.以白02S突变体转绿前后的两个时期为实验材料,通过比较分析转绿前后的基因表达图谱的变化,得到差异表达2倍以上的探针组5167个,形成了白02S突变体转绿前后的差异基因表达谱,这为研究叶色突变的发生机制奠定了基础;对差异基因进行功能鉴定和分类分析后显示差异基因涉及到多种代谢途径以及信号转导,与对白02S蛋白质组学研究的结果相一致。
     4.将基因芯片表达谱数据和蛋白质质谱数据进行综合分析,结果显示:在白02S突变体白化期的18个下调蛋白中与芯片数据没有overlap基因,而上调的44个蛋白中与芯片数据结合分析找到5个overlap基因,它们分别是2个未知蛋白,一个叶绿体核糖核蛋白CP29A、一个蛋白酶体a亚基和烯醇酶;在这五个蛋白点中,四个蛋白质的表达与对应的mRNA表达趋势一致,均呈现上调趋势,只有No.37蛋白质表达和对应的mRNA表达呈相反的趋势。
     5.应用实时定量PCR技术对白02突变体的转绿前后两个时期的RNA表达水平进行了比较研究,旨在对差异蛋白质表达谱、差异基因表达谱以及蛋白质表达谱和基因芯片表达谱综合分析结果的验证。蛋白质表达与实时PCR验证结果的一致性、基因芯片分析结果与qRealtime-PCR分析结果一致性均在80%以上。
     本研究为研究水稻和其它植物的叶绿素缺失突变体生理和分子机制提供了基本数据和深入研究的线索。
Leaf color mutant in the higher plant attracts much attention because it results to easily visible trait and has higher mutation frequency. These play important roles in both theoretical research and practical uses. The leaf color mutant phenotype which is clearly distinguished by its characteristics, can serve as a phenotypic marker in plant genetics and breeding studies. It can also be used as an ideal research material on chloroplast development and chlorophyll biosynthesize related gene in functional genomics.
     In this paper, the morphological characters, chloroplast ultrastructure, proteomics and microarray of W02S and Peiai 64S were studied. W02S is a new male sterile line with the albino green-revertible trait developed from a cross between WS and PTGMS Peiai 64S. WS was developed through anther culture by our research team in 1996 and there after showed stable expression in several generations.
     The results for the morphologic investigation showed that, up to three-leaf stage, the seedlings of W02S appeared apparently albino but turned into green after the 4th leaves were fully expanded. Peiai64S which was used as a control showed stable chlorophyll content and green color throughout the whole seedling stages. TEM analysis was performed for the leaves collected from the pre-and post green-revertible periods of W02S. During pre green-revertible period, W02S mutant compared to Pei'ai 64S had clear developmental defects such as lack of complete double-layer membrane and the chloroplast thylakoid lamellae. However, during the greening period, complete chloroplast structure, double membrane structure, and internal interconnected grana thylakoids observed in the W02S were the same as that of the control Pei'ai 64S. These results indicated that the cause of albino trait was the changes of the genes related to chloroplast development and chlorophyll biosynthesis that led to the initial thylakoid retardation, rather than changes in other pigments.
     The protein for analysis of differential protein expression profile between W02S and Peiai64S was extracted at seedling stage. In total 62 proteins were analyzed and identified in the W02SW through MALDI-TOF MS and database searching. Among them 44 were up-regulated proteins and 18 down-regulated proteins. The identified proteins were sorted according to their function. Most of them were involved in signal transduction, plant light responses, osmotic stress regulation, EMP-TCA-ETS metabolic pathways, photosynthesis, photorespiration photophosphorylation etc. This indicated that the albino green-revertible process was regulated by multi-signals and metabolic pathways.
     To study the differentially expressed genes between the pre-and post green-revertible period of W02S, we examined the mRNA expression changes between the two stages, W02Sw and W02Sg. A total of 5167 rice genes were found to be differentially expressed at their mRNA levels between the two stages. Differential genes expression profile was simultaneously constructed though comparative analysis of gene expression profiles. According to effective classification of the Gene Ontology, these genes could be classified into 17 categories, suggesting that the etiolating process is a regulatory consequence of multiple signal and metabolism pathways.
     To compare the correlations between the changes in corresponding mRNA and protein expressions, we comprehensively analyzed proteins and mRNA that showed significant differential expressions between W02Sw and W02Sg. We found 5 overlap genes that encode two unknown proteins, one 29 kDa ribonucleoprotein A(cp29A), proteasome alpha subunit and enolase. The expression of four proteins and their corresponding mRNAs showed an upward trend. The only protein and its corresponding mRNA that showed the opposite expression trend was No.37.
     To obtain complete expression data for the 62 proteins, the mRNA expressions of the 57 proteins, which were not detectable by microarray, were further analyzed by real-time PCR. The results from proteomic analysis, microarray assay and real-time PCR demonstrated a good correlation of the protein differences between W02Sw and W02Sg which in turn corresponded to mRNA differences. Overall, of the 62 proteins, less 20% with upward/downward trends had an opposite mRNA trend; these discrepancies might be due to the modifications of the post-transcription and post-translation processes. The reliability of the experimental results is very high.
     These new findings provide the basic data that may lead towards the understanding of mechanisms of chlorophyll-deficient phenotype in rice and other plants.
引文
1. 曹立勇,钱前,朱旭东等.紫叶标记籼型光-温敏核不育系中紫S的选育及其配组的杂种优势.作物学报,1999,25(1):44-49.
    2. 陈善福,舒庆尧,吴殿星等.利用γ射线辐照诱发水稻龙特甫B叶色突变.浙江大学学报(农业与生命科学版),1999,25(6):569-572.
    3. 陈小勇,林鹏.秋茄缺绿和正常植株叶片的叶绿素含量和叶绿体结构.台湾海峡,1999,18:113-116.
    4. 戴日春.陆地棉新黄绿苗突变体浙12-12N的遗传鉴定.浙江农业学报,1995,7:105-110.
    5. 邓峰林,李真,罗华程,贾银华,曾汉来.一种白苗突变体在杂交种子纯度鉴定中的利用价值研究.华中农业大学学报,2004,34:43-45.
    6. 董凤高,朱旭东,熊振民等.以淡绿叶为标记的籼型光-温敏核不育系M2S的选育.中国水稻科学,1995,9(2):65-70.
    7. 郭春爱,周玮,刘芳等.水稻低叶绿素b突变体光系统Ⅱ的热稳定性.作物学报,2007,33(8):1390-1392.
    8. 郭士伟,张云华,金永庆等.小白菜(Brassica chinensis L1)黄苗突变体的叶绿素荧光特性.作物学报,2003,29:958-960.
    9. 何瑞锋,丁毅,余金洪等.水稻“斑马叶”叶绿素含量及几种酶活性的变化.武汉大学学报(自然科学版),2000,46(6):761-765.
    10.何瑞锋,丁毅,余金洪.水稻温敏叶绿素突变体叶片蛋白的双向电泳分析.作物学报,2001,27(6)875-879.
    11.胡忠,彭丽萍,蔡永华.一个黄绿色的水稻细胞核突变体.遗传学报,1981,8:256-26.
    12.贾银华.水稻白苗复绿性状的遗传及其在两系杂交稻中的应用.华中农业大学.硕士学位论文,2005.
    13.来乐春,富昊伟,徐建良等.粳稻6108白叶突变性状的遗传分析及农艺性状表现.作物研究,2003,1:10-12.
    14.李喜焕等.基因芯片技术及其在植物育种中的应用.河北农业科学,2003,7(2):44-48.
    15.李贤勇,王楚桃,李顺武等.一个水稻高叶绿素含量基因的发现.西南农业学报,2002,15(4):122-123.
    16.刘贵付,舒庆尧,夏英武等.籼型温敏核不育水稻转绿型白化突变体的利用价值研究.核农学报,1996a,10(3):129-132.
    17.刘贵付,舒庆尧,夏英武等.温敏水稻叶色突变体的研究.核农学报,1996b, 10(1):6-10.
    18.刘厚淳,段发平.DNA芯片技术及其在农业中的应用.世界农业,2000,12:39-40.
    19.刘友杰.激光诱发褪绿色突变体及其遗传表现.应用激光,1998,8:177-187.
    20.陆云华,马立新,蒋思婧.番茄质体多顺反子定点整合表达载体的构建及其转烟草的研究.作物学报,2006,32(5):755-761.
    21.马国荣,刘佑斌,盖钧益.大豆细胞质遗传芽黄突变体的发现.作物学报,1994,20:334-338.
    22.马志虎,颜素芳,罗秀龙,郝华忠辣椒黄绿苗突变体对良种繁育及纯度鉴定作用.北方园艺,2001,138:13-14.
    23.钱前,朱旭东,曾大力等.细胞质基因控制的新特异材料白绿苗的研究.作物品种资源,1996,4:11-12.
    24.钱前,杨炜,黄大年,杨长登,宋新先,林建荣.水稻白绿苗的可溶性蛋白质电泳分析.中国水稻科学,1991,5(4):183-185.
    25.钱小红,贺福初.蛋白质组学:理论与方法.北京:科学出版社.2003,8-10.
    26.舒庆尧,陈善福,吴殿星等.新型不育系全龙A的选育与研究.中国农业科学,2001,34(4):349-354.
    27.谈建中,刘美娟,张国英等.桑树叶色突变体类型与特性的初步研究,蚕业科学,2003,29:286-290.
    28.王保莉,郭蔼光,汪沛洪.小麦突变体返白系返白阶段叶绿素代谢的变化.植物学报,1996,38(7):557-562.
    29.王聪田,王国槐,青先国,郭清泉,宋克堡,李必湖,严明理.水稻淡黄叶突变体安农标810S基因表达量的初步研究.杂交水稻(HYBRID RICE),2007,22 (4):67-70.
    30.王颖等.基因芯片技术在水稻研究中的应用中国农学通报,2006,22(8):55-58.
    31.王军,王宝和,周丽慧等.一个水稻新黄绿叶突变体基因的分子定位.中国水稻科学,2006,20(5):455-459.
    32.王玉忠,邵继荣,刘永胜,等.温敏失绿突变体水稻1103S在失绿过程中全叶蛋白的变化.植物学报,1999,41(5):519-523.
    33.吴殿星,舒庆尧,夏英武60Cay射线诱发的釉型温敏核不育水稻叶色突变系变异分析.作物学报,1999,25:64-69.
    34.吴殿星.植物叶绿素突变体的研究及其应用探讨.中国农学通报,1995,11:36-39.
    35.吴关庭,王贤裕,金卫.水稻温敏型紫叶突变体PLM12及其遗传研究.核农学报,2001,15:70-74.
    36.吴自明.水稻黄绿叶基因ygh的图位克隆及功能分析.南京农业大学.博士学位论文,2007.
    37.夏英武,刘贵付,蒋荣花等.釉型温敏核不育水稻叶绿素突变体的诱变及其初 步研究.核农学报,1995,9:129-133.
    38.肖松华,张天真.潘家驹陆地棉芽黄突变体的遗传及在杂种优势.南京农业大学学报,1995,18:28-33.
    39.章志兴,徐开盛,陈俊涛等.叶色标记技术在杂交水稻种子生产中的应用.种子科技,2001,1:33-34.
    40.张玉麟,王镇圭.水稻花粉白苗叶片中的叶绿素的积累.植物学报,1990,32(12):922-928.
    41.赵海军,吴殿星,舒庆尧,等.携带白化转绿型叶色标记光温敏核不育系玉兔S的选育及其特征特性.中国水稻科学,2004,18(6):515-521.
    42.赵琦,唐崇钦,匡廷云.玉米突变体(zb/zb)的叶绿素光合特性,植物学报,1997,39:1082-1084.
    43. Abdallah F, Salamini F, Leister D. A prediction of t he size and evolutionary origin of t he proteome of chloroplast s of Arabidopsis. Trends Plant Sci.,2000, 5(4):141-142.
    44. Agrawal G K, Yamazaki M, Kobayashi M. Screening of the riceviviparous mutants generated by endogenous retrotransposon Tos17 insertion, tagging of a zeaxanthin epoxidase gene and a novel OsTA TC gene. Plant Physiology,2001,125:1248-1257.
    45. Aldridge C, Maple J, Moller S G. The molecular biology of plastid division in higher plants. J Exp Bot,2005,56:1061-1077.
    46. Arumuganathan K, Earle EU. Nuclear DNA content of some important plant species. Plant Mol Biol Reporter,1991,9:208-218.
    47. Awan M, Konzak DF, Rutger JN. Mutagenic effect of Sodium Azide in rice. Crop Science,1980,20:663-668.
    48. Babiychuk E, Muller F, Eubel H, Braun H P, Frentzen M, Kushnir S. Arabidopsis phosphatidylglycerophosphate synthase I is essential for chloroplast differentiation, but is dispensable for mitochondrial function. Plant J, 2003,33:899-909.
    49. Baginsky S, Gruissem W. Chloroplast proteomics:potentials and challenges. J Exp Bot,2004,55:1213-1220.
    50. Beale S I. Green genes gleaned. Trend Plant Sci,2005,10:309-312.
    51. Bennett M D, Leitch I J, Price H J, Johnston J S. Comparisons with Caenorhabditis (approximately 100 Mb) and Drosophila (approximately 175 Mb) using flow cytometry show genome size in Arabidopsis to be approximately 157 Mb and thus approximately 25% larger than the Arabidopsis genome initiative estimate of approximately 125 Mb. Ann Bot(Lond) 2003,91:547-557.
    52. Buchanan B B, Gruissem W, Jones R L. Photosynthesis. In:Biochemistry & Molecular Biology of Plants(植物生物化学与分子生物学).瞿礼嘉,顾红雅,白书农,赵进东,陈章良译.北京:科学出版社,2004:131-483.
    53. Chen G, Bi Y R, Li N. EGY1 encodes a membrane-associated and ATP-independent metalloprotease that is required for chloroplast development. Plant J,2005,41: 364-375.
    54. Chen X, Zhang W, Xie Y J, et al. Comparative proteomics of thylakoid membrane from a chlorophyll b-less rice mutant and its wild type. Plant Science,173:397-407.
    55. Chen W B, Sato Y I, Nakamura I, et al. Distribution of deletion types in cpDNA of cultivated and wild rice. Jpn J Genet,1993,68:597-603.
    56. Chen W B, Sato Y I, Nakamura I, et al. Indica-Japonica differentiation in Chinese rice landraces. Euphytica,1994,74:195-201.
    57. Chondrogianni, N. and Gonos, E.S. Overexpression of hUMPl/POMP proteasome accessory protein enhances proteasome-mediated antioxidant defense. Exp.Gerontol. 2007,42:899-903.
    58. Chondrogianni, N., Tzavelas, C., Pemberton, A.J., Nezis, I.P., Rivett, A.J. and Gonos, E.S. Overexpression of proteasome b5 assembled subunit increases the amount of proteasome and confers ameliorated response to oxidative stress and higher survival rates. J. Biol. Chem.2005,280:11840-11850.
    59. Chory J, Peto C A, Ashbaugh M et al. Different Roles for Phytochrome in Etiolated and Green Plants Deduced from Characterization of Arabidopsis thaliana Mutants. The Plant Cell,1989,1:867-880.
    60. Chory J. Light sighals in leaf and chloroplast development:photoreceptors and downstream responses in search of a transduction pathway. New Biol.1991,3: 538-548.
    61. Corbett J M, Dunn M J, Posch A, et al. Positional reproducibility of protein spots in two-dimensional electrohoresis using immobilized PH gradient isoelectric focusing in the first dimension:an interlaboratory comparison. Electrophoresis,1994, 15:1205-1211.
    62. Coulson A, Sulston J. Toward a physical map of the genome of the nematode Caenorhabditis elegans. Proc NatlAcad Sci USA,1986,83(20):7821-7825.
    63. Coux, O., Tanaka, K., Goldberg, A.L. Structure and functions of the 20S and 26S proteasome. Annu. Rev. Biochem.1996,65:801-847.
    64. Dally A M, Second G. Chloroplast DNA diversity in wild and cultivated species of rice(Genus Oryza,section Oryza) Cladistic-mutation and genetic-distance analysis. Theor Appl Genet,1990 (80):209-222.
    65. Daniell H,Datta R,Varma S,et al. Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nat Biotechnol,1998, (16):345-348.
    66. Daniell H, Khan M S, Allison L. Milestones in chloroplast genetic engineering:an environmentally friendly era in biotechnology. Trends Plant Science,2002,7:84-91.
    67. Davies TGE, Thomas H, Thomas B J et al. Leaf senescence in a non-yellowing mutant of festuca protenss:Metabolism of cytochrome f. Plant phystol,1990, 93:588-595.
    68. Dewitt N. Lighting up transplastomics. Nat Biotechnol,1999, (17):8401.
    69. Dong Y J, Dong W Q, Shi S Y, et al. Identification and genetic ananlysis of a thermo-sensitive seeding-colour mutant in rice (Oryza sativa L.). Breeding Science, 2001,51:1-4.
    70. Du, L., Jiao, F., Chu, J., Jin, G., Chen, M., Wu, P. The two-component signal system in rice (Oryza sativa L.):a genome-wide study of cytokinin signal perception and transduction.Genomics.2007.89:697-707.
    71. Emanuelsson O, Nielsen H, Brunak S, Von Heijne G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol.2000,300:1005-1016.
    72. Falbel T C, Staehelin L A. Partial block in the early steps of the chlorophyll synthesis pathway:A common feature of chlorophyll b-deficient mutants. Plant Physiol.996a,97:311-320.
    73. Falbel T G, Meehl J B, Staehelin A. Severity of Mutant Phenotype in a Series of Chlorophyll-Deficient Wheat Mutants Depends on Light Intensity and the Severity of the Block in Chlorophyll Synthesis. Plant Physiol.1996b,112:821-832.
    74. Fambrini M. Castagna A. Vecchia FD. Characterization of a pigment-deficient mutant of sunflower (Helianthus annuus L.) with abnormal chloroplast biogenesis, reduced PS Ⅱ activity and low endogenous level of abscisic acid. Plant Science 2004, 167:79-89
    75. Feng Q, Zhang Y, Hao P, Wang S, Fu G, Huang Y, Li Y, Zhu.i, Liu Y, Hu X et al. Sequence and analysis of rice chromosome 4. Nature 2002,420:316-320.
    76. Ferro M, Salvi D, Brugiere S, Miras S, Kowalski S, Louwagie M,Garin J, Joyard J, Rolland N. Proteomics of the chloroplast envelope membranes from Arabidopsis thaliana. Molecular and Cellular Proteomics.2003,2:325-345.
    77. Ferro M, Salvi D, Riviere-Rolland H, Vermat T, Seigneurin-Berny D,Grunwald D, Garin J, Joyard J, Rolland N. Integral membrane proteins of the chloroplast envelope: identification and subcellular localization of new transporters. Proceedings of the National Academy of Sciences, USA.2002,99:11487-11492.
    78. Flugge U I. Phosphate t ranslocations in plastids. Annu. Rev. Plant Physiol. Plant Mol. Biol.,1999,50:27-45.
    79. Friso G, Giacomelli L, Ytterberg A J, Peltier J B, Rudella A, Sun Q,Wijk K J. In-depth analysis of the thylakoid membrane proteome of Arabidopsis thaliana chloroplasts new proteins, new functions, and a plastid proteome database. Plant Cell, 2004,16:478-499.
    80. Froehlich JE, Wilkerson CG, Ray WK, McAndrew RS, Osteryoung KW, Gage DA, Phinney BS. Proteomic study of the Arabidopsis thaliana chloroplastic envelope membrane utilizing alternatives to traditional two-dimensional electrophoresis, J. Proteome Res.2003,2:413-425.
    81. FukaoY, Hayashi M, Nishimura M. Proteomic analysis of leaf peroxisomal proteins in greening cotyledons of Arabidopsis thaliana. Plant Cell Physiol,2002,43:689-696.
    82. Gale M D, Devos K M. Comparative genetics in the grasses. Proc Natl Acad Sci USA,1998,95:1971-1974.
    83. Gan S, Amasino R M. Inhibition of leaf senescence by auto-regulated production of cytokinin. Science,1995,270:1986-1988.
    84. Candiano, G, Bruschi, M., Musante, L., Santucci, L., Ghiggeri, G. M., Carnemolla, B., Orecchia, P., Zardi, L., Righetti, P. G. Blue silver:a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis.2004.25: 1327-1333.
    85. Genschik, P., Criqui, M.C., Parmentier, Y., Derevier, A., Fleck, J. Cell cycle-dependent proteolysis in plants:identification of the destruction box pathway and metaphase arrest produced by the proteasome inhibitor MG132. Plant Cell. 1998,10:2063-2075.
    86. Girod, P.-A., Fu, H., Zryd, J.P., Vierstra, R.D. Multiubiquitin chain binding subunit MCB1 (RPN10) of the 26S proteasome is essential for developmental progression in Physcomitrella patens. Plant Cell.1999,11:1457-1471.
    87. Goff S A, Ricke D, Lan T H, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H et al. A draft sequence of the rice genome (Oryza saliva L. ssp japonica). Science 2002,296:92-100.
    88. Goh, C.H., Jung, K.H., Roberts, S.K., McAinsh, M.R., Hetherington, A.M., Park, Y.I., Suh, K., An, G, Nam, H.G. Mitochondria provide the main source of cytosolic ATP for activation of outward-rectifying K+ channels in mesophyll protoplast of chlorophyll-deficient mutant rice (OsCHLH) seedlings. J Biol Chem.2004,279: 6874-6882.
    89. Gothandam K M, Kim E S, Cho H, et al. OsPPR1, a Pentatricopep tide repeat protein of rice is essential for the chlorop last biogenesis. Plant Mol Biol,2005,58: 421-433.
    90. Gray J C. Chloroplast-to-nucleus signalling:a role for Mg-protoporphyrin. Trends Genet,2003,19(10):526-529.
    91. Grevich J, Daniell H. Chloroplast genetic engineering:recent advances and future perspectives. Critical Reviews in Plant Sciences,2005,24:83-107.
    92. Gustafsson A. The plastid development in various types of chlorophyll mutations. Hereditas,1942,28,483-492
    93. Havaux M, Tardy F. Thermostability and photostability of photosystem II in leaves of the Chlorina-f2 barley mutant deficient in light-harvesting chlorophyll a/b protein complexes. Plant Physiol.1997,113:913-923.
    94. Hegde P S, White I R, Debouck C. Interplay of transcriptomics and proteomics. Curr Opin Biotechnol,2003,14 (6):647-651.
    95. Henrik N, Agnethe H, Tom J, et al. Arabidopsis VARIEGATED 3 encodes a chloroplast-targeted, zinc-finger protein required for chloroplast and palisade cell development. Journal of Cell Science,2004,117:4807-4818.
    96. Hirai A, Ishibash T, Marlkami A, et al. Rice chloroplast DNA:A physical map and the location at the genes for the large subunit of ribulose 1,5 bisphosphate carboxylase and the 32 kD photosystem II reaction center protein. Theor Appl Genet, 1985,70:117-122.
    97. Hiratsuka J, Shimada H, Whittier R et al. The complete sequence of the rice (Oryza saliva) chloroplast genome:Inter molecular recombination between distinct tRNA genes account for a major plastid DNA inversion during the evolution of the cereals. Mol Gen genet,1989,217:185-194.
    98. Hou BK, Zhou YH, Wan LH, et al. Chloroplast transformation in oilseed rape. Transgenic Res,2003,12(1):111-114.
    99. Hsu B D; Lee J YThe.photosystem Ⅱ heterogeneity of chlorophyll b-deficient mutants of rice:a fluorescence induction study. Plant Physiol.1995,22:195-200.
    100. Huq E, Al-Sady B, Hudson M. Phytochrome-interacting factor 1 is a Critical bHLH Regulator of Chlorophyll Biosynthesis. Science,2004,305:1937-1942.
    101. Hwang, H., Chen, H. C., Sheen, J. Two-component signal transduction pathways in Arabidopsis. Plant Physiol,2002.129:500-515.
    102. International rice genome sequencing project:The map-based sequence of the rice genome. Nature 2005,436:793-800.
    103. Ishii T, Tsunewaki K. Chloroplast genome differentiation in Asian cultivated rice. Genome,1991,34:818-826.
    104. Jarvis P. Intracellular signalling:the language of the chloroplast, Curr. Biol.2003, 13:R314-R316.
    105. John P Markwell, Philip L Thernber and Russell T Boggs. Highter plant chloroplasts:evidence that all the chlorophyll exists as chlorophyll-protein complexes. Proc. Natl. Acad. Sci USA,1979,76 (3):1233-1235.
    106. Joyard J, Teyssier E, Miege C, Berny-Seigneurin D, Marechal E, Block M A, Dome AJ, Rolland N, Ajlani G, Douce R. The biochemical machinery of plastid envelope membranes. Plant Physiol.1998,118:715-723.
    107. Jung K H, Hur J, Ryu C H, et al. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant cell Physiology,2003,44:473-472.
    108. Kaeppler S M, Phillips R L, Olhoft P. Molecular basis of heritable tissue culture-induced variation in plants. In Jain S M, Brar D S, Ahloowalia (Eds), Somclonal variation and induced mutations in crop improvement, HIuwer Academic Publishers, Dordrecht,1998,467-486.
    109. Kannangara C G, Gough S P, Bruyant P, Hoobwer J K, Kahn A, von Wettstein D. tRNAglu as acofactor in daminolevulinate biosynthesis.Trends Biochem Sci,1988, 13:139-143.
    110. Kang SG, Matin MN, Bae H, Natarajan S.Proteome analysis and characterization of phenotypes of lesion mimic mutant spotted leaf 6 in rice. Proteomics,2007, 7(14):2447-2458.
    111. Kanno A, Watanabe N, Nakamura I, et al. Variation in chloroplast DNA from rice (Oryza sativa):Differences between deletions mediated by short direct-repeat sequences within a single species. Theor Appl Genet,1993,86:57-584.
    112. Kato A, Fujita S, Komeda Y. Identification and characterization of the gene encoding the mitochondrial elongation factor G in rice. DNA Seq,2000,11:395-404.
    113. Kavakli I H, Kato C, Choi S B, Kim K H, Salamone P R, Ito H, Okita T W. Generation, characterization, and heterologousexpression of wild-type and up-regulated forms of Arabidopsis thaliana leaf ADP-glucose pyrophosphorylase Planta,2002,215:430-439.
    114. Khush G S. Origin, dispersal, cultivation and variation of rice. Plant Mol Biol,1997, 35:25-34.
    115. Killough D T, Horlacher. The inheritance of virescent yellow and red plant colors in cotton. Genetics.1993,18:329-333.
    116. Klaas Jan van Wijk Proteomics of the chloroplast:experimentation and prediction. Trends in plant science.2000,5:420-425.
    117. Koller B, Delius H. Vicia faba chloroplast DNA has only one set of ribosomal RNA genes as shown by partial denaturation mapping and Rloop analysis. Mol Gen Genet, 1980,(178):261-269.
    118. Komatsu S, Muhammad A, Rakwal R. Separation and characterization of proteins from green and etiolated shoots of rice(Oryza sativa L.):Towards a rice proteome. Electrophoresis,1999,20(3):630-636.
    119. Kruft V. Eubel H. Jansch L. Werhahn W. Braun H P. Proteomic approach to identify novel mitochondrial proteins in Arabidopsis. Plant Physiol,2001,127:1694-1710.
    120. Krysan P J, Young J C, Sussman M R. T-DNA as an insertional mutagen in Arabidopsis. Plant Cell,1999,11:2283-2290.
    121. Kumar A M, Soll D. Antisense NEMAI RNA Expression Inhibits Heme and Chlorophyll Biosynthesis in Arabidopsis. Plant Physiology,2000,122:49-55.
    122. Kumar S,Dhingra A, Daniell H1Stable transformation of the cotton plastid genome and maternal inheritance of transgenes. Plant Mol Biol,2004,56 (2):203-216.
    123. Kusumi K, Komori H, Satoh H, Iba K. Characlerization of a zebra mutant of rice with increased susceptibility to light stress. Plant Cell Physiology,2000,41:158-64.
    124. Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature.1970.227:680-685.
    125. Lee S M, Kang K, Chung H, et al. Plastid transformation in the monocotyledonous cereal crop, rice (Oryza sativa) and transmission of transgenes to their progeny. Mol Cells,2006,21(3):401-101.
    126. Lee S, Kim J H, Yoo E S, Lee C H, Hirochika H, An G. Differential regulation of chlorophyll a oxygenase genes in rice. Plant Mol Biol,2005,57:805-818.
    127. Leister D. Chloroplast research in the genomic age. Trends Genet,2003, 19(1):47-56.
    128. Lelivelt C L,McCabe M S, Newell C A,et al. Stable plastid transformation in lettuce (Lactuca sativa L1). Plant Mol Biol,2005,58 (6):763-774.
    129. Lesley S A. High-throughput proteomics:protein expression and purification in the postgenomic world. Protein Expression and Purification,2001,22(2):159-164.
    130. Li Y, Sugiura M., Three distinct ribonucleoproteins from tobacco chloroplasts:each contains a unique amino terminal acidic domain and two ribonucleoprotein consensus motifs. FMBOJ.1990,9:3059-3066.
    131. Liu W, Fu Y, Hu G, Si H, Zhu L, Wu C, Sun Z.. Identification and fine mapping of a thermo-sensitive chlorophyll deficient mutant in rice (Oryza sativa L.). Planta,2007, 26:785-795.
    132. Lohrmann, J., Harter, K. Plant two-component signaling systems and the role of response regulators. Plant Physiol,2002,128:363-369.
    133. Lopez-Juez E, Jarvis RP, Takeuchi A et al. New Arabidopsis cue Mutants Suggest a Close Connection between Plastid-and Phytochrome Regulation of Nuclear Gene Expression. Plant Physiol,1998,118:803-815.
    134. Lorkovic, Z. J., Barta, A. Genome analysis:RNA recognition motif (RRM) and K homology (KH) domain RNA-binding proteins from the flowering plant Arabidopsis thaliana Nucleic Acids Res.2002,30,623-635.
    135. M.Ashiq Rabbani, Kyonoshin Maruyama, Hiroshi Abe, et al.Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarry and RNA gel-blot analyses. Plant physiology,2003,133:1755-1767.
    136. Maliga P. Towards plastid transformation in flowering plants. TIB TECH,1993, (11):101-1071.
    137. Martin W, Rujan T, Richly E, et al. Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci, USA,2002,99:12246-12251.
    138. Mira-Rodado, V., SWeere, U., Grefen, C., Kunkel, T., Fejes, E., Nagy, F., Schafer, E., Harter, K. Functional cross-talk between two-component and phytochrome B signal transduction in Arabidopsis. J Exp Bot.2007.58:2595-607.
    139. Mcbride K E, Svab Z,Schaal D J,et al. Amplilication of a chinmeric Bacillus geng in chloroplasts leads to an extraordinary level of an insecticidalprotein in tobacco.Bio/technol,1995, (13):362-365.
    140. Mcfadden G I. Chloroplast origin and integration. Plant Physiol,2001,125:50-53.
    141. Mizuno, T. His-Asp phosphotransfer signal transduction. J. Biochem.1998. 123:555-563.
    142. Mochizuki N, Brusslan J A, Larkini R. Arabidopsis genomes uncoupled 5 (GUNS) mutant revealsthe involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction. Proc. Natl. Acad. Sci. USA,2001,98:2053-2058.
    143. Monde RA, Zito F, Olive J, et al. Post-transcriptional defects in tobacco chloroplast mutants lacking the cytochrome ti6/f complex. The Plant Journal,2000,21:61-72.
    144. Motohashi R, Ito T, Kobayashi M, et al. Functional analysis of the 37 kDa inner envelope membrane polypeptide in chloroplast biogenesis using a Ds-tagged Arabidopsis pale-green mutant. Plant J,2003,34:719-731.
    145. Muller H J. Types of visible variations induced by X-rays in Drosophila. J Genetics,1930,22:299-334.
    146. Mullet J E. Dynamic regulation of chloroplast transcription Plant Physiol.1993,103: 309-313.
    147. Nair R, Rost B. Mimicking cellular sorting improves prediction of subcellular localization. J Mol Biol.2005,348(1):85-100.
    148. Nasyrov Y S. Genetic of photosynthesis and improving of crop productivity, review of plant physiology,1978,29:215-237.
    149. Neuhaus H E,Wagner R. Solute pores, ion channels, and metabolite transporters in the outer and inner envelope membranes of higher plant plastids. Biochim. Biophys. Acta,2000,1465:307-323.
    150. Ni M, Tepperman J M, Quail P H. PIF3, a phytochrome-interacting factor necessary for normal photoinduced signal transduction, is a novel basic helix-loop-helix protein. Cell.1998,95:657-667.
    151. Notsu Y, Masood S, Nishikawa T, et al. The complete sequence of the rice (Oryza sativa L.) mitochondrial genome:frequent DNA sequence acquisition and loss during the evolution of flowering plants. Mol. Genet. Genomics,2002,268:434-445.
    152. Oliver, S.2000. Guilt-by-association goes global. Nature 403:601-603.
    153. Oster U, Tanaka R, Tanaka A, et al. Cloning and functional expression of the gene encoding the key enzyme for chlorophyll b biosynthesis (CAO) from Arabidopsis thaliana. Plant J,2000,21:305-310.
    154. Oud J S N, Schneiders H, Kool A J, et al. Breeding of transgenic orange Petunia hybrida varieties. Euphytica,1995,84 (3):175-181.
    155. Palmer J D. Comparative organization of chloroplast genome. Annu Rev Genet,1985, (19):325-354.
    156. Parks B M, Quail P H. Phytochrome-deficient hyl and hy2 long hypocotyls mutants of Arabidopsis are defective in phytochrome chromophore biosynthesis. The Plant Cell,1991,3:1177-1186.
    157. Peltier J B, Cai Y, Sun Q, Zabrouskov V, Giacomelli L, Rudella A, Ytterberg A J, Rutschow H and van Wijk K J. The oligomeric st romal proteome of A rabi dopsis thaliana chloroplasts. Mol Cell Proteomics,2006,5 (1):114-133.
    158. Peltier J B, Emanuelsson 0, Kalume D E et al. Central functions of the luminal and peripheral thylakoid proteome of Arabidopsis determined by experimentation and genome-wide prediction. Plant Cell,2002,14(1):211-236.
    159. Pettier J B, Friso G, Kalume D E, Roepstorff P, Nilsson F, Adamskavan Wijk K J. Proteomics of the chloroplast:systematic identification and targeting analysis of lumenal and peripheral thylakoid proteins. Plant Cell,2000,12:319-341.
    160. Peltier JB, Ripoll DR, Friso G, Rudella A, Cai Y, Ytterberg J, Giacomelli L, Pillardy J, Van Wijk K J. Clp Protease Complexes from Photosynthetic and Non-photosynthetic Plastids and Mitochondria of Plants, Their Predicted Three-dimensional Structures, and Functional Implications. J Biol Chem,2004,279: 4768-4781.
    161. Peschke V M, Phillips R L. Genetic implications of somaclonal variation in plants. Adv Genet,1992,30:41-75.
    162. Phillips R L, Kaeppler S M, Olhoft P. Genetic instability of plant tissue cultures: breakdown of normal controls. Proc Natl Acad Sci USA,1994,91:5222-5226.
    163. Prime T A, Sherrier D J, Mahon P. A proteomic analysis of organelles from Arabidopsis thaliana. Electrophoresis,2000,21:3488-3499.
    164. Raghvendra A S. Photosynthesis:a comprehensive treatise. Cambridge:Cambridge Univ Press,1998,72-86.
    165. Raubeson L A, Jansen R K. Chloroplast genomes of plants. In:Henry R J ed. Plant Diversity and Evolution:Genotypic and Phenotypic Variation in Higher Plants. UK:CABI publishing,2005,45-68.
    166. Reinbothe S, Pollmann S, Springer A, James R J, Tichtinsky G, Reinbothe C. A role of Toc33 intheprotochlorophyllide-dependent plastid import pathway of NADPH: protochlorophyllide oxidoreductase (POR). Plant J,2005,42(1):1-12.
    167. Reyes-Arribas T, Barrett J E, Huber D J, Nell T A, Clark DG. Leaf senescence in a non-yellowing cultivar of chrysanthemum(Dendranthema grandiflora). Physiol Plant, 2001,11 (4):540-544.
    168. Richard J S, Donna S D. Cancer proteomics:from signaling networks to tumor markers. Trends in Biotechnology,2001,19(10):40-48.
    169. Robert F. Proteomics, Can Celera do it again? Science,2000,287 (5461): 2136-2138.
    170. Robert M L, Jose M A, Joseph R E. GUN4, a Regulator of chlorophyll synthesis and intracellular signaling. Science,2003,299:902-906
    171. Robertson D, Mitchell G P, Gilroy J S, Gerrish C. Differential extraction and protein sequencing reveals major differences in patterns of primary cell wall proteins from plants. J.Biol. Chem.,1997,272,15841-15848.
    172. Rodermel S.Pathways of plastid-to nucleus signaling. Trends Plant Sci,2001, 6:471-478.
    173. Rolland N, Ferro M, Seigneurin-Berny D, Garin J, Douce R, Joyard J. Proteomics of chloroplast envelope membranes. Photosynthesis Research.2003,78(3):205-230.
    174. Ruf S, Hermann M, Berger I J, et al. Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nat Biotechnol, 2001,19(9):870-875.
    175. Santoni V, Molloy M, Rabilloud T, Membrane proteins and proteomics:Un amour impossible? Electrophoresis,2002,21:1054-1070.
    176. Sasaki T, Matsumoto T, Yamamoto K, Sakata K, Baba T, Katayose Y, Wu J, Niimura Y, Cheng Z, Nagamura Y et al. The genome sequence and structure of rice chromosome 1. Nature 2002,420:312-316.
    177. Sasaki T. The rice genome project in Japan. Proc Natl Acad Sci USA,1998,95, 2027-2028.
    178. Sato S, Nakamura Y, Kaneko T, Asamizu E, Tabata S. Complete structure of the chloroplast genome of Arabidopsis thaliana. DNA Res,1999,6:283-290.
    179. Schultes N P, Sawers R J, Brutnell T P, Krueger R W. Maize high chlorophyll fluorescent 60mutation is caused by an Ac disruption of the gene encoding the chloroplast ribosomal small subunit protein 17. Plant J,2000,21(4):317-27.
    180. Schunemann D. Structure and function of the chloroplast signal recognition particle. Curr Genet,2004,44:295-304.
    181. Shahid M M, Nishikawa T, Fukuoka S, et al. The complete nucleotide sequence of wild rice (Orizy nivara) chloroplast genome:first genome wide comparative sequence analysis of wild and cultivated rice. Gene,2004,340(1):133-139.
    182. Shahmuradov I A, Akbarova Y Y, Solovyev V V, et al. Abundance of plastid DNA insertions in nuclear genomes of rice and Arabidopsis. Plant Mol. Biol.,2003,52: 923-934.
    183. Sidorov V A, Kasten D, Pang S Z, et al. Technical Advance:Stable chloroplast transformation in potato:use of green fluorescent protein as a plastid marker. Plant J,1999,19(2):209-216.
    184. Sikdar S R, Serino G, Chaudhuri S, et al. Plastid transformation in Arabidopsis thaliana. Plant Cell Rep,1998,18 (1):20-24.
    185. Singh UP, Prithiviraj B, Sarma BK. Development of Erysiphe pisi (powdery mildew) on normal andalbino mutants of pea (Pisum sativum L). Journal of Phytopathology,2000,148:591-595.
    186. Soll J. Tien R. Protein translocation into and across the chloroplastic envelope membranes. Plant Mol. Biol.1998,38:191-207.
    187. Staub J M, Garcia B, Graves J, et al. High-yield production of a human therapeutic protein in tobacco chloroplasts. Nature Biotechnol,2000, (18):333-338.
    188. Stern D B. Hanson M R. Barkan A. Genetics and genomics of chloroplast biogenesis:maize as amodel system. Trends in Plant Science,2004,9:293-301.
    189. Schuster G, Gruissem W. Chloroplast mRNA 3'end processing requires a nuclear-encoded RNA-binding protein. EMBOJ.1991,10,1493-1502.
    190. Sugiura M, Hirose T, Sugita M. Evolution and mechanism of translation in chloroplasts. Annu Rev Genet,1998, (32):437-4591.
    191. Sugiura M. The chloroplast genome. Plant Mol Biol,1992, (19):149-168.
    192. Sung A O, Joo-Hyun P, Gyu I L, et al. Identification of three loci controlling leaf senescence inArabidopsis thaliana. Plant Journal,1997,12:527-535.
    193. Surpin M, Larkin R, Chory J. Signal transduction between the chloroplast and the nucleus. The Plant Cell,2002,14:327-338.
    194. Suzuki J Y, Bollivar D W, Bauer C E. Genetic analysis of chlorophyll biosynthesis. Annu Rev Genet,1997,31:61-89.
    195. Tanaka N, Fujita M, Handa H, Mura Yama S, et al. Proteomics of the rice cell: systematic identification of the protein populations in subcellular compartments. Mol Genet Genomics,2004,271(5):566-576.
    196. Tang J, Xia H, Cao M, et al. A comparison of rice chloroplast genomes. Plant Physiol,2004,135(1):412-420.
    197. Tanya GFL, Andrew S. Partial blocks in the early steps of the chlorophyll synthesis pathway:A common feature of chlorophyll b-deficient mutants. Physilogia Plantarum, 1996,97:311-320.
    198. Tenry M J. Phytochrome chromophore-deficient mutants. Plant Cell Environ,1997, 20:740-745.
    199. Terry M J, Kendrick R E. Feedback inhibition of chlorophyll synthesis in the phytochrome chromophore-deficient aurea and yellow-green-2 mutants of tomato Plant Physiol,1999,119:143-152.
    200. Terao T, Yamashita A, Katoh S. Chlorophyll b-deficient mutants of rice. I. Absorption and fluorescence spectra and chlorophyll a/b ratios. Plant Cell Physiol. 1985,26:1361-1367.
    201. The Rice Chromosome 10 Sequencing Consortium. In-depth view of structure, activity, and evolution of rice chromosome 10. Science,2003,300:1566-169.
    202. Thomas H, Ougham H, Canter P, Donnison I.What stay-green mutants tell us about nitrogen remobilization in leaf senescence. J Exp Bot,2002,370:801-808.
    203. Tregoning J S, Nixon P, Kuroda H, et al. Expression of tetanus toxin Fragment C in tobacco chloroplasts. Nucleic Acids Res,2003,31 (4):1174-1179.
    204. Tsugita A, Kawakami T, Uchiyama Y, et al. Separation and characterization of rice proteins. Electrophoresis,1994,15(5):708-720.
    205. van Wijk, K. J. Plastid proteomics. Plant Physiol. Biochem.,2004,42(12):963-977.
    206. Vincentini F, Hortensteiner S, Schellenberg M, Thomas H, Matile P. Chlorophyll breakdown in senescent leaves; identification of biochemical lesion in a stay-green genotype of Festuca pratensis Huds. New Phytol,1995,129:247-252.
    207. Wang, B. C., Wang, H. X., Feng, J. X., Meng, D. Z., Qu, L. J., Zhu, Y. X. Post-translational modifications, but not transcriptional regulation, of major chloroplast RNA-binding proteins are related to Arabidopsis seedling development. Proteomics.2006,6:2555-2563.
    208. Wasinger V C, Cordwell S J, Cerpa-Poljak A V C. Wasinger S J, et al. Progress with gene-product mapping of the mollicutes:mycoplasma genitalium, Electrophoresis, 1995,16:1090-1094.
    209. Weber A, Flugge U I. Interaction of cytosolic and plastidic nitrogen metabolism in plant s. J. Ex p. Bot.,2002,53:865-874.
    210. Wolfgang P, Schroder, Thomas, Kieselbach. Update on chloroplast proteomics. Photosynthesis Research.2003,78:181-193.
    211. Woffenden, B.J., Freeman, T.B., Beers, E.P. Proteasome inhibitors prevent tracheary element differentiation in zinnia mesophyll cell cultures. Plant Physiol. 1998,118:419-430.
    212. Wollman F A, Minai L, Nechushtai R. The biogenesis and assembly of photosynthetic proteins in thylakoid membranes. Biochim. Biophys. Acta,1999, 1411:21-85.
    213. Wu Z, Zhang X, He B et al. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol.2007,145: 29-40.
    214. Yan W, Chen S S. Mass spectrometry-based quantitative proteomic profiling. Brief Funct Genomic Proteomic.2005,4(1):27-38.
    215. Yaronskaya E, Ziemann V, Walter q Averina N, B orner T, Grimm B. Metabolic control of the biosynthetic pathway for porphyrin distribution in the barley mutant albostrians. Plant J,2003,35:512-522.
    216. Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X et al. A draft sequence of the rice genome (Oryza saliva L. ssp. indica). Science 2002, 296:79-92.
    217. Yu J, Wang J, Lin W, Li S, Li H, Zhou J, Ni P, Dong W, Hu S, Zeng C et al. The Genomes of Oryza sativa:a history of duplications. PLoS Biol 2005,3:e38.
    218. Yu Ch L(余初浪),Yan Sh P(严顺平),Sun W N(孙卫宁),Yang L(杨玲).High-resolution two-dimensional electrophoresis for total proteins in rice roots, leaves and suspension cells. Chinese J Rice Sci.(中国水稻科学),2006,20(5): 549-552 (in Chinese).
    219. Zhang H T, Li J J, Yoo J H, et al. Rice Chlorina-1 and Chlorina-9 encode ChID and ChⅡ subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Mol Biol,2006,62(3):325-337.
    220. Zhang X H, Portis AR J r,Wildholm J M. Plastid transformation of soybean suspension cultures. Plant Biotechnol,2001, (3):39-44.
    221. Zhao Y, Wang M L, Zhang Y Z, Du L F, Pan T. A chlorophyll-reduced seedling mutant in oilseed rape, Brass icanapus for utilization in Fl hybrid production. Plant Breeding,2000,119:131-135.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700