6池与7池MSBR除磷影响因素的对比研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现在城市污水处理厂对氨氮的去除一般都能达标,而对磷的去除难以达到新的国家排放标准,研究污水处理工艺的除磷机理具有重要的实际意义。MSBR(Modified Sequencing Batch Reactor)工艺具有一定的脱氮除磷功能,但是作为一个刚刚开发出不久的污水生物处理工艺,MSBR尚未得到深入、广泛的研究;现有的对MSBR生物除磷机理的研究和探讨还不能满足MSBR工艺发展的需要。在MSBR工艺中对除磷有影响的因素众多,研究各影响因素对MSBR系统除磷的作用对完善MSBR工艺的除磷功能和工艺的设计和运行具有重要的指导意义。
     本文在前人试验的基础上,在出水氨氮达标的情况下,通过对6池MSBR与7池MSBR工艺除磷影响因素的分析,研究6池MSBR和7池MSBR除磷的机理,找出影响MSBR除磷效果的关键因素,确定各影响因素相对最佳值;对比分析各影响因素对6池与7池工艺除磷的影响,研究各系统的优缺点,试验结果表明:
     (1)进水COD/P为选定的试验因子中对除磷的影响程度最大的,在6池工艺中,所选因子对除磷影响程度的由大到小的关系为:COD/P>MLSS>R>COD/N;在7池工艺中,所选因子对除磷影响程度的由大到小的关系为:COD/P> R > MLSS >COD/N。
     (2) 7池工艺为生物除磷创造了更好的条件。7池增加了一个缺氧/厌氧池,消除了进水中的DO和污泥回流带来的NO3-,保证了聚磷菌的厌氧条件下充分释磷;7池工艺中缺氧池位于污泥浓缩池之后,这种流程安排使得7池可以处理比6池进水NH4含量较高的废水,对高浓度NH4有较好的耐受性。
     (3)两工艺中TP去除率随进水COD/P变化的趋势相同,都为先增大后趋于稳定。6池的转折点出现在COD/P为100时,7池的转折点出现在COD/P为60时。与6池工艺相比,7池能处理磷负荷更高的进水,
     (4)在6池和7池工艺中,TP去除率随R的增大出现先升后降的趋势。6池工艺的去除率最大值出现在R为0.5时,7池工艺去除率最大值出现在R为0.6时。
     (5)较理想的污泥回流是在最小的混合液回流量下回流最大量的活性污泥。仅仅用污泥回流比R来衡量回流污泥量是不够的,浓缩池中污泥的沉降性能也是一个重要的参数,对污泥回流量有较大的影响。
     (6)进水COD/N对MSBR6池工艺和7池工艺除磷的影响上有一定的一致性。6池与7池工艺的SBR缺氧段都发现了反硝化吸磷的现象。
     (7)厌氧池释磷量也随着进水COD浓度的增加而增加。6池工艺TP去除率随着进水中COD浓度的增加也有所增加,7池工艺TP去除率随着进水中COD浓度的增加表现为先增大后减小的趋势。7池对进水COD浓度的变化比6池敏感,6池工艺比7池工艺耐受的COD进水浓度高,在实际工程应用中,7池工艺的进水COD要尽量保持在一个合适的范围内,以免系统对磷的去除效果出现大的波动。
Now, the removal of ammonia nitrogen is successful in most of the wastewater treatment plants (WWTP), and the discharge of ammonia nitrogen could accord with the Integrated Wastewater Discharge Standard. But the emission of phosphorus is always higher than the discharge standard. So, there is greatly practical significance to study the theoretic of phosphorous removal in the WWTP. The Modified Sequencing Batch Reactor (MSBR) could removal nitrogen and phosphorus in wastewater, but the theories have not been studied deeply and widely. Currently, researching about the MSBR is not enough for its development. The parameters that affect biological phosphate removal in MSBR are quite a lot, and for the technology’s design and operation and improving phosphorus removal function, there is guiding significance to research the parameters.
     This paper based on the forerunner, and on the premise of that the ammonia nitrogen of outlet is controlled within the standard, study the principle of phosphorus removal in 6-tank process and 7-tank process MSBR by analyze the parameters that affect biological phosphate removal in 6-tank process and 7-tank process MSBR. The purpose is to find out the primary factors which affect the phosphorus removal in MSBR, and then comparatively analysis the affection of the parameters to phosphorus removal in 6-tank process and 7-tank process MSBR, to find out the merits and faults of the two processes. The results of the experimentation indicated that:
     (1) In the selected factors, the most important parameters are influent COD/P ratios. In 6-tank process, the sequence of the factors by degrees which affect the phosphorus removal is: COD/P>MLSS>R>COD/N; in 7-tank process, the sequence is: COD/P>R>MLSS>COD/N.
     (2) 7-tank process has created much better condition for the biological phosphate removal the 6-tank processs. A anoxia/anaerobic pool is added into the 7-tank process MSBR, and so, the 7-tank process could eliminate DO in influent wastewater and NO3- that mixed in reflux activated sludge, and ensure the sufficiently phosphate release of phosphate accumulating organisms(PAOs) under anaerobic condition. 7-tank process MSBR could be able to treatment higher NH4 concentration in influent wastewater than 6 -tank process MSBR, and could bare high concentration NH4 at the scene that anoxia pool is located behind sludge concentrating pool.
     (3) Among two techniques, the trend of P-removal ratio is same with influent COD/P ratio, which is stabile after raise first. The turning point of 6-tank process appears at 100 and 7-tank process at 60. Comparing with 6-tank process, 7-tank process can treat higher phosphorus concentrateion in influent wastewater.
     (4) The P-removal ratio has the trends that ascend first and descend late in both 6-tank process and 7-tank process. The maximum value of P-removal ratio in 6-tank process appease when the R is 0.5, and 7-tank process is 0.6.
     (5) The better sludge reflux ratio is the ratio that could obtain more quantity of refluxed sludge at less reflux ratio. It is not enough to evaluate the reflux sludge ratio just by sludge reflux. Sludge settlement in thickening tank is also important to the quantity of reflux sludge, and it is an important parameter.
     (6) There is a certain extent identical that the changing of influent COD/N ratio affects biological phosphate removal from wastewaters. Denitrifying P removal at anoxic phase of SBR appease in both 6 and 7-tank process.
     (7) The P-release in anaerobic pool increase subsequently when influent COD concentration increases. The P-removal ratio ascend when influent COD concentration increases in 6-tank process, but increase first and decrease late in 7-tank process. The 7-tank process is more sensitively than 6-tank process to influent COD concentration, and 6-tank process could endure higher influent COD concentration than 7-tank process. The influent COD concentration in 7-tank process should furthest be kept in a fit rang.
引文
[1] 余国忠,余国庆,史本林.富营养化水源水中藻类控制的研究进展.信阳师范学院学(自然科学版),2000,13(4):482-485
    [2] Yuh-Ling,Lee Chen. Comparisons of Primary Productivity and Phytoplankton Size St-ructure in the Marginal Regions of Southern East China Sea.Continental Shelf Resear-ch.2000, (20):43-58
    [3] 邓义敏,刘桂明.藻类对供水的影响及去除方法.中国给水排水,2001,17(7):5-6
    [4] 顾岗.太湖蓝藻爆发成因及其富营养化控制.环境监测管理与技术,1996,8(6):17-9
    [5] 魏深.浅议影响污水生物除磷的因素.重庆环境科学,2002,24(2):85-87
    [6] 俞栋.污水除磷技术的现状与发展.重庆工业高等专科学校学报,2004,19(1):9-12
    [7] 张自杰,顾夏声.排水工程(下册).北京:中国建筑工业出版社,1997.318
    [8] 陈欣燕,程晓如,陈忠正.从微生物学讨论生物除磷脱氮机理.中国给水排水,1996,12(5):32-33
    [9] 张波,高廷耀.生物脱氮除磷工艺厌氧/缺氧环境倒置效应.给水排水,1997,14(3):7-10
    [10] Kuba T., Smolders G., VanLoosdrecht M. C. M., et al. Biological phosphorus removalfrom wastewater by an aerobic-anoxic-sequencing batch reactor. Water Sci Technol, 1993, 27(3):5-6
    [11] 王亚宜,彭永臻,王淑莹.反硝化除磷理论、工艺及影响因素.给水排水,2003,19(1): 33-36
    [12] Larose A., et al Respirometric control of the anaerobic period duration of an SBR Bioprocess. Water Sci Technol, 2003,36(5):293-300
    [13] 赵冰洁.生物除磷原理及影响因素.[硕士学位论文].哈尔滨:哈尔滨工业大学,2003:9-10
    [14] 郑元景.生物膜法处理污水.北京:中国建筑工业出版社,1983,171-178
    [15] 李勇智,彭永臻,张艳萍.硝酸盐浓度及投加方式对反硝化除磷的影响.环境污染与防治,2003,12(6):323-32
    [16] Carucci A., et al Biological phosphorus removal with different organic substrates in an anaerobic-aerobic sequencing batch reactor. Water Sci Technol, 2002, 35(1):161-165
    [17] Carucci A., et al. Different mechanisms for the anaerobic storage of organic substrat-es and their effect on enhanced biological phosphate removal. Water Sci Technol, 1999, 39(6):21-28
    [18] Meinhold J., et al. Effect of continuous addition of an organic substrate to the anoxi-c phase on biological phosphorus removal. Water Sci Technol, 2001, 38(1):97-10
    [19] 江田民,杨海光,陈筛林.污水成分的变化对生物除磷效果的影响.环境保护,2003, (7): 24-27
    [20] Mino T., et al. Bioassay for glycogen determination in biological phosphorus remov-al systems. Water Sci Technol., 1998, 37(4-5): 541-547
    [21] 冯生华,刘延华.生物除磷糖控制(CHC)工艺的试验研究.给水排水,2000,11(6):11-16
    [22] Wang J. C., et al. Effect of wastewater composition on microbial populations in boil-ogical phosphorus removal processes. Water Sci Technol., 1998, 38(1):159-166
    [23] 李捷,熊必永,张杰.厌氧-好氧生物除磷影响因素的控制.生态环境,2004,13(4):506-507,511
    [24] Kuba T., et al. Biological dephosphatation by activated sludge under denitrifying con-ditions: pH influence and occurrence of denitrifying dephosphatation in a full-scall w-astewater treatment plant. Water Sci Technol, 1997, 36(12):75-82
    [25] Knoop S. Influence of temperature and sludge loading on activated sludge settling, especially on microthrix parvicella. Water Sci Technol, 1998, 37(4-5):27-35
    [26] Choi E. Temperature effects on biological nutrient removal system with weak municip-al wastewater. Water Sci Technol,1998, 37(9): 219-226
    [27] Helmer C., Kunst S. Low temperature effects on phosphorus release and uptake by micro organisms in EBPR plants. Water Sci Technol,1998,37(4-5):531-539
    [28] T. Panswada, A. Doungchaia, J. Anotaib. Temperature Effect on Microbial Communit-y of Enhanced Biological Phosphorus Removal System.Water Research,2003,37:409-415
    [29] 刘勤亚,张业健.泥龄应用中有关问题的探讨.污染防治技术,2003,16(2):13-16
    [30] Kuba T. Occurrence of denitrifying phosphorus removing bacteria in modified UCT-T-ype wastewater treatment plant. Wat. Res., 1997, 31:777-786
    [31] Fukase T. The role of an anaerobic stage on biological phosphorous removal. Water Sci Technol,2000,17:68-80
    [32] 李成江,郑兴灿.污水生物除磷脱氮技术.北京:中国建筑工业出版社,1992.244
    [33] Silverstein J, Schroeder E. Performance of SBR activated sludge process with nitrific-ation/denitrification. Journal WPCF,1983,55(4):377-384
    [34] 刘永淞,陈纯.SBR 法工艺特性研究.中国给水排水,1990,6(6):29-31
    [35] 沈耀良.废水生物脱氮除磷工艺设计和运行中需考虑的几个问题.环境科学与技术,1996,2:36-40
    [36] 郑兴灿,李亚新.污水除磷脱氮技术[M].北京:中国建筑工业出版社,1998
    [37] Ana Munoz-Colunga. Effects on Population Displacements on Biological Phosphorous Removal in a Biofilm SBR. Water Sci Technol,1996,34(1-2):303-313
    [38] 刘延年.厌氧-好氧活性污泥法快速低耗氧量去除 COD 的机理初探.给水排水,1997,23(6):12-15
    [39] A. Carucci et al. Different Mechanisms for the Anaerobic Storage of Organic Substrat-es and Their Effect on Enhanced Biological Phosphorus Removal (EBPR). Water Sci Technol, 1999, 39(6):21-28
    [39] Rensink JH, Donker HJGW, Simons SJ. Phosphorus Removal at Low Sludge Loadings.Water Sci Technol, 1985, 17(11-12):177-186
    [40] Lloyd H, Ketchum Jr. Design and physical features of sequencing batch reactors. Wat-er Sci Technol, 1997, 35(1):11-18
    [41] 王凯军,贾立敏.城市污水生物处理新技术开发与应用.北京:化学工业出版社,2001
    [42] 朱明权,K.Wutscher.循环施活性污泥法(CAST)的应用和发展.中国给水排水,1996 ,12(6):4-9
    [43] 李探微,彭永臻,何金.UNITANK 系统及污水处理研究方向的思考.中国给水排水,1999,15(7):21-23
    [44] 张国照,汪慧贞.强化吸附作用在生物除磷工艺中的应用.给水排水,1999,25(8):33-35
    [45] 沈耀良,赵丹.强化 SBR 工艺脱氮除磷效果的若干对策.中国给水排水,2000,16(7):23-25
    [46] Ketchum L.H.. First cost analysis of sequencing batch biologic reactor. J. WPCF,1979,51(2);139-145
    [47] Arora M. L.. Technology evaluation of sequencing batch reactor. J.WPCF, 1985, 57(8):867-875
    [48] Ng. Wun-Jern. Sequencing batch reactor (SBR) treatment of waste waters. Environme-ntal Sanitation Reviews, 1989, 28(9):33-35
    [49] 李探微,彭永臻,高旭. 一种新的污水处理技术——MSBR 法. 给水排水,1999,125(16):10-12
    [50] 王闯.城市污水生物脱氮除磷 MSBR 法中试研究[学位论文].上海:同济大学,2000:49-55
    [51] 严晨敏,张代钧,唐然. 一种改进的 MSBR 工艺脱氮除磷性能的仿真模拟与试验研究. 环境科学报,2005 ,25(3):391-395
    [52] 罗万申.新型污水处理工艺——MSBR.中国给水排水,1999,(15)6:22-24
    [53] 吴卫国,Peter L. Timpany. 连续进水、恒水位的改进型 SBR 系统.中国给水排水,2001,17(7):17-22
    [54] 廖钧.2 种改进型 SBR 工艺的特点及浅析. 环境污染治理技术与设备,2005,6(7):80-83
    [55] 杜英豪. MSBR 工艺的运行管理实践. 中国给水排水,2000,22(2):90-92
    [56] 杨殿海,顾国维.改进型 MSBR 工艺特点与运行效果.中国给水排水,2004,20(1):60-65
    [57] 李春鞠,顾国维,杨海真.改善 MSBR 系统脱氮效果的实验研究.中国给水排水,2001,17(1):9-14
    [58] 王闯,杨海真,顾国维.改进型序批式反应器(MSBR) 的试验研究.中国给水排水,2003,19(5):41-43
    [59] 李春菊,顾国维,杨海真.城市污水除磷脱氮 MSBR 工艺试验实验研究.环境工程,2000,18(6):19-21
    [60] 任洁,顾国维.MSBR 系统的特点及其除磷脱氮的机理分析.给水排水,2002,28(1):22-24
    [61] 国家环保局《水和废水监测分析方法》编委会.《水和废水监测分析方法》第四版.中国环境科学出版社
    [62] Yu Dai, Zhiguo Yuan, Xiaolian Wang, Adrian Oehmen, Jurg Keller. Anaerobic metab-olism of Defluviicoccus vanus related glycogen accumulating organisms (GAOs) with acetate and propionate as carbon sources Water Research, 2007,41(9): 1885-1896
    [63] D. Mulkerrins, A.D.W. Dobson, E. Colleran. Parameters Affecting Biological Phospha-te Removal from Wasterwaters.Environment Internationl,2004,30(2):249-259.
    [64] 许晓英.活性污泥生物除磷机制及其影响因素.农业环境与发展,1994 ,41(3):25-28
    [65] T.R.S tall, J H Sheward. Effect of Waste water Composition and Cell residence timeon phosphorus removal in activated Sludge. J. Wat. Pollute Control Fed.1976, 48(2):307-322
    [66] 彭永臻,刘智波,Takashi MINO. 污水强化生物除磷的生化模型研究进展. 中国给水排水,2006,22(4):1-5
    [67] 周岳溪.废水生物除磷机理及间歇式生物处理工艺的研究.北京:清华大学,1990.
    [68] Barker P S, Dold P L. Denitrification behaviour in biological excess phosphorus rem-oval activated sludge systems. Wat.Res.30(4):769-780
    [69] Hu Z-r, Wentzel MC, Ekama GA. A general kinetic model for biological nutrient re-moval activated sludge system. Wat. Res.2002; submitted for publication
    [70] Kuba T, Smolders GJF, van Loosdrecht MCM, Heijinen JJ. Biological phosphorus re-moval from wastewater by an aerobic-aerobic SBR. Water Sci Technol,27(5/6):241-252
    [71] 阮文权,邹华,陈坚.乙酸钠为碳源时进水 COD 和总磷对生物除磷的影响.环境科学,2002,23(3):49-52
    [72] 高延耀,顾国维.水污染控制工程下册(第二版).北京:高等教育出版社,1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700