高固气比悬浮预热预分解技术二氧化硫减排特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氧化硫是危害人类生态环境主要有害气体之一,水泥工业排放二氧化硫不容忽视。新型干法水泥熟料煅烧工艺具有固硫作用,而高固气比悬浮预热预分解技术在水泥工业应用中表现出更优的节能减排效果。本课题对悬浮预热预分解技术的减排特性的研究,旨在为高固气比预热预分解技术所具有的高效减排SO_2效应提供理论依据。
     水泥生料中含大量的CaCO_3和一定量SiO_2、Fe_2O_3、Al_2O_3及MgO,有可靠的固硫作用。本课题采用水泥工厂的生料,在悬浮电阻炉内进行水泥生料固硫试验。研究了固气比、温度、流速、SO_2浓度和水泥生料比表面积对水泥生料固硫效率的影响。借助X射先衍射仪(XRD)和扫描电镜(SEM),对反应后的固硫产物进行分析,研究了在不同温度条件下的固硫产物的形貌。结果表明:温度和固气比对其固硫效率的影响最为显著。
     借助XRD和SEM分析从工业现场采集到的物料,对预热预分解系统固硫效果对比,结果表明:高固气比预热器的入窑热物料和熟料含硫量比普通型高50%,五级旋风筒物料比四级筒物料所含的SO_2高100%。
     对高固气比预热预分解技术和普通型预热预分解技术应用现场气体检测,前者的各项指标均优于后者,特别是有害气体二氧化硫的排放降低了80%。对二氧化硫减排原因进行综合分析结果表明:高固气比和外循环分解炉的使用强化了高固气比预热预分解技术的水泥生料固硫反应效果。
     本文的研究,从能源利用、减少环境压力和技术经济等方面分析高固气比预热预分解技术二氧化硫减排效益,评价其应用前景。可以看出高固气比预热预分解技术具有巨大的经济、社会效益和广阔的发展前景。
The sulfur dioxide(SO_2)is one of the main harmful gases to ecological environment of the mankind and the SO_2 exhaustion reduction in the cement industry can not be neglectful.The cement clinker calcination technology of new dry process has the function of sulfur fixation,and the preheater-precalciner technology with high ratio of solid to gas in the application of cement industry shows the better effect for energy-saving and exhaustion reduction.The study on SO_2 exhaustion reduction was done for the purpose of proving the practical theoretical basis for preheater-precalciner technology with high ratio of solid to gas of having the obvious effect of the SO_2 exhaustion reduction.
     The cement raw meal contain a large number of CaCO_3 and small amount of SiO_2、Fe_2O_3、Al_2O_3 and MgO etc.,and has the function of reliable sulfur fixation.The cement raw meal of cement factory was adopted and the test for sulfur fixation of the raw meal was done in the suspension resistance furnace.The influences of solid-gas ratio、temperature、Flow velocity、concentration of sulfur dioxide and specific surface of raw meal on sulfur fixation effect were investigated.The sulfur fixation products after reaction were analyzed by using the XRD and SEM,and the shape and appearance of the raw meal in different temperature conditions are investigated.The results of experiments show that the influence of the temperature and solid-gas ratio on the sulfur fixation efficiency is more obvious.
     The material adopted from the industrial site were analyzed by means of the XRD and SEM.Comparing the effect of sulfur fixation of preheater and precalciner system, it shows that the sulfur content of the thermal material into kiln and clinker of the high solid-gas ratio preheater exceeds 50%of those for common model.The content of five stage cyclone meal exceeds 100%of those for four stage cyclone meal.
     Applying the high solid-gas ratio preheater and precalciner system and common model preheater and precalciner system for detecting the practical site gas respectively,the each index of the former is all better than the latter.Especially,the exhaustion of the harmful gas SO_2 decreases 80%.The reason for exhaustion reduction was synthetically analyzed.The results show that the use of high solid-gas and out-cycle precalciner strengthen the sulfur fixation reaction effect of the cement raw meal of the preheater-precalciner technology with high ratio of solid to gas.
     From the aspects of the use of energy resource,environment pressure reduction, technique economy and so on,the benefit of exhaustion reduction of the preheater-precalciner technology with high ratio of solid to gas were analyzed,and the application prospects were evaluated as well.The preheater-precalciner system with high ratio of solid to gas have a wide developing prospects both of the effect of economy and society.
引文
[1]肖飞燕.高硫煤对硅酸盐水泥熟料烧成及显微结构的影响[D].武汉:武汉理工大学.,2007.5:1-10.
    [2]刘明.中国水泥工业发展与节能降耗和减排政策措施[J].水泥工程,2007(2):1-6.
    [3]刘后启,窦利功,等.水泥厂大气污染物排放控制技术IM].北京:中国建材工业出版社,2007..
    [4]徐德龙.水泥悬浮预热预分解技术理论与实践[M].北京:科学技术文献出版社,2002.
    [5]王力.煤的燃烧前脱硫工艺[M]。北京,煤炭工业出版社,1992.
    [6]邵威.锅炉脱硫技术简介[J].安徽化工,2000(3):27-29.
    [7]张新生.燃烧烟气脱硫[M].武汉:中国地质大学出版社.
    [8]张基伟.国外燃煤电厂烟气脱硫技术综述[J].中国电力,1999,32(7):61-65.
    [9]于庆波.我国烟气脱硫技术发展及其应用状况[J].冶金能源,2000(6):33-38.
    [10]焦永道.水泥工业大气污染治理[M].北京:化学工业出版社,2007:296-316.
    [11]联士锁.燃烧烟气脱硫新技术研究[J].环境导报.2006(6):16-17.
    [12]廖明烽,沈湘林.钙基脱硫剂孔隙分布特性的模拟研究[J].东南大学学报,2001,3:43-49.
    [13]殷春耕,骆仲央,李徇天,等.石灰石煅烧后多孔结构及其对脱硫活性的影响[J].环境科学学报,1996,16(4):496-501.
    [14]范浩杰.煤粉/水媒浆燃烧脱硫研究[D].杭州,浙江大学,1997,5:1-21.
    [15]马奕.高温燃煤脱硫机理研究及微观物化分析[D].杭州,浙江大学,2003,1:1-11.
    [16]宋玉彩.链条炉高温固硫剂的研制及产业化应用[D].杭州,浙江大学,2002,1:23-28.
    [17]李宁.煤高温燃烧过程中脱硫反应机理的研究及其工业性应用[D].杭州,浙江大学,2002,2:1-10.
    [18]岑可法,程军等.高温燃烧两段脱硫技术的试验研究[J].动力工程,2002,20(6):1-6.
    [19]邱宽容,张洪等.氧化钙颗粒脱硫反应及数学模型的研究[J].燃烧化学学报,1997,25(7):21-25
    [20]H.Liu,S.Katagiri.Sulfation Behavior of Limestone under CO_2 Concentration in O_2/CO_2Coal Combustion.Fuel,79(2000):945-953.
    [21]王宏,张礼知,等.高CO_2浓度下钙基吸收剂脱硫的实验研究[J].工程热物理学报,2001,3.:14-18.
    [22]程军.炉内高温燃烧两段脱硫的机理研究[D].杭州:浙江大学,2002,1:12-0.
    [23]刘孜.我国酸雨和二氧化硫污染控制工作综述[J].中国环境报.1998,2:20-23.
    [24]郝吉明,贺克斌.中国燃煤SO_2污染控制战略[J].中国环境科学,1995,16(3):208-212.
    [25]中国科学院.中国未来能源发展战略咨询报告[C].科学学部(2000)0060号:10-17.
    [26]苏达跟,杨东生.水泥工业大气污染与防治的几个问题[J].环境工程,1977,15(5):24-25.
    [27]刘毫,邱建荣.粉煤灰与复合添加剂的固相反应过程分析[J].燃烧化学学报,2002,30(4):306-310
    [28]谢俊林,邱小波,潘高峰.水泥生料固硫效率的研究[J].新世纪水泥导报,2002(5):25-27.
    [29]Hanson C,Sintering of Calcium Carbonate and lime mud in a carbon dioxide atmosphere[J].Journal of pulp and paper Science,1996,22(9):327-331.
    [30]曹璋等.白云石和石灰石脱硫的试验研究.中国工程热物理学会燃烧学学术会议,1984.
    [31]吴葆春.脱硫剂微观结构的研究[D].北京:清华大学,1986,6:41-43.
    [32]Krishnan S.V.,Sotirchos S.V.A variable diffusivity shrinking core model and its application to the direct sulfation of limestone Can.J.Chem.Eng.71(1993):734-745.
    [33]Borgward R H,Roache N F,Bruce K R.Surface area of caclium oxide and kinetics of calcium sulfide formation.Environ.Prog.,1984,3:129-135.
    [34]谢峻林,赵改菊,等.水泥生料的燃烧固硫特性及其微观反应研究[J].燃烧化学学报.2004,32(5):(622-626)
    [35]Dennis J S,Hayhurust A N,A simplified analytical model for the rate of action of CaO with SO_2andO_2,AICHE J,1993,39(4):698-700.
    [36]李海涛,郭献军等.新型干法水泥生产技术与设备[M].北京:化学工业出版社,2005:161-162.
    [37]沈曾荣,耿光斗.水泥工艺进展[M].北京:中国建筑工业出版社,1983:55-57.
    [38]Marsh D W,U lrichson D L.Rate and Diffusional study of the Reaction of Calcuim Oxide withSulfurDioxide[J].Chem Eng Sci,1993,40(3):423-433.
    [39]BurorniM,CarugaiA,Delpiero Getal.Behaviour of Calcium-Based Sorbents Towards SO2Capture in a high Pressure Thremabalance Fuel,1992,71:919.
    [40]Anders lyngfelt,etal,Calcium sulphide formation in fliudized bed boiler[J].The Canadian Journal of Chemical Engineering Science,1995,9:1401-1407.
    [41]刘泽常,高洪阁,王力等。高温条件下钙基固硫剂脱硫特性研究[J],煤炭转化.1999,22(4):1999.
    [42]朱光俊,梁中渝,吴明全,等.煤富氧燃烧对节能与环境的影响分析[J].工业加热,2005,34(4):11-13.
    [43]Fenouil Laurent A,Lynn Scott.Kinetic and structural studies of calcium-based sorbents for high-temperature coal-gas desulfurization[J].Fuel Science & Technonogy International,1996,14(4):537-557
    [44]沃尔特·H·杜达,华新水泥厂编译组译.国际水泥工艺资料集[M].北京:中国建筑工业出版社,1983:26-32.
    [45]陈友德,陈序辉等.硫含量较高的低挥发煤在预分解窑系统内的煅烧[J].水泥,2007.2:4-7.
    [46]肖海平,周俊虎等.CaSO_4在CO气氛下的平行竞争反应实验与模型研究[J].燃烧化学学报.2005.33(2):150-154
    [47]何立新,张先,刘敬.型煤中钙基固硫剂的高温固硫特征[J].煤炭科学技术,2005,33(6):53-55.
    [48]章燕豪.物理化学[M].上海:上海交通大学出版社,1998:286-298.
    [49]程世庆.钙基脱硫剂微观结构特性与硫化床燃烧脱硫试验研究[D].杭州:浙江大学,2003,6:23-28.
    [50]高长明.我国水泥工业绿色GDP初探[J].新世纪水泥导报.2006(6):1-4.
    [51]刘明.中国水泥工业发展与节能降耗和减排政策措施[J].水泥工程,2007(2):1-6.
    [52]刘银河,车得福,徐通模.矿物质对SO_2释放的影响及钙的固硫机理[J].西安交通大学学报,2005,39(1):96-99.
    [53]黄震.65t/h锅炉循环流化床烟气脱硫系统及经济技术分析[J].环境工程,2001,19(6):40-42
    [54]Allen D,Hayhurst A N.Reaction Between Gaseous Sulfur Dioxide and Solid Calcium Oxide[J].Machanism and Kinetics.Chem Soc Farady Trans,1996,92(7):1227-1238.
    [55]Snow M J,Longwell J P,Sarotim A F.Direct sulphation of calcium carbonate.Ind.Eng.Chem.Res,1988,27(2):268-273.
    [56]黄其秀,潘三女,郑利强.预分解窑生产中高硫碱比微组分控制的几个问题[J].泥,1999,12:13-14.
    [57]苏达根,等.新型干法水泥生产使用高硫碱比物料的几个问题[J].水泥技术,1996,4:50-53.
    [58]苏达根,高德虎,叶汉民.水泥窑有害气体的污染与防治[J].重庆环境科学,1998,20(1):20-23.
    [59]谢峻林,曲祖元,等.水泥窑用高硫煤脱硫剂脱硫效率研究[J].硅酸盐通报,1997,5:29-32.
    [60]Fan L S.Dispersion and ultra-fast reaction of calcium-based sorbent powders SO_2 and air toxics removal in coal combustion[J].Chemical Engineering Science,1999,54:5585-5597.
    [61]Ruhland F,King R.The kinetics of the absorption of sulfur dioxide in calcium hydroxide suspension[J].Chem.Eng.Sci.1991,46(4):939-947.
    [62]Hiroaki Tsuchiai,Tomhiro Ishizuka,Hideki Nakamuya,et al.Study of flue gas desulfurization absorbent prepared from coal fly ash[J].Ind.Eng.Chem.Res.1995.58(6):1024-1030.
    [63]赵旭东,项光明,等.干法烟气脱硫固体颗粒物循环特性及微观机理研究[J].中国机电工程学报,2006,26(1):70-76
    [64]赵鹏高,严晨敏,潘超.二氧化硫排放总量控制若干问题的思考[J].电力环境保护,2006,22(4):1-4.
    [65]马保国.新型干法水泥生产工艺[M].北京:化学工业出版社,2007:194-197.
    [66]李辉,徐德龙,冯绍航,等.循环率对循环流化床分解炉性能的影响[J].西安建筑科技大 学学报(自然科学版),2005,37(1):16-23.
    [67]徐德龙,削国先,程福安,等.再论21世纪中国水泥工业的科技进步(Ⅰ)[J].西安建筑科技大学学报(自然科学版),2004,36(1):1-10.
    [68]徐德龙,肖国先,程福安,等.再论21世纪中国水泥工业的科技进步(Ⅱ)[J].西安建筑科技大学学报(自然科学版),2004,36(2):127-132..
    [69]Young,J.F.Cement Research Progress 1982.American Ceramic Society,Columbus,Ohio-USA.
    [70]Mander,J.E,und Skalny,J.:Calcium alkali sulfates in clinker.Cerm.Bull,56(1977),No.11.S.987-990.
    [71]Skalny,J.,und Klemm,W,A.:Alkalies in clinker:Orign,chemistry,effect.Proc.Conf.Alkali-Aggregate Reaction in Concrete,Cape Town 1981,S.252/1,S.1-7.
    [72]Strunge,J.,Knofel,D.,und Drezler,L.:Sulfat in Zement und Beton.Fortchritte d.Mineralogie,Beiheft 1/1984,S.239-241.
    [73]吴效梅,樊粤明,等.挥发性组分在预分解窑的分布和富集[J].水泥.2007,4:14-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700