两相厌氧处理有机废水分相及快速启动实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
70年代初,Ghosh和Pohland根据厌氧生物分解机理和微生物类群的理论首先提出了两相厌氧消化的概念:将产酸菌和产甲烷菌分别置于两个串联的反应器内并提供各自所需的最佳条件,使这两类细菌群都能发挥最大的活性,提高反应器的处理效率。这两个串联的反应器分别称为产酸反应器(产酸相)和产甲烷反应器(产甲烷相)。
     本课题针对实验设计的两相厌氧反应器进行启动和分相研究,寻求快速启动的方法、研究分相效果。试验采用人工配水,以淀粉、葡萄糖作为主要的碳源,两相均为UASB反应器。采用低负荷启动方式,快速提高进水COD,缩短水力停留时间,使产酸相尽快保持在酸性条件下。间歇投加粉末CaO调节产酸相出水pH值在7.0±0.3范围内,从而保证产甲烷相在最佳条件下。经过36d的启动过程,产酸反应器和产甲烷反应器中粒径>1.0mm的颗粒污泥分别占69%和64%。启动第36d,两相厌氧反应器停留时间为17.03h,容积负荷为8.46kgCOD/(m3·d),水力负荷0.059(m3/m2·h)时,系统整体COD去除率达到最优,为96.66%。其中,产酸相HRT为5.42h,VLR为27.32kgCOD/(m3·d),水力负荷为0.195m3/m2·h,去除率30.21%;产甲烷相HRT为11.61h,VLR为8.90kgCOD/(m3·d),水力负荷为0.091m3/m2·h,去除率为95.21%。实现了两相厌氧反应器成功启动。
     产酸UASB中的微生物主要为水解产酸杆菌,并含有有少量球菌。产甲烷UASB中主要为产甲烷球菌和八叠球菌,并伴有少量螺旋状菌。通过对反应器中颗粒污泥及微生物观察研究,认为本实验中颗粒污泥的形成过程分为不规则核心、挤压架桥、分割成长、修剪长大四个阶段。此外,加速污泥颗粒化的因素有适宜的生长环境、配水、良好的水力特征等。
     分相实验中选择钼酸钠(Na2MoO4)作为抑制剂,投加浓度为2.0mmol/L。投加钼酸盐后,产酸反应器出水COD比正常条件下出水增大。停止投加之后,产酸反应器出水逐渐稳定在4500mg/L左右,去除率由原来26%~34%降低到23%~27%。投加钼酸盐使产酸相酸化率提高到60%以上,产甲烷相出水水质进一步提高。钼酸盐对产甲烷菌的杀灭作用是不可恢复性的,很好的实现了对产酸反应器中产甲烷菌的杀灭作用,实现了产酸相中的完全分相。分相实验期间,产酸颗粒污泥外表为灰白色,内部为黑色。颗粒粒径越大,形状越不规则,质地松散,多为椭圆形。外表不光滑,部分粒径在3.0mm以上颗粒污泥开始破裂。
At the beginning of the 70th, Ghosh and Pohland firstly proposed the concept of two-phase anaerobic according to the anaerobic biological digestion mechanism and the microorganism group theory. Acid-formers and methane-formers were physically separated in two reactors, where optimum environmental conditions for each group of organisms would be provided to enhance the overall process stability and control. Two reactors in series were respectively acidogenic reactor (acidogenic phase) and methanogenic reactor (methanogenic phase).
     In this paper, the start-up and phase-separation of two-phase anaerobic reactor designed for experiment were investigated, so to seek the rapid start-up method and to study the effect of phase-separation. Glucose and starch were used as the organic-carbon source of the synthetic wastewater in this study. Two phases were both UASB reactors. Starting up at low organic loading, the influent COD was increased quickly and HRT was shortened, so that acidogenic phase could work in acidic condition as soon as quickly. Pulverous Ca(OH)2 was added intermittently into acidogenic phase to keep the effluent pH 7.0±0.3, so that methanogenic phase could work in optimal condition. After 36 days of operation, Respectively 69% and 64% of total bioparticles were more than 1.0mm in acidogenic reactor and methanogenic one. On the 36ed day, two-phase anaerobic system was achieved optimal COD removal efficiency (96.66%) at HRT of 17.03h and VLR of 8.46kgCOD/(m3·d) and hydraulic surface loading of 0.059(m3/m2·h), when HRT, VLR, hydraulic surface loading and COD removal efficiency were respectively 5.42h, 27.32kgCOD/(m3·d), 0.195m3/m2·h, 30.21% in acidogenic phase, and 11.61h, 8.90kgCOD/(m3·d), 0.091m3/m2·h, 95.21% in methanogenic phase. So two-phase anaerobic reactor achieved rapid start-up successfully.
     The microorganism in acidogenic UASB was mainly bacilli and a few cocci, which in methanogenic UASB was mainly Methanococcus and Methanosarcina. After the investigation of granular sludge and microorganism in reactors, it was believed that the granular sludge was shaped through irregular core, extrusion and bridging, division and growth, shear and accretion.
     Sodium molybdate was included in the feed as the inhibitor in the phase-separation experiment. The concentration of MoO42- was 2.0mmol/L.After the addition of MoO42-, the effluent COD in acidogenic reactor was increased. After MoO42- was omitted from the feed, the effluent COD of acidogenic phase was finally about 4500mg/L.The COD efficiency decreased from 26%~34% before to 23%~27%。Acidfication rate in acidogenic phase increased to 60% above by molybdate addition. The effluent of methanogenic phase was improved. For that the MoO42- was bacteriocidal to MPBs which did not recover, it could be used to kill the MPBs and achieved nearly complete phase separation in in acidogenic phase. During the phase-separation experiment period, the appearance of the granular sludge in acidogenic phase was hoar out and black in. As the granular was bigger, the shape was more irregular, the texture was more incompact. The granular sludge was ellipse and rough. The granular sludge above 3.0mm in diameter began to break.
引文
[1] Verstraete W., De Baere L., Rozzi A. Phase separation in anaerobic digestion: motives and methods. Tribune du CEBEDEAU (Centre Belge d'Etude et de Documentation des Eaux), Vol: 34, Issue: 453-454, Aug-Sep, 1981, p 367-375
    [2] Roy Dipak, Jones Lynn M. Acidogenesis in the two-phase anaerobic process. Journal of Environmental Science and Health. Environmental Science and Engineering, Vol: A20, Issue: 1, Jan, 1985, p 247-62
    [3] Ghosh Sambhunath, Henry M. P., Tarman P. B., DeProost V. H., Pipyn P., Ombregt J. P. Stabilization of high-COD industry wastes by two-phase anaerobic digestion to maximize net energy production. Water Pollution Control Federation, 1983, 9p
    [4] 任南琪,王爱杰,马放编. 产酸发酵微生物生理生态学.北京:科学出版社,2005
    [5] 马放,戴爱临,任南琪等. 产酸相最佳发酵类型.哈尔滨建筑大学学报 1995.28(5):63-68
    [6] 潘国锋,杨顺德,孙剑辉,杨玉杰. 含硫酸盐有机废水对两相 UASB 反应器影响因素. 华侨大学学报(自然科学版)2000.21(4):425-431
    [7] 郭养浩,孟春,石贤爱等. 改进的二相厌氧消化系统的特性研究.环境科学,1997.18(3): 38-40
    [8] 周雪飞,任南琪等. 一体化两相厌氧反应器处理高浓度有机废水的性能研究. 哈尔滨建筑大学学报,2000.33(6):62-65
    [9] 祁佩时,陈业钢等. 一体化两相厌氧反应器处理抗生素废水研究. 给水排水,2001.27(7):49-51
    [10] Wang JingYuan, Zhang Hua, Stabnikova Olena, Tay Joo-Hwa. Removal of ammonia in a modified two-phase food waste anaerobic digestion system coupled with an aerated submerged biofilter. Waste Management and Research, Vol: 21, Issue: 6, 2003, p 527-534
    [11] Arsov R., Ribarova I., Nikolov N., Mihailov G., Topalova Y., Khoudary E. Two-phase anaerobic technology for domestic wastewater treatment at ambient temperature. Water Science and Technology Vol: 39, Issue: 8, 1999, p 115-122.
    [12] Baloch M.I., Akunna J.C. Granular bed baffled reactor (Grabbr): Solution to a two-phase anaerobic digestion system. Journal of Environmental Engineering, Vol: 129, Issue: 11, 2003, p 1015-1021
    [13] Von Sachs Jürgen, Meyer Ulrich, Rys Paul, Feitkenhauer Heiko. New approach to control the methanogenic reactor of a two-phase anaerobic digestion system. Water Research, Vol: 37,
    [14] Kraemer Jeremy T., Bagley David M. Continuous fermentative hydrogen production using a two-phase reactor system with recycle. Environmental Science and Technology, Vol: 39, Issue: 10, May 15, 2005, p 3819-3825.
    [15] Isa M. Hasnain, Anderson G.K. Molybdate inhibition of sulphate reduction in two-phase anaerobic digestion. Process Biochemistry Vol: 40, Issue: 6, May, 2005, p 2079-2089.
    [16] Guerrero L., Omil F., Mendez R., Lema J.M. Anaerobic hydrolysis and acidogenesis of wastewaters from food industries with high content of organic solids and protein. Water Research, Vol: 33, Issue: 15, January, 1999, p 3281-3290.
    [17] Borja R., Martín A., Sánchez E., Rincón B., Raposo F. Kinetic modelling of the hydrolysis, acidogenic and methanogenic steps in the anaerobic digestion of two-phase olive pomace (TPOP). Process Biochemistry, Vol: 40, Issue: 5, April, 2005, p 1841-1847.
    [18] Blumensaat F., Keller J. Modelling of two-stage anaerobic digestion using the IWA Anaerobic Digestion Model No. 1 (ADM1). Water Research, Vol: 39, Issue: 1, January, 2005, p 171-183.
    [19] Solera R., Romero L. I., Sales D. Determination of the Microbial Population in Thermophilic Anaerobic Reactor: Comparative Analysis by Different Counting Methods. Anaerobe, Vol: 7, Issue: 2, April, 2001, p 79-86.
    [20] Peter A. Wilderera, Hans-Joachim Bungartzb, Hilde Lemmerc, Michael Wagnerd, Jurg Kellere, Stefan Wuertza. Modern scienti.c methods and their potential in wastewater science and technology. Water Research, 2002,36: 370-393
    [21] Bahar Kasapgil Ince, Orhan Ince. Changes to bacterial community make-up in a two-phase anaerobic digestion system. Journal of Chemical Technology and Biotechnology, Vol: 75, 2000, p 500-508.
    [22] 吕炳南,陈志强主编. 污水生物处理新技术.哈尔滨:哈尔滨工业大学出版社,2005
    [23] Ke Shuizhou, Shi Zhou, Fang Herbert H.P. Applications of two-phase anaerobic degradation in industrial wastewater treatment. International Journal of Environment and Pollution, Vol: 23, Issue: 1, 2005, p 65-80.
    [24] Talarposhti A.Mahdavi, Donnelly T., Anderson, G.K. Colour removal from a simulated dye wastewater using a two-phase Anaerobic packed bed reactor. Water Research, Vol: 35, Issue: 2, February, 2001, p 425-432.
    [25] Shi Yue, Ren Nan-Qi, Gao Yu, Wang Ai-Jie, Chen Zhao-Bo. Full-scale two-phase anaerobic process treating traditional Chinese medicine wastewater. Huanjing Kexue/Environmental Science, Vol: 26, Issue: 4, July, 2005, p 106-110.
    [26] Li Dong-Wei, Li Wei-Min, Zhang Xian-Xian. Engineering design of Chinese tradition medicine wastewater treatment. Chongqing Jianzhu Daxue Xuebao/Journal of ChongqingJianzhu University, Vol: 27, Issue: 5, October, 2005, p 87-90.
    [27] 管运涛,蒋展鹏等. 两相厌氧-膜系统处理造纸废水.环境科学 2000.21(4): 52-56
    [28] 聂艳秋. 二相厌氧-混凝法处理制浆造纸综合废水的工艺设计及调试. 环境污染治理技术及设备 2002.3(6):62-64
    [29] Beccari M., Bonemazzi F., Majone M., Riccardi C. Interaction between acidogenesis and methanogenesis in the anaerobic treatment of olive oil mill effluents. Water Research , Vol: 30, Issue: 1, January, 1996, p 183-189
    [30] Beccari M., Majone M., Torrisi L.. Two-reactor system with partial phase separation for anaerobic treatment of olive oil mill effluents. Water Science Technology, Vol: 38, Issue: 4-5, 1998, p 53-60
    [31] 杨景亮,左剑恶,胡纪萃. 两相厌氧工艺处理含硫酸盐有机废水的研究. 环境科学1994.16(3):8-11
    [32] 任南琪,刘艳玲等 . 两相厌氧系统处理磺胺废水的试验研究 . 中国给水排水2001.17(2):8-11
    [33] Kim Sang-Hyoun, Han Sun-Kee, Shin Hang-Sik. Two-phase anaerobic treatment system for fat-containing wastewater. Journal of Chemical Technology and Biotechnology, Vol: 79, Issue: 1, January, 2004, p 63-71.
    [34] Bouallagui H., Torrijos M., Godon J.J., Moletta R., Ben Cheikh R., Touhami Y. Two-phases anaerobic digestion of fruit and vegetable wastes: bioreactors performance. Biochemical Engineering Journal, Vol: 21, Issue: 2, October, 2004, p 193-197.
    [35] Borja R., Rincón B., Raposo F., Alba J., Martín A. A study of anaerobic digestibility of two-phases olive mill solid waste (OMSW) at mesophilic temperature. Process Biochemistry, Vol: 38, Issue: 5, December 31, 2002, p 733 – 742.
    [36] Demirer G.N., Chen S. Two-phase anaerobic digestion of unscreened dairy manure. Process Biochemistry, Vol: 40, Issue: 11, November, 2005, p 3542-3549.
    [37] Goel B., Pant D.C., Kishore V.V.N. Two-phase anaerobic digestion of spent tea leaves for biogas and manure generation. Bioresource Technology, Vol: 80, Issue: 2, November, 2001, p 153-156.
    [38] Ghaly A.E. Comparative study of anaerobic digestion of acid cheese whey and dairy manure in a two-stage reactor. Bioresource Technology, Vol: 58, Issue: 1, Oct, 1996, p 61-72.
    [39] Yu H.W., Samani Z.a, Hanson A.a, Smith G.a. Energy recovery from grass using two-phase anaerobic digestion. Waste Management, Vol: 22, Issue: 1, 2002, p 1-5.
    [40] Arsov R., Ribarova I., Nikolov N., Mihailov G., Topalova Y., Khoudary E. Two-phase anaerobic technology for domestic wastewater treatment at ambient temperature. WaterScience and Technology Vol: 39, Issue: 8, 1999, p 115-122.
    [41] Michael Cooney, Nathan Maynard, Christopher Cannizzaro, John Benemann. Two-phase anaerobic digestion for production of hydrogen–methane mixtures. Bioresource Technology, In Press, Corrected Proof, Available online 13 December 2006.
    [42] Ke Shuizhou, Shi Zhou, Fang Herbert H.P. Applications of two-phase anaerobic degradation in industrial wastewater treatment. International Journal of Environment and Pollution, Vol: 23, Issue: 1, 2005, p 65-80.
    [43] 胡纪萃等. 废水厌氧生物处理理论与技术. 北京:中国建筑工业出版社,2003
    [44] 马溪平. 厌氧微生物学与污水处理. 北京:化学工业出版社,2005
    [45] Demirel Burak, Yenigun Orhan. Two-phase anaerobic digestion processes: A review. Journal of Chemical Technology and Biotechnology, Vol: 77, Issue: 7, 2002, p 743-755.
    [46] R.E.斯皮思著,李亚新译,马志毅校. 工业废水的厌氧生物技术.北京:中国建筑工业出版社,2001
    [47] Pohland FG, Ghosh S. Development in anaerobic stabilization of organic wastes. The two- phase concept. Environ Lett, Vol: 1, Issue: 4, 1971, p 255-66.
    [48] Leighton I. R., Forster C. F. The adsorption of heavy metals in an acidogenic thermophilic anaerobic reactor. Water Research, Vol: 31, Issue: 12, December, 1997, p 2969-2972.
    [49] Leighton I. R., Forster C. F. The effect of heavy metals on a thermophilic methanogenic upflow sludge blanket reactor. Bioresource Technology, Vol: 63, Issue: 2, February, 1998, p 131-137.
    [50] 郭养浩,孟春,石贤爱等. 高浓度有机废水二相厌氧消化过程特性研究.中国环境科学1997.17(5):469-473
    [51] Azbar, Speece. Two-phase, two-stage, and single-stage anaerobic process comparison. Environmental Engineering, Vol: 127, 2001, p 240-248.
    [52] 管运涛,蒋展鹏,祝万鹏,陈中颍等. 两相厌氧膜生物系统处理有机废水的研究.环境科学,1998.19(6): 56-59
    [53] 洗萍,潘正现,钟莉莹. 两相 UASB 反应器处理木薯淀粉废水的启动运行特性研究. 上海环境科学 2005.24(4):156-159
    [54] 樊国锋,赵颖,王萍 . 两相 UASB 反应器相分离 . 华侨大学学报 ( 自然科学版)2001.22(4):432-436
    [55] V.Blonskaja, A.Menert, R.Vilu. Use of two-stage anaerobic treatment for distillery waste. Advances in Environmental Research, Vol: 7, Issue: 5, January, 2003, p 671-678.
    [56] 奚旦立等.环境监测[M].北京.高等教育出版社.1994.396-397
    [57] 黄君礼.水分析化学[M].北京.中国建筑工业出版社.1997.70-73
    [58] 徐向阳,朱亮.高效降解苯胺和氯苯胺有机废水好氧污泥颗粒化. 第八次全国环境微生物学术研讨会论文集,323-330
    [59] Kuan-Yeow Show, Ying Wang, Shiu-Feng Foong, Joo-Hwa Tay. Accelerated start-up and enhanced granulation in upflow anaerobic sludge blanket reactors. Water Research, Vol: 38, Issue: 5, January, 2004, p 2292-2303.
    [60] 徐金兰. 厌氧折流板反应器(ABR)系统的特性及调控研究[学位论文]. 陕西:西安建筑科技大学,2003:39-42
    [61] 田凯勋,戴友芝,凌运林.厌氧酸化菌产酸过程研究.微生物学通报 2007.34(1):108-111
    [62] Takashi Yamaguchi, Hideki Harada, Tomoaki Hisano, Shinichi Yamazaki, I-Cheng Tseng. Process behavior of UASB reactor Treating a wastewater containing high strength sulfate. Wat.Res., Vol: 33, Issue: 14, January, 1999, p 3182-3190.
    [63] Jeyaseelan S., Matsuo T. Effects of phase separation in anaerobic digestion on different substrates. Water Science and Technology, Vol: 31, Issue: 9, 1995, p 153-162.
    [64] 于宏兵,吴睿,段宁,林学钰,黄涛.固定化酶酸化/UASB 两相厌氧有机酸代谢特征. 环境科学 2006.27(3):483-487
    [65] 严月根,刘劲松,胡纪萃.啤酒废水常温两相 UASB 厌氧处理.环境科学 1989.10(6):39-43

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700