ABR-人工湿地处理生活污水及改进型ABR的性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着农村经济的发展、农民生活水平的提高,农村生活污水已成为农村污染的主要来源之一,提高农村生活污水的污染防治力度逐渐形成了社会各界共识。
     在过去的几十年,中国环境保护工作的重点是城市环境和重点污染源的控制,农村的环境保护工作没有得到充分的重视,加强农村水污染治理和水环境保护已经成为中国环境保护工作中需要重点加强的内容之一。占全国总面积近90%的广大农村,96%的村庄没有排水渠道和污水处理系统,排放的污水大部分未经处理就直接排入附近河道,严重威胁着国家水环境安全。
     本文针对农村生活污水的排放及水质特征,对ABR-人工湿地组合工艺处理低浓度生活污水进行了研究,并针对ABR反应器的特点对其进行了结构上的改进,以期获得更好的处理效果,主要内容有:
     (?)选择ABR作为污水处理厌氧工艺,人工湿地作为后续好氧处理工艺,分别考察两工艺在处理低浓度生活污水时的最佳工况条件。
     (?)探讨ABR-人工湿地组合工艺处理生活污水的效果。
     (?)设置两套有效容积相同的ABR,一为传统ABR,一为本课题改进后的ABR。两套装置在同条件下启动运行,分别考察两套装置的启动条件、运行参数以及对污水的处理效果并进行探讨。
     本文研究结果表明:
     1.ABR反应器处理低浓度生活污水时的最佳HRT为12h。对BOD、SS去除率可分别达到76%、71%、82.6%。另外,BOD/COD由进水时的0.45-0.56增加到出水时的0.53-0.67,提高了废水的可生化性,有利于后续好氧处理。
     2.人工湿地进水COD浓度控制在100mg/L,阳光充足的自然条件下时,人工湿地最佳HRT为4d,对COD去除率可稳定在50%以上。
     3.ABR-人工湿地组合工艺处理生活污水有理想的处理效果。对COD、BOD、SS及氨氮去除率可分别达到89%、95%、95%、66%,出水各项指标除氨氮外均能稳定达到《城镇污水处理厂污染物排放标准》一级B标准。
     4.改进型ABR较传统ABR抗冲击负荷能力显著增强;且在一定程度上提高了COD的去除效率。在处理低浓度生活污水时,最佳HRT为9h,低于传统ABR的12h,因此,大大提高了废水的处理效率,对实际应用具有较大的实践意义。
With the development of rural economics and the improvement of living standards, domestic sewage has become the main source of rural pollution. It has been a consensus of all sectors of the community that the prevention of rural domestic sewage should be strengthened.
     In the past few decades the main point of environmental protection in China has been urban environment and key pollution source control. Rural pollution was not pay due attention. To strengthen rural water pollution control and water environmental protection has become the emphasis of China's environmental protection. In rural area which takes nearly 90% of the domestic area,96% of the villages do not have drainage and sewage systems, the majority of untreated sewage is discharged directly into nearby rivers, which is a serious threat to the national environmental security.
     In this thesis, the treatment of domestic sewage with low concentration using ABR-wetland combined technology was studied. Besides, to get better treatment result, we did structural improvements according to characteristics of ABR reactor. The major contents are:
     By selecting ABR as anaerobic process of wastewater treatment, constructed wetlands as a following aerobic treatment process we investigated the two processes in the best working conditions in the treatment of low concentration domestic wastewater.
     Effects of ABR-wetland combined process in domestic sewage treatment were discussed.
     Two sets of ABR with the same effective volume, a traditional ABR and a topic-based improved ABR were set up. Two devices are run in the same conditions, the starting conditions, operating parameters and the effects of sewage treatment were investigated and discussed. Results are shown as follows:
     1. In treating domestic sewage, results showed that the optimum HRT for ABR is 12 hours. The removal rate of COD, BOD and SS can reach up to 76%,71% and 82.6%, respectively. In addition, BOD/COD ratio increased from 0.45-0.56 (influent) to 0.53-0.67 (effluent), which improves the wastewater biodegradability and is conducive to subsequent aerobic treatment.
     2. Wetland influent COD concentration was controlled below 100 mg/L. Under natural conditions when sunshine is sufficient, the optimum HRT for the wetland is 4d, and the COD removal efficiency can be stabilized at 50%.
     3. ABR-wetland combined process has ideal treatment effect in sewage treatment. The removal rates of COD, BOD, SS and ammonia nitrogen can reach 89%,95%, 95% and 66%, respectively. All indicators above in effluent could meet the I-class B criteria specified in the Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant (GB18918-2002) with the exception of ammonia nitrogen.
     Compared with conventional ABR, improved ABR significantly enhanced resistance to impact, and to some extent, improved the COD removal efficiency. When treating domestic sewage at low concentration, the optimal HRT is 9h, which is lower than the conventional ABR (12h). Therefore, improved ABR greatly improves the wastewater treatment efficiency, which has practical applications with practical significance.
引文
[1]顾夏生,赏铭荣,王占生等.水处理工程[M].北京:清华大学出版社,1985
    [2]北京水环境技术与设备研究中心主编.三废处理工程技术手册(废水卷)[M].北京:化学工业出版社,2000
    [3]马文漪,杨柳燕主编.环境微生物工程[M].南京:南京大学出版社,1998
    [4]马有兽,田村学造编著.生物净化环境技术.郭利华,任玉玲译[M].北京:化学工业出版社,1990
    [5]苏月来,张建中,谢雨生等.有毒难降解有机物废水处理的生物强化技术[J].环境污染与防治,1998(1):36-39
    [6]Lettinga G, Field J, Van Lier J, Zeeman G, Hulshoff Pol L W.Advanced anaerobic wastewater treatment in the near future[J].Wat Sci Tech.1997,35(10):5-12.
    [7]高廷耀,顾国维.水污染控制工程[M].北京:高等教育出版社,1999
    [8]贺延龄.废水的厌氧生物处理[M].北京:中国轻工业出版社,1998
    [9]中立贤.高浓度有机废水厌氧处理技术[M].北京:中国环境科学出版社,1992
    [10]王凯军.低浓度污水厌氧-水解处理工艺[M].北京:环境科学出版社,1991.10-12
    [11]楼静.厌氧反应器技术研究开发情况简介[J].中国环境管理干部学院学报,2002,12(3):37-40
    [12]郑元景等.污水厌氧生物处理[M].北京:中国建筑工业出版社,1997
    [13]童昶,沈耀良,赵丹等.厌氧反应器技术的发展及ABR反应器的工艺特点[J].江苏环境科技,2001,14(4):9-11
    [14]李刚.环境温度下厌氧折流板反应器运行特性的研究[D].成都:西南交通大学,2002
    [15]Bachmann A, Beard V L, McCarty P L. Comparison of fixed film reactors with a modified sludge blanket reactor[J]. Pollut Technol Rev.1983,10:384-1402
    [16]Bachmann A, Beard V L, McCarty P L. Performance characteristics of the anaerobic baffled reactor.[J]. Wat Res.1985,19(1):99-106
    [17]黄永恒,王建龙,文湘华,钱易.折流式厌氧反应器的工艺特性及其运用[J].中国给水排水.1999,15(7):18-20
    [18]Barber WP, Stuckey D C. The use of the anaerobic baffled reactor (ABR) for wastewater treatment:a review[J]. Wat Res.1999,33(7):1559-1578
    [19]Shen Y L. New anaerobic wastewater treatment process-anaerobic baffled reactor (ABR) [J]. Chongqing Environ Sci.1994,16(5):36-38
    [20]严月根,钱易.两相厌氧工艺的理论基础及实际应用[J].中国沼气.1989,7(4):1-6
    [21]国家环境保护局,科技标准司,环境工程科技协调委员会.高浓度有机废水厌氧处理技术[M].北京:中国环境科学出版社,1994.254
    [22]Boopathy R, Tilche A. Anaerobic digestion of high strength molasses wastewater using a hybrid anaerobic baffled reactor. Wat Res.1991,25(7):785-790
    [23]Alette A. M. Langenhoff, Narisara Intrachandra, David C. Stuckey. Treatment of dilute soluble and colloidal wastewater using an anaerobic baffled reactor:influence of hydraulic retention time[J]. Wat. Res.2000,34(4):1307-1317
    [24]Alette A. M. Langenhoff, David C. Stuckey. Treatment of dilute soluble and colloidal wastewater using an anaerobic baffled reactor:effect on low temperature [J]. Wat. Res.2000,34(15):3867-3875
    [25]沈耀良,赵丹等.ABR处理高浓度淀粉制品加工废水运行特性的研究[J].工业给排水,2002,28(9):33-35
    [26]张高生,战立伟,王仁卿.ABR处理变性淀粉废水的研究[J].环境科学,2008,29(11):3081-3086
    [27]孙剑辉,张波,彭云辉.厌氧折流板反应器处理玉米秆纤维浆粕废水的研究[J].环境污染治理技术与设备,2002,3(9):83-85
    [28]刘宇红,于晓英,王海鸥等.ABR处理豆制品废水的启动试验研究[J].内蒙古农业大学学报,2008,29(3):188-190
    [29]邱波,郭静等.ABR反应器处理制药废水的启动运行[J].中国给水排水,2000,16(8):42-44
    [30]李清雪,华玉芝.厌氧折流板反应器处理高浓度有机废水[J].河北建筑科技学院学报,2003,20(3):13-14
    [31]Baber W. P. Stuckey D. C. Start-up strategies for anaerobic baffled reactors treat a synthenic sucrose feed [R]. Proc of the 8th International Conference on Anaerobic Digestion, Sendai, Janpan,1997:32-39.
    [32]Zonglian She, Granule development and performance in sucrose fed anaerobic baffled reactors[J]. Journal of Biotechnology,2006,122:198-208
    [33]林玉杰,沈桢,沈耀良.ABR处理低浓度废水的污泥颗粒化研究[J].环境科学与管理,2008,33(5):96-99
    [34]徐金兰,王志盈等.ABR的启动与颗粒污泥形成特征[J].环境科学学报,2003,23(5):575-581
    [35]Barber W P, Stuckey D C. The use of an anaerobic baffled reactor (ABR) for wastewater treatment:A Review[J]. Wat Res,1999,33(7):1559-1578.
    [36]刘大银,毕亚凡,李庆新.ABR反应器处理生活污水的研究[J].华中师范大学学报(自然科学版),2003,37(4):514-517.
    [37]沈耀良,赵丹等.ABR反应器的水力特征研究[J].中国给水排水,2003,19(11):1-3
    [38]尹军,崔玉波.人工湿地污水处理技术[M].北京:化学工业出版社,2006 1.
    [39]陈克林.中国的湿地[J].2010,45(6):1-3
    [40]贾立刚,王海银.浅析人工湿地污水处理系统的处理机制与效果[J].科技信息,2009,(08):618.
    [41]沈耀良,杨铨大.新型废水处理技术-人工湿地[J].污染防治技术,1996,(Z1)
    [42]王爱萍,周琪.人工湿地处理污水的研究[J].四川环境,2005,(02)
    [43]Shackle V J,Freeman C,Reynclds B.Carbon supply and the regnlation of enzyme activity in constructed wetlands[J]. Soil Biolog Biochenistry,2000,32:1935-1940
    [44]Iniernational Water Association. Constructed wetlands for pollution control. Processes, design, and operation [M]. London:IW A Publishing.
    [45]罗勇.人工湿地技术的应用与展望[J].生态与环境工程,2009,21:195
    [46]Wallace S 2001. Advanced designs for constructed wetlands Biocycle,42(6):40-44.
    [47]籍国东,孙铁,李顺.人工湿地及其在工业废水处理中的应用[J].应用生态学报,2002,13(2):224-228
    [48]范旭红.人工湿地污水处理系统及其应用[D].东南大学,2006
    [49]周凤霞,姚运先,曹卫华,等.人工湿地处理污水的效率与研究展望[J].环境科学与管理,2007,32(6):106-110
    [50]吴建强,丁玲.不同植物的表面流人工湿地系统对污染物的去除效果[J].环境污染与防治,2006,(06)
    [51]刘芳.芦苇湿地对污水中氮磷的净化能力研究[D].河北农业大学,2004
    [52]梁瑞荣.浅谈人工湿地的应用发展[J].城市道桥与防洪,2009,(5):99-101
    [53]成水平,况琪军,夏宜铮.香蒲、灯芯草人工湿地的研究(Ⅲ):净化污水的机理[J].湖泊科学,1998,10(2):66-71
    [54]聂发辉.人工湿地中新型填料净化污水能力的研究[D].中南林学院,2003
    [55]刘东阁,孙爱花等.人工湿地污水处理技术研究综述[J].山东林业科技,2009,4:124-128
    [56]耿琦鹏,洪剑明.人工湿地净化污水机理研究进展[J].南水北调与水利科技,2006,4(5):43-45
    [57]王平,周少奇.人工湿地研究进展及应用[J].生态科学,2005,24(3):278-281
    [58]贾滨洋,刘宜.人工湿地处理污水的机理与其应用前景[J].四川环境,2008,27(1):81-86
    [59]童晶晶,籍国东,周游,等.高效功能陶粒生物滤池处理农村生活污水研究[J].农业环境科学学报,2009,28(9):1924-1931.
    [60]严岩,孙宇飞,董正举等.美国农村污水管理经验及对我国的启示[J].环境保护,2008,(15):65-67.
    [61]关亮炯.我国水污染现状及治理对策[J].科技情报开发与经济,2004,14(6):80-82.
    [62]吴树彪,董仁杰,翟旭等.组合家庭人工湿地系统处理北方农村生活污水[J].农业工程学报,2009,25(11):282-287.
    [63]翟鸿飞,邹仲勋,杜华明.内置渗透墙型生态塘处理农村生活污水的研究[J].环境科学与管理,2009,34(1):89-92.
    [64]苏东辉,郑正,王勇等.农村生活污水处理技术探讨[J].环境科学与技术2005,28(1):79.
    [65]白永刚,吴浩汀.太湖地区农村生活污水处理技术初探[J].电力环境保护,2005,21(2):44-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700