炭纤维生物膜在腈纶废水处理中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
炭纤维因具有优异的生物相容性、较高的力学性能和耐蚀性能而能成为优良的生物膜载体。本工作的目的在于通过研究生物炭纤维载体的表面物化性质,载体表面固着的生物膜的形成机制,以及生物膜去除氨氮,COD,硫酸盐的能力,探讨载体表面性质,结构对生物膜形成、代谢的作用机制及其与腈纶水处理效果的关联,论证将炭纤维作为一种新型腈纶工业水处理的生物膜载体的可行性。
     本工作采用对比的研究方法,借助表面官能团、平衡含水率、结合红外光谱、扫描电镜较系统地研究了载体表面物化特性、结构特征对好氧菌、厌氧菌固着、增殖的影响。同时研究了硝化反应,缺氧-好氧反应,两相厌氧反应工艺中,不同载体上生物膜对腈纶废水的氨氮、COD、硫酸盐的去除率。结果表明:炭纤维比其它材料更易于固定微生物;炭纤维表面适量的含氧官能团、平衡含水率以及表面吸附性均有益于微生物的固着与繁衍,其中表面官能团对表面生物膜的活性变化具有明显影响;炭纤维对微生物的生长具有催化作用。
     此外,通过比较载体材料上生物膜在不同工艺中对腈纶工业废水的处理效果,说明炭纤维作为载体可有效的去除废水中的氨氮、COD、硫酸盐,从而为炭纤维在工业水处理中的应用发展提供了新思路和科学依据。
Because of having excellent Biocompatibility, higher mechanicalcapability and corrosion resistance, carbon fiber can be a good carrier. Thisthesis aims at discussing the effects of surface characteristic and structure ofcarrier on the formation and metabolism of biofilm, the relationship with theeffect of wastewater treatment and the feasibility of using CF as new-stylebiofilm carrier through the study on chemical physical properties of biologicalcarbon fiber,the formation mechanism of biofilm and the capability of wipingoff N-NH_3., COD, SO_4~(2-)
     In this thesis, by means of contrast, surface functional groups and thewettability were measured, by using IR,, Scanning Electron Microscope,effects of surface property of carrier on immobilization. multiplication wassystematically studied.At the same time, in different processes,such asnitrify,anoxic- aerobic reaction and two phase anaerobic methods, thecapability of different carrier which wipe off N-NH_3., COD, SO_4~(2-) wasdiscussed. Results show that: the capability of fixing microorganism on CF isbetter than other materials. The surface acid functional groups, degree of moisture and adsorbability of carbon fiber is prone to multiplication ofmicroorganism and fixing microorganism on the surface of carrier. The surfacefunctional groups of material have an obvious effect up on the activity ofbiofilm. For the immobilization, carbon fiber is like catalyzer.
     Additionally, in different processes, by means of contrast the capability ofwiping off N-NH_3. COD, SO_4~(2-). we consider that CF can be used as biofilmcarrier effectively, through comparing the expense and efficiency of differentbiofilm carrier. This thesis provides scientific ground and new thought for thedevelopment of the carrier.
引文
[1] 郑俊,吴浩汀.曝气生物滤池工艺的理论与工程应用[M].北京:化学工业出版社,2005,1
    [2] 吕炳南,陈志强.污水生物处理新技术[M].哈尔滨工业大学出版社,2005,2
    [3] Lindemann J, Wiresmann U. Single-disc investigations on nitrogen removel of higher loads in sequencing batch and continuously operated RDR Systems[J]. Wat. Sci.Technol, 2001,41:77
    [4] Thoegersen T, Hansen R. Full scale parallel operation of a biological aerated filter(BAF) and activiated sludge(AS) for nitrogen removal[J]. Wat. Sci Technol,2001,41:159
    [5] Rivas IM,Arvin F.Side stream biofilm for improved biofouling control in cooling water systems[J].Wat.Sci Teclrnol,2001,41:445
    [6] Jeqatheesan V,Kastl G, Fisher I.Modelling biofilm growth and disinfectant clecay in drinking water[J].Wat.Sci. Technol,2001,41:339
    [7] 刘雨,赵庆良,郑兴灿.生物膜法污水处理技术[M].北京:中国建筑工业出版社,2000.36~44
    [8] 宋向阳,余世袁.生物细胞固定化技术及研究进展[J].科技进展,2000,11:37~39
    [9] 刘雨,赵庆良,郑兴灿.生物膜法污水处理技术[M].北京:中国建筑工业出版社,2000.20~34
    [10] 沈耀良.固定化微生物技术及其在废水处理中的应用[J].污染防治技术,1995,8(1):12 14
    [11] Kalenyuk A, Taranova L, Taraswnko Yu, et al. Sorption immobilization of microorganisms on carbon carriers[A]. International Symposium of Carbon[C]. 1998,597-598.
    [12] Furuta T, Makono M, Yanada Y, et al. Adhesion behaviors of becteria on surface modified carbon fiber[A].International Symposium of Carbon[C]. 1998.480-481.
    [13] Kojima A. Matsumoto H, Nagashima A, et al. Water purification of reservoir with carbon fiber[A]. International Symposium of Carbon[C]. 1998.354-355.
    [14] Masato Oishi, Minoru Shiraishi, Sugio Otani. Adhesion phenomena of marine microorganism on carbon fiber [A]. International Symposium of Carbon[C]. 1998.464-465.
    [15] 刘杰,何振坤等.生物炭纤维的炭化和活化研究[J],新型炭材料,2001,16(3):42-47.
    [16] J. Liu, J.Y. Liang. Study on thermal oxidation stabilization of BCF[A], The 7th international Joint Symposium of BUCT and CNU[C], May 14-18.2001:186-190
    [17] 刘杰,何振坤,王绍堂.PAN基BCF的炭化与活化研究[J],新型炭材料,2001,16(3),42-47
    [18] 刘杰,梁节英,BCF的热氧稳定化研究[J],北京化工大学学报,2002,29(3),24-27
    [19] 刘杰,何振坤,王绍堂,赵兴利,CF生物膜的形成机制(Ⅰ)—炭纤维表面特性对微生物固着化的影响[J].新型炭材料,2002,17(3),20-24
    [20] 何振坤,刘杰,王绍堂,赵兴利.CF生物膜的形成机制(Ⅱ)—炭纤维表面特性对微生物活性与增殖的影响.新型炭材料,2003,18(1),43-47
    [21] 马兆昆.炭纤维的微生物固着机制及在污水处理中的应用研究:[D].北京:北京化工大学材料科学与工程系,2001
    [22] 家环境保护总局.关于发布《污水综合排放标准》(GB8978-1996)中石化工业COD标准值修改单的通知.环发[1999]285号[S],1999
    [23] Colleran, et al. Anaerobic Digestion of High-Sulphate-Content wastewater from the Industrial Production of Citric Acid [J]. Wat Sei Tech, 1994,30:263-273
    [24] D M McCartney. Sulfide Inhibition of Degradation of Lactate and Acetate[J]. Wat Res,1991, 25(2).
    [25] 欧阳丽,王晓明,赵建夫等.我国腈纶废水生化法处理进展[J].工业水处理,2001,21(9):11~14
    [26] 崔瑞芳.试析我国腈纶工业的现状与发展前景[J].山东纺织科技,2001,(4):54~56
    [27] 汪宏渭,孙在柏,孙国华,干法腈纶废水处理工艺的研究[J],中国环保产业,2004,3:30~32.
    [28] Gao Yan. Anaerobic digestion of high strength waste waters containing high levels of sulphate[M]:Ph D thesis. England: Univ of Newcastle upon tyne, 1989
    [29] Hilton M G, D B Archer. Anaerobic Digestion of a Sulphate-Rich Molasses Waste water: Inhibition of Hydrogen Sulfide Production[J]. Biotechnology and Bioengineering, 1988, 31(8):885-888.
    [30] Isa Z, et al. Sulfate reduction relative to methane production in high-rate anaerobic digestion: microbiologicai asoects[J]. Aool Environ Microbiol.1986.51.(3)
    [31] 周锡文,腈纶废水生化处理运行中的若干对策[J],给水排水,1998,24(2):41~42.
    [32] 杨晓奕,师绍琪,蒋展鹏等.混凝—两相厌氧—缺氧—好氧工艺处理腈纶废水的研究[J].给水排水,2001,27(6):40~45
    [33] 杨晓奕,蒋展鹏,师绍琪等.单相厌氧与两相厌氧处理干法腈纶废水的研究[J].工业用水与废水,2002,33(2):21~24
    [34] 魏守强,刘瑛,谢秀榜等,铁屑-活性炭内电解法预处理干法腈纶废水的实验研究[J],沈阳工业学院学报,2003,22(2):49~50.
    [35] 陆斌,韦鹤平,内电解法处理腈纶废水的试验研究[J],同济大学学报,2001,29(11):1294~1298.
    [36] 吕炳南,陈志强主编.污水生物处理新技术[M].哈尔滨:哈尔滨工业大学出版社,2005.
    [37] Jurgen OLES, Norbert DICHTL, HansHermann NIEHOFF.Full Sale Experience of Two Stage Thermophilic/Mesophilic Sludge Digestion [A]. Proc. 8th International Conf. on Anaerobic Digestion[C]. 1997, (2):224-231.
    [38] Jules B, van Lier, et al. Anaerobic Treatment of Partly Acidified Waste Water in Twostage Expanded Granular Sludge Bed (EGSB) Sytem at 8℃[A].Proc. 8th International Conf. on Anaerobic Digestion[C]. 1997, 2):86-93.
    [39] 严月根.啤酒废水常温—相两相厌氧颗粒污泥床处理的对照研究[J].中国环境科学,1990,(8):304-308.
    [40] 马占青,娄保锋.有机废水有效微生物处理实验研究[J].环境污染与防治,2000,22 5):6-9
    [41] 王文军,王文华,等.水环境中生物膜对污染物环境化学行为的影响[J].环境科学进展,1999,7 6):58-65
    [42] Liu Y.Estimating minimum fixed biomass concentration and activated thickness of nitrifying biofilm[J].J Environ Eng.ASCE, 1997, 123:198-202
    [43] 刘雨,赵庆良,郑兴灿.生物膜废水处理技术[M].北京:中国建筑工业出版社,2000.3
    [44] Bohem H. P. Some aspects of the surface chemistry of carbon blacks and other carbons[J].Carbon, 1994, 32 (5): 59-69
    [45] 魏复盛,寇洪儒,洪水皆,等.水和废水监测分析方法(第三版)[M].北京:中国环境科学出版社,1989.252—361
    [46] Kalenyuk A., Mikhalovsky S., Taranova L, et al. Fibrous carbonaceous materials-the perspective carriers for immobilization of microorganism[J]. Science and Technology of Carbon, 1998, 10:377—378
    [47] 沈耀良.固定化微生物技术及其在废水处理中的应用[J].污染防治技术,1995,8(1):12-18
    [48] C-Y Chen, and S-D Chen. Biofilm characteristics in biological denitrification biofilm reactors.Wat. Sci. Tech., 2000, 41(4): 147-154
    [49] 贺福,王茂章.炭纤维及其复合材料[M].北京:科学出版社,1995(1):113-157
    [50] Brasquet C, Subrenat E, Cloirec P Le. Removal of phenolic compounds from aqueoussolution by activated carbon cloths[J]. War Sci Technol, 1998, 39(10/11): 201-205
    [51] 小岛昭,佐藤诚.炭素纤维生物亲和性活用新水环境保全技术[J].材料科学,1998,6(35):25-32
    [52] 大谷杉郎.炭素纤维水环境整备技术展开[J].炭素TSNSO.2000(194):276-287
    [53] Wang P H, Liu J, Zhe J. Effect of heat treatment on surface properties of polyacrylonitrilc-based activated carbon fibrcs[J]. Jornal of Materials Science Letters, 1997,16(3): 187-189

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700