流密码代数攻击中若干关键问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
代数攻击是近几年来最重要的密码分析技术之一。代数免疫度是随着代数攻击的出现而提出的关于布尔函数的一个新准则,用于衡量布尔函数抵抗标准代数攻击的能力。为了有效抵抗代数攻击,密码系统中使用的布尔函数必须具有尽可能高的代数免疫度,甚至要求是代数免疫最优的。求解多变元非线性方程系统的快速方法是支撑代数攻击有效实施的重要步骤,而Grobner基正是求解非线性方程系统的一个重要方法。广泛应用于代数攻击的XL算法就是Grobner基的一个快速算法(F4算法)的冗余版本。
     本文首先研究了代数免疫最优布尔函数的递归构造,提出了代数免疫最优布尔函数的二阶递归构造法和一阶递归构造法;其次讨论了两类对称布尔函数,对其代数免疫性,代数次数和非线性度做了深入研究并得到完整结果;最后研究了Grobner基的快速计算。具体结果如下:
     1)研究了代数免疫最优布尔函数的递归构造。首先,给出了代数免疫最优布尔函数的二阶递归构造方法。该方法构造的布尔函数代数免疫最优,具有优良的代数次数和非线性度,并且与之前的二阶递归构造法相比,它具有更加优良的平衡性。其次,提出了代数免疫最优布尔函数的一阶递归构造法。该方法构造的布尔函数不但代数免疫最优,而且是完全平衡的。这是首个代数免疫最优布尔函数的一阶递归构造法。最后,基于布尔函数的变换,对上述两类递归构造法进行了推广。
     2)分析了两类对称布尔函数。证明了这两类布尔函数代数免疫最优的充要条件,并进一步解决了其中代数免疫最优部分函数的计数问题。同时,详细讨论了这两类函数的其它密码学性质,特别是,完全确定了其代数次数和非线性度,从而解决了Braeken关于这两类函数中代数免疫最优部分函数的代数次数和非线性度的猜想。
     3)讨论了Grobner基的快速计算。提出了二元多项式理想Grobner基的一个快速算法。证明了在严格排序的生成集中,只需计算相邻多项式间的S-多项式即可。基于该结论,在Grobner基的计算过程中,所需计算的S-多项式的数量从1/2r(r-1)锐减到(r-1),其中r为当前生成元组中多项式的数量,从而提高了计算效率。
Recently, algebraic attack is considered as one of the most powerful tools for cryptanalysis. To measure the resistance to algebraic attacks, a new cryptographic property of Boolean functions, called algebraic immunity, has been proposed. In order to resist algebraic attacks, the Boolean functions employed in cryptosystems should possess high algebraic immunity (even optimum algebraic immunity). Solving an over-defined nonlinear equation system is a key step for algebraic attack. Grobner bases theory is an important method to solve the systems. XL algorithm, which is used widely in algebraic attacks, is proved to be a redundant version of F4 algorithm (one of the efficient computing algorithms for Grobner bases).
     In this dissertation, we firstly investigate the recursive constructions of Boolean functions with optimum algebraic immunity. Moreover, we discuss two classes of symmetric Boolean functions with regard to algebraic immunity, algebraic degree and nonlinearity. Finally, we study the fast computing for Grobner bases. The main results are given as follows:
     1) The recursive constructions of Boolean functions with optimum algebraic immunity. Firstly, we provide a second-order recursive construction of Boolean functions with optimum algebraic immunity. The constructed Boolean functions have not only optimum algebraic immunity but also high algebraic degree and nonlinearity. Compared with the former recursive construction, they are much more balance. Secondly, we propose a first-order recursive construction of Boolean functions with optimum algebraic immunity. The constructed Boolean functions are completely balanced. Especially, to the best of our knowledge, it's the first time to present such a first-order recursive construction. Thirdly, based on the transformation theory of Boolean functions, we make some generalizations for the two constructions above.
     2) Research on two classes of symmetric Boolean functions. For each class, we prove the necessary and sufficient condition for having optimum algebraic immunity. Then we enumerate all the Boolean functions with optimum algebraic immunity in the two classes. The algebraic degree and nonlinearity of the two classes are completely determined. Based on these results, we prove several of Braeken's conjectures about the algebraic degree and nonlinearity of the symmetric Boolean functions with optimum algebraic immunity in the two classes.
     3) Fast computation of Grobner bases. We propose a fast computing algorithm for Grobner bases of polynomial ideals in two variables. We show that only the S-polynomials of neighbor pairs of a strictly ordered finite generating set are needed while computing the Grobner bases. Therefore, the number of S-polynomials needed decreases dramatically from 1/2r(r-1) to(r-1), where r is the number of generating polynomials for the current computing round.
引文
[1]F. L. Bauer. Decrypted Secrets:Methods and Maxims of Cryptology[M]. Berlin: Springer-Verlag,1997.吴世忠等译.密码编码和密码分析原理与方法[M].北京:机械工业出版社,2001
    [2]Brian Johnson. The Secret War[M]. Barnsley:illustrated edition,2004
    [3]C. E. Shannon. Communication Theory of Secrecy Systems[J]. Bell Technical Journal, 1949,28(4):656-715
    [4]W. Diffie, M. E. Hellman. New Directions in Cryptography[J]. IEEE Transactions on Information Theory,1976,22(6):644-654
    [5]R. L. Rivest, A. Shamir, L. M. Adleman. A Method for Obtaining Digital Signature and Public-key Cryptosystems[J]. Communications of the ACM,1978(21):120-126
    [6]Data Encryption Standard[R]. FIPS PUB 46, National Bureau of Standards, Washington, D. C.,1977
    [7]M. Briceno, I. Goldberg, D. Wagner. A pedagogical implementation of A5/1 [EB/OL]. http://www.scard.org/,2010
    [8]B. Schneire. Applied Cryptography[M]. New York:Wiley,1996
    [9]Bluetooth SIG. Specification of the Bluetooth system, Version 1 [EB/OL]. http://bluetooth.com/,2010
    [10]S. Halevi, D. Coppersmith and C. S. Jutla. Scream:A software-Efficient Stream Cipher[A]. Fast Software Encryption-FSE 2002[C], Berlin:Springer-Verlag,2002:195-209
    [11]P. Ekdahl and T. Johansson. A New Version of the Stream Cipher SNOW[A]. Selected Areas in Cryptography-SAC2002[C], Berlin:Springer-Verlag,2003:47-61
    [12]G. G. Rose and P. Hawkes. Turing:A Fast Stream Cipher[A]. Fast Software Encryption-FSE 2003[C], Berlin:Springer-Verlag,2003:209-306
    [13]P. Sarkar. Hiji-bi-bij:A New Stream Cipher with a Selp-Synchronizing Mode of Operation[A]. Progress in Cryptology-Indocrypt 2003[C], Berlin:Springer-Verlag,2003: 290-306
    [14]M. Boesgaard, M. Vesterager, T. Pedersen, J. Christiansenl and O. Scaveniusl. Rabbit:A new high performance stream cipher[A]. Fast Software Encryption-FSE 2003[C], Berlin: Springer-Verlag,2003:307-329
    [15]AES[EB/OL]. http://csrc.nist.gov/archive/aes/index.html,2010
    [16]J. Daemen and V. Rijmen. AES proposal:Rijndael. Version 2.0[EB/OL]. http://csrc.nist.gov/,2010
    [17]Advanced Encryption Standard[R]. National Institute of Standards and Technology, FIPS 197,2001
    [18]NESSIE[EB/OL]. https://www.cosic.esat.kuleuven.ac.be/nessie,2010
    [19]NESSIE Security Report D20, Version 2.0[EB/OL]. https://www.cosic.esat.kuleuven.ac.be/nessie,2010
    [20]ECRYPT-European Network of Excellence for Cryptology (IST-2002-507932[EB/OL]. http://www.ecrypt.eu.org/ecrypt1/,2010
    [21]The eSTREAM Project [EB/OL]. http://www.ecrypt.eu.org/stream/,2010
    [22]European Network of Excellence in Cryptology II (ICT-2007-216676)[EB/OL]. http://www.ecrypt.eu.org/,2010
    [23]CRYPTREC-Cryptography Research and Evaluation Committees[EB/OL]. http://www.cryptrec.go.jp/english/,2010
    [24]D. Kwon, J. Kim, S. Park, et al. New Block Cipher:ARIA[A]. Proceedings of the Information Security and Cryptology-ICISC 2003[C], Berlin:Springer-Verlag,2003: 432-445
    [25]P. Garrett. Making, Breaking Codes:An Introduction to Cryptology[M]. Pearson Education, Inc.吴世忠,宋晓龙,郭涛等译.密码学导引[M].北京:机械工业出版社,2003
    [26]A. Kerckhoffs. La cryptographie militaire[J]. Journal des Sciences Militaires,9th series, 1883, IX(1):5-38, IX(2):161-191
    [27]M. Matsui. Linear cryptanalysis method for DES cipher[A]. Advances in Cryptology-Eurocrypt'93[C], Berlin:Springer-Verlag,1994:386-397
    [28]E. Biham and A. Shamir. Diferential cryptanalysis of DES-like cryptosystems[A]. Advances in Cryptology-CRYPTO'90[C], Berlin:Springer-Verlag,1991:2-21
    [29]T. Jakobsen and L. T. Knudsen. The interpolation attack on block ciphers[A]. Fast Software Encryption-FSE1997[C], Berlin:Springer-Verlag,1997:28-40
    [30]S. Babbage. A Space/Time tradeoff in Exhaustive Search Attacks on Stream Ciphers[A]. European Convention on Security and Detection, IEE Conference publication, No.408, 1995
    [31]J. D. Golic. Cryptanalysis of Alleged A5 Stream Cipher[A]. Advances in Cryptology-Eurocrypt'97[C], Berlin:Springer-Verlag,1997:239-255
    [32]T. Siegenthaler. Decrypting a class of stream ciphers using ciphertext only[J]. IEEE Transactions on Computers,1985, C-34(1):81-85
    [33]E. Meier and O. Staffelbach. Fast correlation attacks on certain stream ciphers[J]. Journal of Cryptology,1989(1):159-176
    [34]F. Armknecht. A Linearization Attack on the Bluetooth Key Stream Generator[EB/OL]. http://eprint.iacr.org/2002/191,2010
    [35]N. Courtois. Higher order correlation attacks, XL algorithm and cryptanalysis of Toyocrypt[A]. Information Security and Cryptology 2002[C]. Berlin:Springer-Verlag 2003:182-199
    [36]N. Courtois, W. Meier. Algebraic Attacks on Stream Ciphers with Linear Feedback[A]. Advances in Cryptology-Eurocrypt 2003[C], Berlin:Springer-Verlag,2003:345-359
    [37]张龙,吴文玲,温巧燕.流密码代数攻击的研究现状及其展望[J].通信学报,2006,27(1):91-98
    [38]A. Kipnis, A. Shamir. Cryptanalysis of the HFE public key cryptosystem by Relinearization[A]. Advances in Cryptology-Crypto'99[C], Berlin:Springer-Verlag,1999: 19-30
    [39]温巧燕,钮心忻,杨义先.现代密码学中的布尔函数[M].北京:科学出版社,2000
    [40]W. Meier, E. Pasalic, and C. Carlet. Algebraic attacks and decomposition of Boolean functions[A]. Advances in Cryptology-Eurocrypt 2004[C], Berlin:Springer-Verlag,2004: 474-491
    [41]J. Patarin. Hidden Field Equations (HFE) and Isomorphisms of Polynomials(IP):two new Families of Asymmetric Algorithms[A]. Advances in Cryptology-Eurocrypt'96[C], Berlin: Springer-Verlag,1996:33-48. Extended Version:http://www.minrank.org/hfe.pdf
    [42]N. Courtois, A. Klimov, J. Patarin and A. Shamir. Efficient algorithms for solving overdefined systems of multivariate polynomial equations[A]. Advances in Cryptology-Eurocrypt 2000[C], Berlin:Springer-Verlag,2000:392-407
    [43]万哲先.代数和编码[M].北京:高等教育出版社,2007,第三版
    [44]N. Courtois. Fast algebraic attacks on stream ciphers with linear feedback[A]. Advances in Cryptology-Crypto 2003[C], Berlin:Springer-Verlag,2003:176-194
    [45]F. Armknecht. Improving fast algebraic attacks[A]. Fast Software Encryption-FSE 2004[C], Berlin:Springer-Verlag,2004:65-82
    [46]P. Hawkes and G. Rose. Rewriting Variables:The Complexity of Fast Algebraic Attacks on Stream Ciphers[A]. Advances in Cryptology-Crypto 2004[C], Berlin:Springer-Verlag, LNCS 3152,2004:390-406
    [47]F. Armknecht, G. Ars. Introducing a New Variant of Fast Algebraic Attacks and Minimizing Their Successive Data Complexity [A]. Mycrypt 2005[C], LNCS 3715, Berlin: Springer-Verlag,2005:16-32
    [48]F. Armknecht and M. Krause. Algebraic Attacks on Combiners with Memory[A]. Advances in Cryptology-Crypto 2003[C], Berlin:Springer-Verlag,2003:162-175
    [49]N. Courtois. Algebraic Attacks on Combiners with Memory and Several Outputs[A]. Information security and cryptology-ICISC 2004[C], LNCS 3506,2005:3-20
    [50]J. Faugere, G. Ars. An Algebraic Cryptanalysis of Nonlinear Filter Generators using Grobner bases[EB/OL]. In Rapport de recherche, No.4739,2003:2
    [51]L. Batten. Algebraic Attacks over GF(q)[A]. Progress in Cryptology-Indocrypt 2004[C], Berlin:Springer-Verlag,2004:84-91
    [52]M. Mihaljevic, H. Imai. The decimated sample based improved algebraic attacks on the nonlinear filters[A]. Security Communication Networks-SCN 2004 [C], Berlin: Springer-Verlag,2005:310-323
    [53]A. Braeken and B. Preneel. Probabilistic algebraic attacks[A]. Cryptography and Coding 2005[C], Berlin:Springer-Verlag,2005:290-303
    [54]C. Jie, W. Baocang, H. Yupu. A New Method For Resynchronization Attac[J]. Journal of Electronics,2006,23(3):423-427
    [55]J. Y. Chao and J. Pieprzyk. Algebraic attacks on SOBER-t32 and SOBER-t16 without stuttering[A]. Fast Software Encryption-FSE 2004, Berlin:Springer-Verlag,2004:49-64
    [56]N. Courtois. Cryptanalysis of Sfinks[A], Information Security and Cryptology-ICISC 2005,2005
    [57]O. Billet, H. Gilbert. Resistance of SNOW 2.0 against Algebraic Attacks[A]. CT-RSA 2005, LNCS 3376, Berlin:Springer-Verlag 2005:19-28
    [58]J. Faugere and A. Joux. Algebraic Cryptanalysis of Hidden Field Equation (HFE) Cryptosystems Using Grobner Bases[A]. Advances in Cryptology-Crypto 2003 [C], Berlin: Springer-Verlag,2003:44-60
    [59]N. Courtois, J. Pieprzyk. Cryptanalysis of Block Ciphers with Overdefined Systems of Equations[A]. Advances in Cryptology-Asiacrypt 2002[C], Berlin:Springer-Verlag,2002: 267-287
    [60]F. Armknecht. On the Existence of low-degree Equations for Algebraic Attacks[EB/OL]. http://eprint.iacr.org/2004/185,2010
    [61]F. Armknecht, C. Carlet, P. Gaborit, et al. Efficient Computation of Algebraic Immunity for Algebraic and Fast Algebraic Attacks[A]. Advances in Cryptology-Eurocrypt 2006[C], Berlin:Springer-Verlag,2006:147-164
    [62]D. Dalai, S. Maitra. Reducing the Number of Homogeneous Linear Equations in Finding Annihilators[A., International Conference on SEquences and Their Applications-SETA 2006, Beijing,2006:376-390
    [63]F. Liu, K. Feng. Efficient computation of algebraic immunity of symmetric Boolean functions[A]. Theory and Applications of Models of Computation-TAMC 2007[C], Berlin: Springer-Verlag,2007:318-329
    [64]B. Buchberger. Grobner Bases and System Theory[J]. Special Issue on Applications of Grobner Bases in Multi-dimensional Systems and Signal Processing, Kluwer Academic Publishers,2001
    [65]W. Adams, P. Loustaunau. An introduction to Grobner Bases[M]. Graduate Studies in Mathematics American Mathematical Society, Vol.3, USA:AMS,1994
    [66]刘木兰.Grobner基理论及其应用[M].北京:科学出版社,2000年6月
    [67]A. Segers. Algebraic Attacks from a Grobner Basis Perspective[D]. Master Thesis, Department of Mathematics and Computing Science, Technische Universiteit Eindhoven, Eindhoven, October 2004
    [68]M. Sugita, M. Kawazoe and H. Imai. Relation between XL algorithm and Grobner Bases Algorithms[EB/OL]. http://eprint.iacr.org/2004/112,2010
    [69]G. Ars, J. Faugere, H. Imai, et al. Comparison between XL and Grobner Basis Algorithms[A]. Advances in Cryptology-Asiacrypt 2004[C]. Berlin:Springer-Verlag, 2004:338-35
    [70]J. Faugere. A New Efficient Algorithm for Computing Grobner Bases (F4)[J]. Journal of Pure and Applied Algebra,1999(139):61-83
    [71]徐琳,林东岱.使用Grobner基方法计算零化子和代数免疫阶[J].软件学报,将发表
    [72]D. Dalai, K. Gupta and S. Maitra. Results on Algebraic Immunity for Cryptographically Significant Boolean Functions[A]. Progress in Cryptology-Indocrypt 2004[C], Chennai, LNCS 3348,2004:92-106
    [73]C. Carlet, D. Dalai, K. Gupta, S. Maitra. Algebraic Immunity for Cryptographically Significant Boolean Functions:Analysis and Construction[J]. IEEE Transactions on Information Theory,2006,52(7):3105-3121
    [74]C. Carlet, D. Dalai, S. Maitra. Cryptographic Propertites and Structure of Boolean Functions with Full Algebraic Immunity[A]. IEEE International Symposium on Information Theory-ISIT 2006[C], Seattle, Washington,2006
    [75]M. Lobanov. Tight bound between nonlinearity and algebraic immunity[EB/OL]. http://eprint.iacr.org/2005/441,2010
    [76]M. Lobanov. Exact relation between nonlinearity and algebraic immunity[J]. Discrete Mathematics and Application,2006,16(5):92-106
    [77]C. Carlet. On the higher order nonlinearities of algebraic immune functions[A]. Advances in Cryptology-Crypto 2006[C], Berlin:Springer-Verlag,2006:584-601
    [78]S. Mesnager. Improving the Lower Bound on the Higher Order Nonlinearity of Boolean Functions With Prescribed Algebraic Immunity[J]. IEEE Transactions on Information Theory,2008,54(8):3656-3662
    [79]张文英,武传坤,于静之.密码学中布尔函数的零化子[J].电子学报,2006,34(1):51-54
    [80]王永娟,范淑琴,冀会芳,韩文报.正规性和代数免疫[J].解放军理工大学学报(自然科学版),2009,10(3):329-333
    [81]D. Dalai, K. Gupta and S. Maitra. Cryptographically Significant Boolean functions: Construction and Analysis in terms of Algebraic Immunity[A]. Fast Software Encryption-FSE 2005 [C], Paris, France,2005:98-111
    [82]C. Carlet. A method of construction of balanced functions with optimum algebraic immunity[EB/OL]. http://eprint.iacr.org/2006/149,2010
    [83]C. Carlet, X. Y. Zeng, C. L. Li, L. Hu. Further properties of several classes of Boolean functions with optimum algebraic immunity[EB/OL]. http://eprint.iacr.org/2007/370,2010
    [84]N. Li and W. Qi. Construction and analysis of Boolean functions of 2t+1 variables with maximum algebraic immunity[A]. Advances in Cryptology-Asiacrypt 2006[C], Berlin: Springer-Verlag,2006:84-98
    [85]N. Li and W. Qi. Boolean function of an odd number of variables with maximum algebraic immunity[J]. Science in China, Ser. F,2007,50(3):307-317
    [86]N. Li, L. Qu, W. Qi, et al. On the construction of Boolean functions with optimal algebraic immunity[J]. IEEE Transactions on Information Theory,2008,54(3):1330-1334
    [87]李娜.序列密码代数攻击和布尔函数免疫性质的研究[D].博士学位论文,解放军信息工程大学,郑州,2008
    [88]C. Carlet and K. Feng. An Infinite Class of Balanced Functions with Optimal Algebraic Immunity, Good Immunity to Fast Algebraic Attacks and Good Nonlinearity[A]. Advances in Cryptology-Asiacrypt 2008[C], Berlin:Springer-Verlag,2008:425-440
    [89]A. Canteaut and M. Videau. Symmetric Boolean Functions[J]. IEEE Transactions on Information Theory,2005,51(8):2791-2811
    [90]A. Braeken. Cryptographic properties of Boolean functions and S-boxes[D]. Ph. D. dissertation, Dept. Electr. Eng. (ESAT), Katholieke Univ., Luven, Belgium,2006.
    [91]A. Braeken and B. Preneel. On the algebraic immunity of symmetric Boolean functions[A]. Progress in Cryptology-Indocrypt 2005[C], Berlin:Springer-Verlag,2005:35-48
    [92]D. K. Dalai, S. Maitra and S. Sarkar. Basic Theory in Construction of Boolean Functions with Maximum Possible Annihilator Immunity[J]. Design, Codes and Cryptography,2006, 40(1):41-58
    [93]N. Li and W. Qi. Symmetric Boolean Functions Depending on an Odd Number of Variables With Maximum Algebraic Immunity[J]. IEEE Transactions on Information Theory,2006,52(5):2271-2273
    [94]L. J. Qu, C. Li, and K. Feng. A note on symmetric Boolean functions with maximum algebraic immunity in odd number of variables[J]. IEEE Transactions on Information Theory,2007,53(8):2908-2910
    [95]L. J. Qu, C. Li. On the 2m-variable symmetric Boolean function with maximum algebraic immunity[J]. Science in China (Series F:Information Science),2008,51(2):120-127
    [96]F. Liu and K. Q. Feng. On the 2m-variable Symmetric Boolean Functions with Maximum Algebraic Immunity 2m-1[A]. International Workshop on Coding and Cryptography-WCC 2007[C], Versailles (France),2007
    [97]L. J. Qu, C. Li. Weight support technique and the symmetric Boolean functions with maximum algebraic immunity on even number of variables[A]. Proceeding of Information Security and Cryptology 2007[C],2007:270-281
    [98]W. Q. Zhang, R. H. Li. Algebraic Immunity of Even Variable Symmetric Boolean Functions[A]. Second International Workshop on Knowledge Discovery and Data Mining-WKDD 2009[C],2009:559-561
    [99]L. J. Qu, K. Feng, F. Liu and L. Wang. Constructing Symmetric Boolean Functions With Maximum Algebraic Immunity[J]. IEEE Transactions on Information Theory,2009,55(5): 2406-2412
    [100]Q. Liao, F. Lui and K. Q. Feng. on 2m+1-variables symmetric Boolean functions with sub-maximum algebraic immunity 2m-1[J]. Science in China(A),2009(52):17-28
    [101]A. Braeken, J. Lano, B. Preneel. Evaluating the Resistance of Stream Ciphers with Linear Feedback Against Fast Algebraic Attacks[A]. Australasian Conference on Information Security and Privacy-ACISP 2006, Berlin:Springer-Verlag,2006:40-51
    [102]S. Sarkar, S. Matra. Construction of Rotation Symmetric Boolean Functions with optimal Algebraic Immunity[J]. Computaciony Sistemas 2009,12(3):277-284
    [103]S. Sarkar, S. Matra. Construction of Rotation Symmetric Boolean Functions on Odd Number of Variables with Maximum Algebraic Immunity[A]. International Symposium on Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC-17), Bangalore,2007:16-20
    [104]S. Fu, C. Li, K. Matsuura, L. J. Qu. Construction of Rotation Symmetric Boolean Functions with Maximum Algebraic Immunity[A]. Proceedings of the 8th International Conference on Cryptology and Network Security[C], Kanazawa, Japan,2009:402-412
    [105]C. L. Li, X. Y. Zeng, W. Su, L. Hu. A class of rotation symmetric Boolean functions with optimum algebraic immunity[J]. Wuhan University Journal of Natural Sciences,2008, 13(6):702-706
    [106]D. K. Dalai, K. C. Gupta, and S. Maitra. Notion of Algebraic Immunity and Its evaluation Related to Fast algebraic Attacks[A]. Workshop on Boolean Functions:Cryptography and Applications-BFC 2006, Rouen,2006:13-15
    [107]D. K. Dalai and S. Maitra. Balanced Boolean Functions with (more than) Maximum Algebraic Immunity[A]. Workshop on Coding and Cryptography-WCC 07 [C], Versailles, France,2007
    [108]D. K. Dalai and S. Maitra. Algebraic Immunity of Boolean Functions:Analysis and Constructions[J]. Computaciony Sistemas 2009,12(3):297-321
    [109]E. R. Berlekamp. Algebraic Coding Theory[M]. New York:McGraw-Hill Book Company, 1968
    [110]J. L. Shift-Register Synthesis and BCH Decoding[J]. IEEE Transactions on Information Theory,1969(15):122-127
    [111]J. C. Faugere. A new efficient algorithm for computing Grobner bases without reduction to zero (F5)[A]. International Symposium on Symbolic and Algebraic Computation-ISSAC 2002[C], ACM Press,2002:75-83
    [112]李世取,曾本胜等.密码学中的逻辑函数[M].北京:北京中软电子出版社,2003
    [113]丁存生,肖国镇.序列密码学及其应用[M].北京:国防工业出版社,1994
    [114]C. Ding, G. Xiao, and W. Shan. The Stability Theory of Stream Ciphers[M]. Berlin: Springer-Verlag,1991
    [115]R. M. Wilson. A diagonal form for the incidence matrices of t-subsets vs k-subsets[J]. European Journal of Combinatorics,1990(11):609-614
    [116]P. Savicky. On the bent Boolean functions that are symmetric[J]. European Journal of Combinatorics,1994(15):407-410
    [117]I. Krasikov. On integral zeros of Kraetchouk polynomials[J]. Journal of Combinatorial Theory, Series A,1996(74):71-99
    [118]F. J. Macwillams, N. J. A. Sloane. The theory of error correcting codes[M]. North-Holland Mathematical Library, North Holland,1977
    [119]J. C. Faugere. Algebraic cryptanalysis of HFE using Grobner bases[R]. Rapport de recherche, No.4738,2003:2
    [120]B. Buchberger. in Algorithmus zum Auffinden der Basiselement des Restklassenringes nach einem nulldimensionalen Polynomideal[D]. University of Innsbruck, Innsbruck, Austria,1965
    [121]B. Buchberger. Grobner bases:An algorithmic method in polynomial ideal theory[J]. Multidimensional Systems Theory, Dordrecht:D. Peidel Publishing Co.,1984:184-232
    [122]D. Lazard. A note on upper bounds for ideal-theoretic problems[J].Journal of Symbolic Computation,1992,13(3):231-233
    [123]J. C. Faugere, P. Gianni, D. Lazard, et al. Efficient computation of zero dimensional Grobner bases by change of ordering[J]. Journal of Symbolic Computation,1993(16): 329-444
    [124]P. Z. Lu, Y. Zou. Fast computation of Grobner basis of homogenous ideals of F[x,y] [J]. Science In China (Series F),2008,51(4):337-448

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700