用户名: 密码: 验证码:
同轨双基SAR成像算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与传统的单基合成孔径雷达不同,双基地合成孔径雷达(Bistatic SyntheticAperture Radar, BiSAR)的接收机和发射机放置在不同的运动平台上,发射机和接收机可以有不同的空间位置和速度。因此双基地SAR在军事应用,资源调查和地壳形变监测等方面具有特殊的优势。在诸多的双基SAR构型中,同轨双基SAR的发射机和接收机以相同的速度沿着相同的航迹匀速直线飞行,这种体制的双基地SAR编队构形相对简单,工程上较容易实现,在地面运动目标检测等方面有着广阔的应用前景。基于此,本文对同轨构型双基SAR目标二维频谱精度和同轨构型不同模式下的成像算法进行了一些研究,主要工作概括如下:
     1.理论上LBF(Loffeld’s bistatic formula, LBF)双基SAR目标频谱适用于任意的双基构型,但是在具体的双基构型条件下其谱精度因不同参数配置的影响而有所不同。针对同轨双基地SAR构型,本文通过数学方法将其与一种严格解析的双基目标二维频谱进行对比分析,详细推导出了影响LBF双基谱精度的两个约束条件。即半双基角的余弦值大小以及半基线长度与目标到航线的最近距离的比值是否等于半双基角的正切值。当半双基角的余弦值等于1,半基线长度与目标到航线的最近距离的比值等于半双基角的正切值这两个条件同时得到满足时,LBF谱是完全严格解析的。在这两个影响谱精度的约束条件中,LBF双基谱的谱精度对半双基角的余弦值的大小变化更为敏感,而并不直接受到基线长度和斜视角大小的影响,通过仿真实验详细分析讨论了各种因素对于LBF谱精度的影响。
     2.提出一种同轨构型下基于严格解析双基SAR目标二维频谱的线频调变标(Chirp Scaling, CS)成像算法,解决条带模式下双基地SAR包络徙动的空变问题。不同于波数域的成像算法,整个成像过程不需要进行插值运算,在频域聚焦实现快速成像。高精度的双基频谱使得所提算法对基线的长短不再敏感,可以进行大双基角,长基线情形下的同轨双基SAR数据处理。仿真实验和对比实验验证了所提算法的有效性和优越性。
     3.针对大斜视情形下同轨双基SAR目标的距离徙动和二次距离压缩(SecondRange Compression, SRC)的空变性问题,基于严格解析的双基SAR目标二维频谱,提出了一种适用于同轨构型双基SAR的非线性CS(Nonlinear Chirp ScalingAlgorithm, NCSA)成像算法,不同于适用于小斜视角条件的CS成像算法,非线性CS算法不仅考虑了调频率随多普勒频率的变化,而且也考虑了其随距离的线性变化,更好地实现了同轨双基SAR中SRC的精确补偿,取得了满意的聚焦效果。仿真实验验证了所提算法的有效性。
     4.对于聚束模式下的同轨双基SAR构型,基于同轨构型下严格解析的半双基角和谱分析方法,提出了一种适用于同轨构型下聚束式双基SAR的频率变标(Frequency Scaling, FS)成像算法。首先,类比单基情形,推导出了双基地情形下的deramp函数,实现方位向的粗聚焦,有效地消除系统方位向的频谱混叠问题。然后基于同轨构型下严格解析的双基SAR目标二维频谱,通过一种适用于聚束式双基地SAR的FS成像算法校正目标的距离徙动,取得理想的成像效果。FS算法通过相位相乘代替插值操作实现目标的距离徙动校正,可以实现快速成像。精确的双基频谱使得所提算法可以进行长基线情形下的数据处理。仿真实验验证了算法的有效性。此外,针对大斜视情形下SRC的空变问题,提出一种基于严格解析双基频谱的改进频率变标成像算法,通过非线性变标操作消除由大斜视导致的随距离变化的二次距离压缩项。仿真实验表明,与常规FS算法相比,改进算法在大斜视情形下可实现目标良好的成像,点目标冲激响应的主副瓣可清晰分辨。
Different from the traditional monostatic synthetic aperture radar (SAR), the transmitterand the receiver are amounted on different platforms for bistatic SAR (BiSAR). They can beset to have different space positions and velocities. Hence BiSAR has a plenty of potentialsand advantages over monostatic SAR in many application areas, such as the militaryapplications, resource investigation, surveillance of Earth crust, etc. Among the bistaticconfigurations, tandem bistatic SAR confguraton, in which the transmitter and the receivertravel along the same track with the same velocity, is a special one. Compared with otherbistatic configurations, the formation of tandem configuration is a relatively easy one, whichhas a bright future in ground moving target indication (GMTI). Moreover, it is also relativelyeasy to be accomplished in engineering. Due to the advantages of tandem bistatic SAR, theprecision of the two-dimensional point target spectrum and the imaging algorithms suitablefor different modes of tandem bistatic SAR are studied in this dissertation, the main works aresummarized as follows:
     1. Loffeld’s bistatic forumula is suitable for any bistatic configuration. However, theprecision of the LBF spectrum is different in different configurations under differentparameters. Focusing of the well-known tandem configuration of bistatic SAR, the twofactors that influence the precision of the LBF spectrum is deduced and analyzed bycomparing the LBF spectrum with an exactly analytical point target spectrum in thewavenumber domain. The first factor is how the value of the cosine of the half bistatic angleis close to1, and the second factor is whether the half length of the baseline to range ratioequals the tangent of the half bistatic angle. When the two factors are both satisfied, the LBFsectrum is an exact analytical one. And among the two factors that influence the precison ofthe spetrum, the LBF spectrum is more sensitive to the variance of the cosine of the halfbistatic angle. The length of the baseline or the squint angles of bistatic SAR does not give adirect influence to the precision of the spectrum. The factors that influence the precision ofthe LBF spectrum are verified by simulations.
     2. Focusing of the profile range dependent problem of tandem bistatic SAR, achirp-scaling (CS) imaging algorithm is proposed based on an exact analyticaltwo-dimensional point target spectrum. Different from the imaging algorithms in thewavenumber domin, no interpolation is needed during the whole imaging process. Fastimaging is implemented in the frequency domain. Due to the high precision of thetwo-dimensional point target spectrum that we are based on, the proposed algorithm is notsensitive to the length of the baseline. It is capable of handling the tandem bistatic SAR data with a large bistatc angles or with a large baseline. Simulations and comparable experimentsvalidate the effectiveness and advantages of the proposed algorithm.
     3. Focusing of the range dependent problem of the range migration and the second rangecompression (SRC) of tandem bistatic SAR with high squint angles, based on an exactanalytical two-dimension point target spectrum, a nonlinear chirp-scaling imaging algorithm(NCSA) is proposed. Different from the chirp-scaling algorithm suitable for small squintangles, not only the Doppler dependence of the Doppler chirp rate is considered, but also thevariance with range of the Doppler chirp rate is taken into account in the proposed algorithm.Precise compensation of the SRC is realized, and satisfying imaging result is obtained. Theeffectiveness of the proposed algorithm is verified by simulations.
     4. Focusing of the spotlight mode of tandem bistatic SAR, a frequency scaling (FS)imaging algorithm is proposed based on an exact analytical half bistatic angle and thespectrum analysis method. Firstly, on analog of the monostatic case, the deramping functionsuitable for bistatic SAR is deduced, and coarse focusing in azimuth is realized, then the FSalgorithm is carried out to correct the range migration of different range gates, and finalimaging resuls with satisfactory are obtained. Range migration correction is realized by phasemultiplication instead of interpolation, fast imaging process is realized in the proposedalgorithm. The proposed algorithm is capable of dealing with bistatic SAR data with largebaselines of tadem configuration. Simulations verify the effectiness of the proposed algorithm.Moreover, a modified frequency scaling imaging algorithm is proposed to handle the largesquint angle case, in which the range dependence of the second range compression must betaken into consideration. Compared with the FS algorithm, the modified frequency scalingalgorithm can realize satisfying focusing with large squint angles. The main lobe andsidelobes of the impulse response of the point target can be well-resolved.
引文
[1] M. I. Skolnik. Radar Handbook [M]. McGraw-Hill, New York,1990.
    [2] M. I. Skolnik. Introduction to Radar System [M]. McGraw-Hill, New York,2001.
    [3]丁鹭飞,耿富录.雷达原理[M].第三版,西安电子科技大学出版社,2006.
    [4] W. G. Carrara, R. S. Goodman, R. M. Majewski. Spotlight Synthetic ApertureRadar: Signal Processing Algorithms [M]. Boston: Artech House,1995.
    [5] G. Franceschetti, R. Lanari. Synthetic Aperture Radar Processing [M]. CRC Press,Boca Raton London New York Washington, D.C.1999.
    [6]张澄波.综合孔径雷达原理、系统分析与应用[M].北京:科学出版社,1989.
    [7]刘永坦.雷达成像技术[M].哈尔滨:哈尔滨工业大学出版社,1999.
    [8]魏钟铨.合成孔径雷达卫星[M].北京:科学出版社,2001.
    [9]袁孝康.星载合成孔径雷达导论[M].北京:国防工业出版社,2003.
    [10]张直中.机载和星载合成孔径雷达导论[M].北京:电子工业出版社,2004.
    [11]Munson D. C., Jr. OBrien J. D., Jenkins W. K. A Tomographic Formation ofSpotlight Mode Synthetic Aperture Radar [J]. Proc. IEEE,1983,71(8):917-925.
    [12]Franssoni J. M., Walterii F. and Ulanderiii L. Estimation of Forest Parameters UsingCARABAS-II VHF SAR Data [J], IEEE Transaction on Geoscience and RemoteSensing,2000,38(2):720-727.
    [13]J. F. McCauley, et al. Subsurface Valleys and Geoarchaeology of the Eastern saharaRevealed by Shuttle Radar [J]. Science218,1982,1004-1020.
    [14]M. Massonnet, M. Rossi, C. Caremona, et al. The Displacement Field of theLanders Earthquake Mapped by Radar Interferometry [J]. Nature,1993,364:138-142.
    [15]D. Brunner, G. Lemoine, and L. Bruzzone. Earthquake Damage Assessment ofBulidings Using VHR Optical and SAR Imagery [J]. IEEE Transaction onGeoscience and Remote Sensing,48(5):2403-2420,2010.
    [16]C. Wiley. Pioneer Award Acceptance Remarks [J]. IEEE Transaction on Aerospaceand Electronic Systems,1986,21(3):433-433.
    [17]C.W.Sherwin, J.P.Ruina, R.D.Rawcliffe. Some Early Development in SyntheticAperture Radar Systems [J]. IRE Transaction on Military Electronics,1962,6(2):111-115.
    [18]L. J. Cutrona, et al. A High Resolution Radar Combat-Surveillance Systems [J].IRE Transaction on Military Electronics,1961,5(2):127-131.
    [19]L. J. Cutrona, et al. A Comparison of Techniques for Achieving Fine AzimuthResolution [J]. IRE Transaction on Military Electronics,1962,6(2):129-131.
    [20]L. J. Cutrona, et al. On the Application of Coherent Optical Processing Techniquesto Synthetic Aperture Radar [J]. PIEEE,1966,54(8):1026-1032.
    [21]J. C. Kirk. Digital Synthetic Aperture Radar Technology [C]. IEEE InternationalRadar Conference,1975.
    [22]R. Horn. E-SAR-The Experimental Airborne L/C Band SAR System of DLR [C].IEEE International Geoscience and Remote Sensing Symposium, IGARSS'88,1988:1025-1026.
    [23]https://ilrs.gsfc.nasa.gov/satellite_missions/list_of_satellites/seas_general.html.
    [24]S. N. Maden, E. L. Christensen, et al. The Danish SAR System: Design and InitialTests [J]. IEEE Transaction on Geoscience and Remote Sensing,1991,29(3):417-426.
    [25]A.Gustavsson,L.M.Ulander, et a1. The Experimental Airborne VHF SAR sensorCARABAS: A Status Report [C]. IEEE International Geoscience and RemoteSensing Symposium, IGARSS'96,1996:1877-1880.
    [26]J. Ender and A. R.Brenner. PAMIR-A Wideband Phased Array SAR_MTI System[J]. IEE Proc. Radar Sonar&Navigation,2003,150(3):165-172.
    [27]R. W. Bayma, E. Trujillo, HISARTM COTS-based Synthetic Aperture Radar [C].Digital Avionics Systems Conference,1996:319-325.
    [28] S. Hensley, E. Chapin, A. Freedman, et al. First P-band Results Using theGeoSAR Mapping System [C]. IEEE International Geoscience and Remote SensingSymposium, IGARSS'01,2001:126-128.
    [29]R. Sheen, L. VandenBerg, J. Shackman, et al. P-3Ultra-wideband SAR:Description and Examples [J]. IEEE AES Systems Magazine,1996:25-30.
    [30]A. D. Sweet, D. F. Dubbert, A. W. Doerry, G. R. Sloan, V. Gutierrez. A Portfolio ofFine Resolution Ku-band MiniSAR Images: part II [C]. Proc. of SPIE.1999,62(10),1132-1138.
    [31]W. H. Hensley, A. W. Doerry and B. C. Walker. Lynx: A High-resolution SyntheticAperture Radar [J]. SPIE Aerosense,1999,3704.
    [32]Elahci C, Bicknell T, Jordan R L, and Wu C. Spaceborne Synthetic ApertureImaging Radars: Application, Techniques, and Technology [J]. Proc. of IEEE,1982,70(10):1174-1209.
    [33]J. Cimino, C. Elachi, SIR-B–The Second Shuttle Imaging Radar Experiment [J].IEEE Transaction on Geoscience and Remote Sensing,1986,24(4):445-452.
    [34]http://en.wikipedia.org/wiki/Lacrosse
    [35]金丽花.斜视聚束合成孔径雷达雷达成像算法研究,上海交通大学博士论文[D].2008.
    [36]http://www.esa.int/esa-cgi/
    [37]R. L. Jordan, B. L. Huneycutt, M. Werner. The SIR-C/X-SAR Synthetic ApertureRadar System [J]. IEEE Transaction on Geoscience and Remote Sensing.1995,33(4):829-839.
    [38]K. R. Raney, et al. Radarsat [C]. Proc of IEEE,1991,79(6):839-849.
    [39]S. Hensley, P. Rosen, The SRTM Topographic Mapping Processor [C], IEEEGeoscience and Remote Sensing Symposium, IGARSS'00,2000:1168-1170.
    [40]郭华东,王长林.全天候全天时三维航天遥感技术-介绍航天飞机雷达地形测图计划[J],遥感信息,2000,(1):47-48.
    [41]Y. Maruyama, Y. Shiokawa, K. Hirose, and M. Tsukada. Geological Application forNatural Resource Analysis with the PALSAR Data [C]. IEEE Geoscience andRemote Sensing Symposium, IGARSS'00,2000,(6),2409-2411.
    [42]R. Werninghaus R and S. Buckreuss. The TerraSAR-X Mission and System Design[J]. IEEE Transaction on Geoscience and Remote Sensing,2010,48(2),606-615.
    [43]P. Wolfgang and M. David. The TerraSAR-X Satellite [J]. IEEE Transaction onGeoscience and Remote Sensing,2010,48(2),615-623.
    [44]http://www.cosmo-skymed.it/en/index.htm
    [45]J. T. Nohara, P. Weber, A. Premji, C. Livingstone. SAR-GMTI Processing withCanada's Radarsat2Satellite [J], Adaptive Systems for Signal Processing,Communications, and Control Symposium2000. AS-SPCC.:379–384.
    [46]Krieger G., Fiedler H., Zink M. etc. The TanDEM-X Mission: A Satellite Formationfor High-Resolution SAR Interferometry [J]. IEEE Transaction on Geoscience andRemote Sensing,2007,45(5),101-109.
    [47]M. Cherniakov.Bistafic Radar:Principle and Practice.John Wiley,2007,l-160.
    [48]汤子跃,张守融.双站合成孔径雷达系统原理[M].北京:科学出版社,2003.
    [49]G. Krieger, and A. Moreira. Multistatic SAR Satellite Formations: Potentials andChallenges [C]. IEEE Geoscience and Remote Sensing Symposium, IGARSS'05,Seoul, Korea,2005:2680-2684.
    [50]杨科峰.移变双基地SAR特性与成像方法研究,国防科学技术大学博士论文[D].2009.
    [51]T. Isemia, V. Pascazio, R. Piem, and G. Schirinzi. Synthetic Aperture Radar Imagingfrom Phase Corrupted Data[C]. IEE Proceedings-Radar Sonar&Navigation.143,1996:268-274.
    [52]S. Ramongasie, L. Phalippou, E. Thouvenot, et al. Preliminary Design of thePayload for the Interferometric CarWheel[C], IEEE Geoscience and RemoteSensing Symposium, IGARSS’00,2000, Honolulu,24-28.
    [53]Martin M and Stallard M. Distributed Satellite Missions and Technologies—theTechSat21Program[C], in Proc. AIAA Space Technology Conf. Exposition,Albuquerque, NM,1999, AIAA99-4479.
    [54]H. Fiedler, G. Krieger, and F Jochim. Analysis of Bistatic Configurations forSpaceborne SAR Interferometry[C], EUSAR’2002, Cologne, Germany,2002,29-33.
    [55]L. J. Walker.Range-Doppler Imaging of Rotating Objects[J].IEEE Transaction onAerospace and Electronic Systems,1980,16(1):23-52.
    [56]P. G. Cardillo. On the Use of the Gradient to Determine Bistatic SAR Resolution[C].Antennas and Propagation Society International Symposium, Dallas,1990,1032-1035.
    [57]M. H. Jones.Predicted Properties of Bistatic Satellite Images[C]. IEEE NationalRadar Conference. Wakefield,l993:286-291.
    [58]G. Krieger, H. Fieldler, D. Houman, et al. Analysis of System Concepts for Bi-andMulti-Static SAR Missions[C]. IEEE Geoscience and Remote Sensing Symposium,IGARSS’03, Toulouse, France,2003,770-772.
    [59]I. Walterscheid, R. A. Brenner, J. Ender. Geometry and System Aspects for aBistatic Airborne SAR Experiment[C]. EUSAR’2004, Ulm, Germany,2004:567-570.
    [60]钟华.双站合成孔径雷达算法研究,上海交通大学博士论文[D].
    [61]何友,蔡复青,唐小明,关键.双/多基地SAR发展评述[J].雷达科学与技术,2008,6(1),1-8.
    [62]L. J. Auterman. Phase Stability Requirements for a Bistatic SAR[C]. IEEE NationalConference,1984,48-52.
    [63]G. Yates, M. A. Horne, P. A. Blake, R. Middleton, and B. D. Andre, Bistatic SARImage Formation[C], in Proc. EUSAR, Ulm, Germany, May2004,581–584.
    [64]M. Rodriguez-Cassola, G. Krieger, M. Wendler. Azimuth-invariant BistaticAirborne SAR Processing Strategies based on Monostatic Algorithms[C]. IEEEGeoscience and Remote Sensing Symposium, IGARSS’005,2005,451-455.
    [65]I. Walterscheid, J. Ender, A. Brenner, and O. Loffeld. Bistatic SAR Processing andExperiments[J]. IEEE Transaction on Geoscience and Remote Sensing,2006,44(10),2710-2717.
    [66]Klare J, Walterscheid I, Brenner A and Ender J. Evaluation and Optimization ofConfiguration for a Hybrid SAR Experiment Between TerraSAR-X and PAMIR[C],IEEE Geoscience and Remote Sensing Symposium, IGASS’06, Denver, Colorardo,USA, August2006,(28),1132-1135.
    [67]M. Rodriguez-Cassola, P. Prats, D. Schulze, et al. First Bistatic Spaceborne SARExperiments with TanDEM-X[J]. IEEE Geoscience and Remote Sensing Letter,2012,9(1),33-37.
    [68]Chen Juan, Xiong Jintao, Huang Yulin, et al. Research on a Novel Fast BackprojectAlgorithm for Stripmap Bistatic SAR Imaging[C]. APSAR’2007,2007, Huangshan.(2),622-625.
    [69]刘喆.星机双基地SAR频域成像理论与方法研究,电子科技大学博士论文[D].2009.
    [70]M. Wei, Time and Frequency Synchronization Aspects for Bistatic SAR Systems.in Proc. EUSAR2004, Ulm, Germany, May,2004, pp.395-399.
    [71]G. Krieger and A. Moreira Spaceborne bi-and Multistatic SAR: Potential andChallenges [J]. IEE Proc. Radar Sonar&Navigation., Jun.2006,153(3):184-198.
    [72]Barber B. Theory of Digital Imaging from Orbital Synthetic Aperture Radar [J]. Int.J. Remote Sens.,1985,6(6):1009-1057.
    [73]Ding Y, Munson D C. A Fast Back-procject Algorithm for Bistatic SAR Imaging[C]. IEEE inter. Conf. on Image Proc., Rochester,2002(12),111-113.
    [74]M. Rodriguez-Cassola, P. Prats, G. Krieger, A. Moreira, Efficient Time-domainImage Formation with Precise Topography Accommodation for General BistaticSAR Configurations [J]. IEEE Transaction on Aerospace and Electronic Systems,2011,47(4),2949-2966.
    [75]M. Soumekh. Bistatic Synthetic Aperture Radar Inversion with Application inDynamic object Imaging [J]. IEEE Transaction on Signal Processing,1991,39(9):2044-2055.
    [76]R. Bamler, E. Boerner. On the Use of Numerically Computed Transfer Function forProcessing of Data from Bistatic SARs and High Squint Orbital SARs [C], Seoul,Korea, IEEE Geoscience and Remote Sensing Symposium, IGASS’05,2005,1051-1055.
    [77]J. Ender, I. Walterscheid I and R. Brenner. Bistatic SAR-Translational InvariantProcessing and Experimental Results [J]. IEE Proc. Radar Sonar&Navigation,2006,153(3):177-183.
    [78]Aria D A, Guarnieri A M, Rocca F. Focusing Bistatic Synthetic Aperture RadarUsing Dip Move Out [J]. IEEE Transaction on Geoscience and Remote Sensing,2004,42(7):1362-1376.
    [79]O. Loffeld O, H. Nies, V. Peters, S. Knedlik. Models and Useful Relations forBistatic SAR Processing [J]. IEEE Trans on Transaction on Geoscience and RemoteSensing,2004,42(10):2031-2038.
    [80]W. Robert, O. Loffeld, H. Nie, et al. Chirp-scaling Algorithm for Bistatic SAR Datain the Constant-offset Configuration [J]. IEEE Transaction on Geoscience andRemote Sensing,2009,47(3):952-963.
    [81]W. Robert, O. Loffeld O, Y. Neo, et al. Focusing Bistatic SAR Data inAirborne/Stationary Configuration [J]. IEEE Transaction on Geoscience andRemote Sensing,2010,48(1):3011-3020.
    [82]K. Natroshvili, O. Loffeld, A. Maya, et al. Focusing of General Bistatic SARConfiguration Data with2-D Inverse Scaled IFFT [J]. IEEE Transaction onGeoscience and Remote Sensing,2006,44(10):2718-2727.
    [83]Ding Jinshan, Loffeld O, Wang R. Weighted LBF for Spaceborne General BistaticSAR Processing [J]. Progress in Natural Science,2008,18(10):1271-1277.
    [84]Wang R, Loffeld O. A Bistatic Point Target Reference Spectrum for GeneralBistatic SAR Processing [J]. IEEE Geoscience and Remote Sensing Letters,2008,5(3):517-521.
    [85]Y. Neo, F. Wong, and I. Cumming. A Two-Dimensional Spectrum for Bistatic SARProcessing Using Series Reversion [J]. IEEE Geoscience and Remote SensingLetter, Jan.2007,4(1),93–96.
    [86]Y. Neo Y, F. Wong F, and I. Cumming I. Processing of Azimuth-invariant BistaticSAR Data Using the Range Doppler Algorithm [J]. IEEE Transaction onGeoscience and Remote Sensing, Jan.2008,46(1):14-21.
    [87]Y. Neo, F. Wong, and I. Cumming. Focusing Bistatic SAR Data Using NonlinearChirp Scaling Algorithm [J]. IEEE Transaction on Geoscience and Remote Sensing,2008,46(9):2493-2505.
    [88]刘保昌. SAR解多普勒模糊与双基SAR成像算法研究[D].西安电子科技大学博士论文.2010.
    [89]Hua Zhong, Xingzhao Liu. An Effective Focusing Approach for Azimuth InvariantBistatic SAR Imaging [J]. Signal Processing,2010,90:395-404.
    [90]熊涛.双基SAR成像算法研究[J],西安电子科技大学博士论文.2012.
    [91]张振华.双多基成像技术研究,西安电子科技大学博士论文[D].2007.
    [92]李燕平.单/双基SAR成像和运动补偿研究[D].西安电子科技大学博士论文.2008.
    [93]武其松.双/多通道SAR成像技术研究[D].西安电子科技大学博士论文.2008.
    [94]Q Wu, Y Liang, M Xing, C Qiu, Z Bao, T Yeo, Focusing of TandemBistatic-Configuration Data with Range Migration Algorithm [J]. IEEE Geoscienceand Remote Sensing Letter,2011,8(1),88-92.
    [95]孙进平,白霞,毛士艺.双基地合成孔径雷达的扩展ETF成像算法[J].电子学报,2007,35(12):2394-2398.
    [96]Tao Xiong, Mengdao Xing, Yong Wang, Rui Guo, Jialian Sheng and Zheng Bao,Using Derivatives of an Implicit Function to Obtain the Stationary Phase of theTwo–dimensional Spectrum for Bistatic SAR Imaging [J]. IEEE Geoscience andRemote Sensing Letters, Oct.2011,8(6),1165–1169.
    [97]R. Wang, Y. Deng, O. Loffeld, et al. Processing the Azimuth-Variant Bistatic SARData by Using Monostatic Imaging Algorithms based on Two-dimensionalPrinciple of Stationary Phase [J]. IEEE Transaction on Geoscience and RemoteSensing,2011,49(10):3504-3520.
    [98]Eldhuset K. Spaceborne Bistatic SAR Processing Using the EETF4Algorithm [J].IEEE Geoscience and Remote Sensing Letter,2009,6(2),194-198.
    [99]Carmine Clemente, John J. Soraghan, Approximation of the Bistatic Slant RangeUsing Chebyshev Polynomials [J], IEEE Geoscience and Remote Sensing Letters,Jul.2012,9(4):682-686.
    [1] M. Rodriguez-Cassola, S.V. Baumgartner, G. Krieger, and A. Moreira, BistaticTerraSAR-X/F-SAR Spaceborne–Airborne SAR Experiment: Eescription, DataProcessing, and Results [J]. IEEE Transaction on Geoscience and Remote Sensing,Feb.2010,48(2), pp.781-794.
    [2] I. Walterscheid, T. Espeter, A.R. Brenner, J. Klare, J. Ender, H. Nies, R. Wang, andO. Loffeld, Bistatic SAR Experiments with PAMIR and TerraSAR-X—Setup,Processing, and Image Results [J]. IEEE Transaction on Geoscience and RemoteSensing, Aug.2010,48(8), pp.3268-3279.
    [3] Barber B. Theory of Digital Imaging from Orbital Synthetic Aperture Radar [J].Int. J. Remote Sens.,1985,6(6):1009-1057.
    [4] D. D’Aria, A. M. Guarnieri, and F. Rocca, Focusing Bistatic Synthetic ApertureRadar Using Dip Move Out [J]. IEEE Transaction on Geoscience and RemoteSensing, Jul.2004,42(7),1362-1376.
    [5] Jinshan Ding, Zhenhua Zhang, Mengdao Xing, Zheng Bao, A New Look at theBistatic-to-Monostatic Conversion for Tandem SAR Image Formation [J]. IEEEGeoscience and Remote Sensing Letter,2008,5(3),392-395.
    [6] Y. Neo, F. Wong, and I. Cumming. A Two-Dimensional Spectrum for BistaticSAR Processing Using Series Reversion [J]. IEEE Geoscience and Remote SensingLetter, Jan.2007,4(1),93–96.
    [7] Y. Neo Y, F. Wong F, and I. Cumming I. Processing of Azimuth-invariant BistaticSAR Data Using the Range Doppler Algorithm [J]. IEEE Transaction onGeoscience and Remote Sensing, Jan.2008,46(1):14-21.
    [8] Y. Neo, F. Wong, and I. Cumming. Focusing Bistatic SAR Data Using NonlinearChirp Scaling Algorithm [J]. IEEE Transaction on Geoscience and Remote Sensing,2008,46(9):2493-2505.
    [9] Zhenhua Zhang, Mengdao Xing, Jinshan Ding, et al. Focusing Parallel BistaticSAR Data Using the Analytic Transfer Function in the Wavenumber Domain[J].IEEE Transaction on Geoscience and Remote Sensing, Nov.2007,45(11):3633–3645.
    [10] Li Yanping, Zhang Zhenhua, Xing Mengdao, et al. Bistatic Spotlight SARProcessing Using the Frequency-Scaling Algorithm [J]. IEEE Geoscience andRemote Sensing Letters,2008,5(1):48-52.
    [11] Qisong Wu, Mengdao Xing, Hongzhu Shi, Chengwei Qiu and Zheng Bao, Exactanalytical Two-dimensional Spectrum for Bistatic Synthetic Aperture Radar inTandem Configuration [J]. IET Proc Radar, Sonar&Navigation,2011,5(3),349-360.
    [12] Qisong Wu, Yi Liang, Mengdao Xing, Chengwei Qiu and Zheng Bao, T Yeo,Focusing of Tandem Bistatic-Configuration Data with Range Migration Algorithm[J]. IEEE Geoscience and Remote Sensing Letter,2011,8(1),88-92.
    [13] Tao Xiong, Mengdao Xing, Yong Wang, Rui Guo, Jialian Sheng and Zheng Bao,Using Derivatives of an Implicit Function to Obtain the Stationary Phase of theTwo–dimensional Spectrum for Bistatic SAR Imaging[J]. IEEE Geoscience andRemote Sensing Letters, Oct.2011,8(6),1165–1169.
    [14] R. Wang, Y. Deng, O. Loffeld, et al. Processing the Azimuth-Variant Bistatic SARData by Using Monostatic Imaging Algorithms based on Two-dimensionalPrinciple of Stationary Phase [J]. IEEE Transaction on Geoscience and RemoteSensing,2011,49(10):3504-3520.
    [15] Eldhuset K. Spaceborne Bistatic SAR Processing Using the EETF4Algorithm [J].IEEE Geoscience and Remote Sensing Letter,2009,6(2),194-198.
    [16] Carmine Clemente, John J. Soraghan, Approximation of the Bistatic Slant RangeUsing Chebyshev Polynomials [J], IEEE Geoscience and Remote Sensing Letters,Jul.2012,9(4):682-686.
    [17] O. Loffeld O, H. Nies, V. Peters, S. Knedlik. Models and Useful Relations forBistatic SAR Processing [J]. IEEE Transaction on Geoscience and Remote Sensing,2004,42(10):2031-2038.
    [18] W. Robert, O. Loffeld, H. Nie, et al. Chirp-scaling algorithm for Bistatic SARData in the Constant-offset Configuration [J]. IEEE Transaction on Geoscience andRemote Sensing,2009,47(3):952-963.
    [19] W. Robert, O. Loffeld O, Y. Neo, et al. Focusing Bistatic SAR Data inAirborne/Stationary Configuration [J]. IEEE Transaction on Geoscience andRemote Sensing,2010,48(1):3011-3020.
    [20] K. Natroshvili, O. Loffeld, A. Maya, et al. Focusing of General Bistatic SARConfiguration Data with2-D Inverse Scaled IFFT [J]. IEEE Transaction onGeoscience and Remote Sensing,2006,44(10):2718-2727.
    [21] M. Rodriguez-Cassola, P. Prats, D. Schulze, N. Tous-Ramon, U. Steinbrecher, L.Marotti, M. Nannini, M. Younis, P. López-Dekker, M. Zink, A. Reigber, G. Krieger,and A. Moreira, First Bistatic Spaceborne SAR Experiments with TanDEM-X [J].IEEE Geoscience and Remote Sensing Letters, Jan.2012,9(1),33-37.
    [22] A. J ggi, O. Montenbruck, Y. Moon, M. Wermuth, R. K nig, G. Michalak, H.Bock and D. Bodenmann, Inter-agency Comparison of TanDEM-X BaselineSolutions [J]. Advances in Space Research, Jul.2012,50(2),260–271.
    [1] Barber B. Theory of Digital Imaging from Orbital Synthetic Aperture Radar [J]. Int.J. Remote Sens.,1985,6(6):1009-1057.
    [2] Ding Y, Munson D C. A Fast Back-procject Algorithm for Bistatic SAR Imaging[C]. IEEE inter. Conf. on Image Proc., Rochester,2002(12),111-113.
    [3] M. Rodriguez-Cassola, P. Prats, G. Krieger, A. Moreira, Efficient Time-domainImage Formation with Precise Topography Accommodation for General BistaticSAR Configurations [J]. IEEE Transaction on Aerospace and Electronic Systems,2011,47(4),2949-2966.
    [4] D. D’Aria, A. M. Guarnieri, and F. Rocca, Focusing Bistatic Synthetic ApertureRadar Using Dip Move Out [J]. IEEE Transaction on Geoscience and RemoteSensing, Jul.2004,42(7),1362-1376.
    [5] O. Loffeld O, H. Nies, V. Peters, S. Knedlik. Models and Useful Relations forBistatic SAR Processing [J]. IEEE Transaction on Geoscience and Remote Sensing,2004,42(10):2031-2038.
    [6] Robert W, Loffeld O, Nie H, Knedlik S and Ender J. Chirp-scaling Algorithm forBistatic SAR Data in the Constant-offset Configuration [J]. IEEE Transaction onGeoscience and Remote Sensing,47(3),2009:952-963.
    [7] Robert W, Loffeld O, Neo. Y L, Nies H, Walterscheid I, Espeter T, Klare J andEnder J. Focusing Bistatic SAR Data in Airborne/Stationary Configuration [J].IEEE Transaction on Geoscience and Remote Sensing,48(1),2010:3011-3020.
    [8] Marc R, Gerhard K, Michael W. Azimuth-invariant Bistatic Airborne SARProcessing Strategies based on Monostatic Algorithms [C], IEEE InternationalGeoscience and Remote Sensing Symposium, IGARSS'05, Seoul Korea,2005:1045-1049.
    [9] Natroshvili K, Loffeld O, Maya A, et al. Focusing of general bistatic SARconfiguration data with2-D Inverse Scaled IFFT[J]. IEEE Transaction onGeoscience and Remote Sensing,2006,44(10):2718-2727.
    [10]Y. Neo, F. Wong, and I. Cumming. A Two-Dimensional Spectrum for Bistatic SARProcessing Using Series Reversion [J]. IEEE Geoscience and Remote SensingLetter, Jan.2007,4(1),93–96.
    [11]Neo Y, Wong F, and Cumming I. Processing of Azimuth-invariant Bistatic SARData Using the Range Doppler Algorithm [J]. IEEE Transaction on Geoscience andRemote Sensing, Jan.2008,46(1),14-21.
    [12]Hua Zhong, Xingzhao Liu. An Effective Focusing Approach for Azimuth InvariantBistatic SAR Imaging [J]. Signal Processing,2010,90:395-404.
    [13]Neo Y, Wong F, and Cumming I. Focusing Bistatic SAR Data Using NonlinearChirp Scaling Algorithm [J]. IEEE Transaction on Geoscience and Remote Sensing,2008,46(9),2493-2505
    [14]Liu B C, Wang T, Wu Q S and Bao Z. Bistatic SAR Data Focusing Using anOmega-K Algorithm based on Method of Series Reversion [J]. IEEE Transactionon Geoscience and Remote Sensing, Aug.2009,47(8),2899-2912.
    [15]Zhenhua Zhang, Mengdao Xing, Jinshan Ding, et al. Focusing Parallel BistaticSAR Data Using the Analytic Transfer Function in the Wavenumber Domain[J].IEEE Transaction on Geoscience and Remote Sensing, Nov.2007,45(11):3633–3645.
    [16]Li Yanping, Zhang Zhenhua, Xing Mengdao, et al. Bistatic Spotlight SARProcessing Using the Frequency-Scaling Algorithm [J]. IEEE Geoscience andRemote Sensing Letters,2008,5(1):48-52.
    [17]M. Rodriguez-Cassola, P. Prats, D. Schulze, N. Tous-Ramon, U. Steinbrecher, L.Marotti, M. Nannini, M. Younis, P. López-Dekker, M. Zink, A. Reigber, G. Krieger,and A. Moreira, First Bistatic Spaceborne SAR Experiments with TanDEM-X[J].IEEE Geoscience and Remote Sensing Letters, Jan.2012,9(1),33-37.
    [18]A. J ggi, O. Montenbruck, Y. Moon, M. Wermuth, R. K nig, G. Michalak, H. Bockand D. Bodenmann, Inter-agency Comparison of TanDEM-X Baseline Solutions[J].Advances in Space Research, Jul.2012,50(2),260–271.
    [19]Qisong Wu, Yi Liang, Mengdao Xing, Chengwei Qiu and Zheng Bao, T Yeo,Focusing of Tandem Bistatic-Configuration Data with Range Migration Algorithm[J]. IEEE Geoscience and Remote Sensing Letter,2011,8(1),88-92.
    [20]R Raney, H Runge, R Bamler, I Cumming, F Wong, Precision SAR ProcessingUsing Chirp Scaling. IEEE Transaction on Geoscience and Remote Sensing,1994,32(4),786-799.
    [21]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社,2005.
    [22]G Davidson, I Cumming, M Ito, A Chirp Scaling Approach for Processing SquintModel SAR Data. IEEE Transaction on Aerospace and Electronic Systems.1996,32(1),122-133.
    [23]Carrara W G, Goodman R S, and Majewski R M. Spotlight Synthetic ApertureRadar: Signal Processing Algorithms [M]. Boston: Artech House,1995.
    [24]R Wang, Y Deng, O Loffeld, H Nies, I Walterscheid, T Espeter, J Klare, J Ender,Processing the Azimuth-variant Bistatic SAR Data by Using Monostatic ImagingAlgorithms based on Two-dimensional Principle of Stationary Phase [J]. IEEETransaction on Geoscience and Remote Sensing,2011,49(10),3504-3520.
    [25]I Cumming, F Wong, Digital Processing of Synthetic Aperture Radar Data [M].Algorithms and implementation. Norwood,MA: ArtechHouse,2005.
    [26]O Ponce, P Prats, M Rodriguez-Cassola, R Scheiber, A. Reigber, Processing ofCircular SAR Trajactories with Fast Factorized Back-projection [C]. IEEEInternational Geoscience and Remote Sensing Symposium, IGARSS'2011,2011,3692-3695.
    [1]周峰.机载SAR运动补偿和窄带干扰抑制及其单通道GMTI研究.西安电子科技大学博士论文[D],2007.
    [2]安道祥.高分辨率SAR成像处理技术研究.国防科学技术大学博士论文[D],2011.
    [3] Herrmann J, Bottero A G. TerraSAR-X Mission: The New Generation in HighResolution Satellites [C]. Proceeding of Anais XIII Simpósio Brasileiro deSensoriamento Remoto, Florianópolis, Brasil,2007:7063-7070.
    [4]黄源宝.机载合成孔径雷达成像算法及运动补偿的研究.西安电子科技大学博士论文[D],2005.
    [5] Qisong Wu, Yi Liang, Mengdao Xing, Chengwei Qiu and Zheng Bao, T Yeo,Focusing of Tandem Bistatic-Configuration Data with Range Migration Algorithm[J]. IEEE Geoscience and Remote Sensing Letter,2011,8(1),88-92.
    [6] Davidson W G, Cumming G I, Ito R M. A Chirp Scaling Approach for ProcessingSquint Mode SAR Data [J]. IEEE Transaction on Aerospace and ElectronicSystems,1996,32(1):121-133.
    [7] Zhenhua Zhang, Mengdao Xing, Jinshan Ding, et al. Focusing Parallel BistaticSAR Data Using the Analytic Transfer Function in the Wavenumber Domain[J].IEEE Transaction on Geoscience and Remote Sensing, Nov.2007,45(11):3633–3645.
    [8] R Raney, H Runge, R Bamler, I Cumming, F Wong, Precision SAR ProcessingUsing Chirp Scaling [J]. IEEE Transaction on Geoscience and Remote Sensing,1994,32(4),786-799.
    [9] Neo Y, Wong F, Cumming G I. A Two-dimensional Spectrum for Bistatic SARProcessing Using Series Reversion [J]. IEEE Geoscience and Remote SensingLetters,2007,4(1):93–96.
    [1] Carrara W G, Goodman R S, and Majewski R M. Spotlight Synthetic ApertureRadar: Signal Processing Algorithms [M]. Boston: Artech House,1995.
    [2]金丽花.斜视聚束合成孔径雷达雷达成像算法研究,上海交通大学博士论文[D].2008.
    [3]孙光才.多通道波束指向高分辨SAR和动目标成像技术.西安电子科技大学博士论文[D].2012.
    [4]井伟.星载SAR宽场景高分辨成像技术研究.西安电子科技大学博士论文[D].2008.
    [5]王国栋,周荫清,李春升.高分辨率星载聚束式SAR的Deramp Chirp Scaling成像算法[J].电子学报,2003,31(12):1784-1789.
    [6] Moreira A. Real-time Synthetic Aperture Radar Processing with a New SubapertureApproach [J]. IEEE Transaction on Geoscience and Remote Sensing,1992,30(4):714-722.
    [7] Li Yanping, Zhang Zhenhua, Xing Mengdao, et al. Bistatic Spotlight SARProcessing Using the Frequency-scaling Algorithm [J]. IEEE Geoscience andRemote Sensing Letters,2008,5(1):48-52.
    [8] Lanari R, Tesauro M, and Sansosti E, et al.Spotlisht SAR Data Focusing based on aTwo-step Processing Approach [J].IEEE Transaction on Geoscience and RemoteSensing,2001,39(9):1993-2004.
    [9] Mittermayer J, Moreira A, and Loffeld O. Spotlight SAR Data Processing Using theFrequency Scaling Algorithm [J]. IEEE Transaction on Geoscience and RemoteSensing,1999,37(5):2198-2214.
    [10]Zhang Zhenhua, Xing Mengdao, Ding Jinshan, et al. Focusing Parallel BistaticSAR Data Using the Analytic Transfer Function in the Wavenumber Domain [J].IEEE Trans on Geoscience and Remote Sensing,2007,45(11):3633–3645.
    [11]Wu Qi-song, Liang Yi, Xing Meng-dao, et al. Focusing of TandemBistatic-configuration Data with Range Migration Algorithm [J]. IEEE Geoscienceand Remote Sensing Letters,2011,8(1):88-92.
    [12]郭汉伟,王岩,梁甸农等。小波插值在机载超宽带合成孔径雷达成像中的应用。航空学报,2003,24(6),551-554.
    [13]Davidson W G, Cumming G I, Ito R M. A Chirp Scaling Approach for ProcessingSquint Mode SAR Data [J]. IEEE Transaction on Aerospace and ElectronicSystems,1996,32(1):121-133.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700