水下爆炸冲击作用下圆柱壳的动力响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
潜艇结构在水下爆炸冲击作用下的动态响应机理与分析非常复杂,是潜艇抗冲击设计的关键技术之一,在潜艇的生命力设计中占有非常重要的地位。本论文以带覆盖层的圆柱壳和复合材料圆柱壳为对象,对其在水下爆炸冲击响应进行了理论研究、数值计算和实验研究。
     本文首先对反射尾流虚源模型做了进一步研究,推导了反映声波与壳体相互作用的压力方程与壳体表面径向速度的关系式,解决了水下爆炸环境下作用在无限长圆柱壳表面的流体动压力(辐射压力与散射压力)计算分析问题,为求解不同形式的壳体结构在冲击波作用下的响应奠定基础。
     随后利用上述模型及Flugge弹性圆柱壳的动力学壳理论,研究分析了阶跃和指数衰减两种平面冲击波作用下的无限长单层圆柱壳、双层圆柱壳和复合材料圆柱壳瞬态响应。计算所得结果与已有结果相比较表明:对于平面波作用下的弹性圆柱壳的动力响应,本文采用的RAVS模型给出了很好的近似。通过大量数值计算,研究了各种形式的圆柱壳几何参数和材料参数对冲击响应的影响,得到了一些有价值的结论。
     本文最后对水下爆炸冲击波作用下圆柱壳结构响应开展了试验研究,对理论成果的正确性进行了验证,总的来说,数值计算结果与试验测量结果有相当的一致性。同时通过试验研究发现:在圆柱壳外表敷设弹性橡胶层有利于改善水下爆炸冲击环境,橡胶层使径向加速度峰值减小,但壳体应力有增大的现象。
     全文为带覆盖层的圆柱壳体水下爆炸冲击响应问题提供了一种新的理论计算方法和参数优化设计方法。在本文所提出的模型和求解方法的基础上,和实验相结合,进行一定的修正,可进一步提出一个可应用于概念设计阶段的抗冲击能力预先评估的半解析/半经验工程估算方法。
The dynamic response of submarine subjected to explosion (UNDEX) was so complex that became one of the key technologies to anti-explosion, and played an important role in submarine rescuing design. The dissertation studied the cylindrical shell with sound absorption material stuck to the outer hull and the composite cylindrical shell did numerical calculation and experiment research about dynamic response on UNDEX.
     First, the Reflected-After flow Virtual-Source model (RAVS) was researched. At the same time, the formulation of fluid-structure interaction and the expression of velocity of shell were got. The problem about the outer fluid dynamic pressure on infinite long cylindrical shell in UNDEX was solved, which became the base of dynamic response on different shell structure.
     Then, the above theory and Flugge were introduced to analyze the computation procedure about UNDEX response of an infinite long cylindrical shell for different types such as single layer, double layer, and composite material. The comparison of calculation showed that RAVS model gave a good approximation.
     At last, experimental validation of the computation methods was done. The UNDEX experiments were performed on the cylindrical models with and without the sound absorbing layer. The experimental results were compared well with calculated results. At the same time, some useful conclusions were got just as the elastic cylindrical shell could decrease the wave shock.
     The dissertation presents a new formulation for solving the UNDEX dynamic response of cylindrical shell with sound absorption material stuck to the outer hull. The formulation could be further combined with experiment results to obtain a theoretical and empirical mixed method for concept design stage.
引文
[1]联邦德国国防军舰艇建造规范BV0430/85冲击安全性[M]中国舰船研究院科技发展部,1998
    [2] Cole RH. Underwater Explosions[M]. Princeton University Press, 1948.
    [3] Keil AH. The response of ships to underwater explosions[J]. SNAME 1961; 69: p. 366-410.
    [4] Taylor GI. The pressure and impulse of submarine explosion waves on plates[C]. In: Underwater Explosion Research, Vol. I, Office of Naval Research, 1950. p. 1155-1173.
    [5] Carrier GF. The interaction of an acoustic wave and an elastic cylindrical shell[R]. Technical Report No. 4, Brown University, Providence, RI, 1951.
    [6] Snay HG, Christian EA. The response of air-backed plates to high-amplitude underwater shockwaves[R]. NAVORD, Report 2462, 1952.
    [7] Mindlin RD, Bleich HH. Response of an elastic cylindrical shell to a transverse, step shock wave. Trans. ASME[J], Journal of Applied Mechanic 1953; 20: 189-195.
    [8] Murray WW. Interaction of a spherical acoustic wave with a beam of circular cross section[R]. Underwater Explosions Research Division, Report 1-55, 1955.
    [9] Haywood JH. Response of an elastic cylindrical shell to a pressure pulse[J]. Quarterly Journal of Mechanics and Applied Mathematics 1958; XI (2): 129-141.
    [10] Payton RG. Transient interaction of an acoustic wave with a circular cylindrical shell[J]. Journal of the Acoustical Society of America 1960; 32: 722-729.
    [11] Peralta LA, Raynor S. Initial response of a fluid-filled elastic circular, cylindrical shell to a shock wave in acoustic medium[J]. J. Acoust. Soc. Am. 1964; 36: 476-488.
    [12] Forrestal MJ. Response of an elastic cylindrical shell to a transverse acoustic pulse[J]. Trans. ASME, Series E, Journal of Applied Mechanics 1968; 35: 614-616.
    [13] Geers TL. Excitation of an elastic cylindrical shell by a transient acoustic wave[J]. Trans. ASME, Series E, Journal of Applied Mechanics 1969; 36: 459-469.
    [14] Tang SC, Yen DHY. Interaction of a plane acoustic wave with an elastic spherical shell[J]. The Journal of the Acoustical Society of America 1970; 47: 1325-1333.
    [15] Bleich HH, Sandler IS. Interaction between structures and bilinear fluids[J]. Int. J. of Solids and Structures 1970; 6: 617-639.
    [16] Shaw RP, English JA. Transient acoustic scattering by a free (pressure release) sphere[J]. Journal of Sound and Vibration 1972; 20: 321-331.
    [17] Shaw RP. Transient scattering by a circular cylinder[J]. Journal of Sound and Vibration 1975; 42: 295-304.
    [18] Schechter RS, Bort RL. The response of two fluid-coupled plates to an incidentpressure pulse[R]. Naval Research Laboratory, Memorandum report 4647, 1981.
    [19] Huang H. Transient interaction of plane acoustic waves with a spherical elastic shell[J]. J. Acoust. Soc. Am. 1969; 45: 661-670.
    [20] Huang H, Lu YP, Wang YF. Transient interaction of spherical acoustic waves and a spherical elastic shell[J]. J. Appl. Mech. 1971; 38: 71-74.
    [21] Huang H, Mair HU. Neo-classical solution of transient interaction of plane acoustic waves with a spherical elastic shell[J]. Shock and Vibration 1996; 3: 85-98.
    [22] Huang H. Transient response of two fluid-coupled spherical elastic shells to an incident pressure pulse[J]. The Journal of the Acoustical Society of America 1979; 65: 881-887.
    [23] Huang H. An exact analysis of the transient interaction of acoustic plane waves with a cylindrical elastic shell[J]. Journal of Applied Mechanics 1970; 37: 1091-1099.
    [24] Huang H. Transient bending of a large elastic plate by an incident spherical pressure wave[J]. Journal of Applied Mechanics 1974; 41: 772-776.
    [25] Huang H. Transient response of two fluid-coupler cylindrical elastic shells to an incident pressure pulse[J]. Journal of Applied Mechanics 1979; 46: 513-518.
    [26] Huang H, Wang YF. Transient interaction of spherical acoustic waves and a cylindrical elastic shell[J]. J. of the Acoustical Society of America 1970; 48: 228-235.
    [27] Huang H. A qualitative appraisal of the doubly asymptotic approximation for transient analysis of submerged structures excited by weak shock waves[R]. AD-A015941, 1975.
    [28] Huang H, Everstine GC, Wang YF. Retarded potential techniques for the analysis of submerged structures impinged by weak shock waves[C]. In: Belytschko T, Geers TL editors. Computational Methods for Fluid-Structure Interaction Problems, ASME Applied Mechanics Symposia Series AMD-Vol.26. New York: ASME, 1977. p. 83-93.
    [29] Huang H, Wang YF. Asymptotic fluid-structure interaction theories for acoustic radiation prediction[J]. The Journal of the Acoustical Society of America 1985; 77: 1389-1394.
    [30] Huang H. Numerical analysis of the linear interaction of pressure pulses with submerged structures[J]. In: Smith CS, Clarke JD editors. Advance in Marines Structures. 1986. p. 347-365.
    [31] Huang H, Kiddy KC. Transient interaction of a spherical shell with an underwater explosion shock wave and the subsequent pulsating bubble[C]. In: Dynamic Response of Structures to High-Energy Excitations, American Society of Mechanical Engineers AMD-Vol. 127/PVP-Vol. 225, 1991. p. 1-11.
    [32] Huang H, Kiddy KC. Transient interaction of a spherical shell with an underwater explosion shock wave and subsequent pulsating bubble[J]. Shock and Vibration 1995; 2: 451-460.
    [33] Hung CF, Hsu PY, Hwang-Fuu JJ. Elastic shock response of an air-backed plate to underwater explosion[J]. International Journal of Impact Engineering 2005; 31: 151-168.
    [34] Haxton RS, Haywood JH. Linear elastic response of a ring stiffened cylinder to underwater explosion loading[C]. In: Smith CS, Clark JD, editors. Advances in Marine Structures. Elsevier Applied Science Publishers, 1986. p. 366-389.
    [35] Jones-Oliveira JB. Transient analytic and numerical results for the fluid-solid interaction of prolate spheroidal shells[J]. J. of the Acoustical Society of America 1996; 99: 392-407.
    [36] Zhang P, Geers TL. Excitation of a fluid-filled, submerged spherical shell by a transient acoustic wave[J]. J. of the Acoustical Society of America 1993; 93: 696-705.
    [37] Sprague MA. Advances in computation methods for fluid- structure- interaction problems[D]. Master’s thesis, University of Colorado at Boulder, 1999.
    [38] Sprague MA, Geers TL. Response of empty and fluid-filled, submerged spherical shells to plane and spherical, step-exponential acoustic waves[J]. Shock and Vibration 1999; 6: 147-157.
    [39] Brasek TP. Effect of surface coating on one-dimensional system subjected to unit step pressure wave[J]. Naval Postgraduate School, Monterey, California, NPS-ME-94-006, 1994.
    [40] Iakovlev S. Interaction of a spherical shock wave and a submerged fluid-filled circular cylindrical shell[J]. Journal of Sound and Vibration 2002; 255: 615-633.
    [41] Iakovlev S. Influence of a rigid coaxial core on the stress-strain state of a submerged fluid-filled circular cylindrical shell subjected to a shock wave[J]. Journal of Fluids and Structures 2004; 19: 957-984.
    [42] Iakovlev S. External shock loading on a submerged fluid-filled cylindrical shell[J]. Journal of Fluids and Structures 2006; 22: 997-1028.
    [43] Iakovlev S. Submerged fluid-filled cylindrical shell subjected to a shock wave: Fluid-structure interaction effects[J]. Journal of Fluids and Structures 2007; 23: 117-142.
    [44] Rabczuk T, Samaniego E, Belytschko T. Simplified model for predicting impulsive loads on submerged structures to account for fluid-structure interaction[J]. International Journal of Impact Engineering 2007; 34: 163-177.
    [45] Zong Z, Lam KY. Viscoplastic response of a circular plate to an underwater explosion shock[J]. Acta Mechanica 2001; 148: 93-104.
    [46] Hammond L, Saunders D. The Applicability of Scaling Laws to Underwater Shock Tests[R]. DSTO-GD-0162, 1997.
    [47] Fallon DJ, Costanzo FA, Handleton RT, Camp GC. Application of NASTRAN/COSMIC in the analysis of ship structures to underwater explosion shock[C]. In: Fifteenth NASTRAN Users' Colloquium, NASA CP-2481, August 1987. p. 184-206.
    [48] Mair HU, Huang H, Andrys Jr BJ, Giltrud ME. Lagrangian hydrocode modeling of underwater explosive/target interaction[C]. In: Proceedings of the 61st Shock and Vibration Symposium, Vol. V, 1990. p. 79-89.
    [49] Sandberg G. A new finite element formulation of shock-induced hull cavitatio[J]n. Computer Methods in Applied Mechanics and Engineering 1995; 120: 33-44.
    [50] Shin YS, Hooker DT. Damage response of submerged imperfect cylindricalstructures to underwater explosion[J]. Computers & Structures 1996; 60: 683-693.
    [51] Brasek TP. Response of dual-layered structures subjected to shock pressure wave[D]. Master thesis, Naval Postgraduate School, Monterey, California, 1994.
    [52] Shin YS, Chisum JE. Modeling and simulation of underwater shock problems using a coupled Lagrangian-Eulerian analysis approach[J]. Shock and Vibration 1997; 1: 1-10.
    [53] Chisum JE, Shin YS. Multimaterial Eulerian and coupled Lagrangian-Eulerian finite element analysis of underwater shock problems[R]. Naval Postgraduate School, Report NPS-ME-95-001, 1995.
    [54] Liang CC, Lai WH, Hsu CY. Study of the nonlinear responses of a submersible pressure hull[J]. International Journal of Pressure Vessels and Piping 1998; 75: 131-149.
    [55] Aanhold JE, van Meijer GJ, Lemmen PPM. Underwater shock response analysis of a floating vessel[J]. Shock and Vibration 1998; 5: 53-59.
    [56] Young SS, Chisum JE. Modelling and simulation of underwater shock problems using a coupled Lagrangian-Eulerian analysis approach[J]. Shock and Vibration 1997; 4: 1-10.
    [57] Kim KS, Jo CH, Choi SB, Kim JH. Dynamic fracture analysis of a ring-stiffened cylinder subjected to a strong acoustic wave[C]. In: Proceedings of the Eleventh International Offshore and Polar Engineering Conference, Stavanger, Norway, 17-22 June 2001. p. 155-159.
    [58] Ramajeyathilagam K, Vendhanb CP, Rao V B. Experimental and numerical investigations on deformation of cylindrical shell panels to underwater explosion[J]. Shock and Vibration 2001; 8: 253-270.
    [59] McCoy RW, Sun CT. Fluid-structure interaction analysis of a thick-section composite cylinder subjected to underwater blast loading[J]. Composite Structures 1997; 37: 45-55.
    [60] Wardlaw AB Jr, Luton JA. Fluid-structure interaction mechanisms for close-in explosions[J]. Shock and Vibration 2000; 7: 265-275.
    [61] Woyak DB. Modeling submerged structures loaded by underwater explosions with ABAQUS/Explicit[J]. 2002 ABAQUS Users’Conference
    [62] Kalavalapally R. Multidisciplinary optimization of a lightweight torpedo structure subjected to underwater explosion[D]. Master thesis, Wright State University, 2005.
    [63] Mair HU. Review: Hydrocodes for structural response to underwater explosions[J]. Shock and Vibration, 1999; 6: 81-96.
    [64] Mair HU. Benchmarks for submerged structure response to underwater explosions[J]. Shock and Vibration 1999; 6: 169-181.
    [65] Shin YS. Ship shock modeling and simulation for far-field underwater explosion[J]. Computers and Structures 2004; 82: 2211-2219.
    [66] Fan SC, Wang K, Yu GY, Lie ST. Spline shell element and plane-wave approximation for dynamic response of submerged structures[J]. Computers and Structures 2001; 79: 1635-1644.
    [67] Felippa CA, DeRuntz JA. Finite element analysis of shock-induced hullcavitation[C]. Computer Methods in Applied Mechanics and Engineering 1984; 44: 297-337.
    [68] Sprague MA, Geers TL. Computational treatments of cavitation effects in near-free-surface underwater shock analysis[J]. Shock and Vibration 2001; 7: 105-122.
    [69] Sprague MA. Advanced computational techniques for the analysis of 3-D fluid-structure interaction with cavitation. Doctor’s thesis, University of Colorado at Boulder, 2002.
    [70] Sprague, MA, Geers TL. A spectral-element method for modelling cavitation in transient fluid-structure interaction. Int[J]. J. Numer. Meth. Eng. 2004; 60: 2467-2499.
    [71] Sprague MA, Geers TL. Erratum to‘A spectral-element method for modelling cavitation in transient fluid–structure interaction’. Int[J]. J. Numer. Meth. Engng 2004; 61: 1976.
    [72] Sprague MA, Geers TL. A spectral-element/finite-element analysis of a ship-like structure subjected to an underwater explosion[J]. Comput. Methods Appl. Mech. Engrg. 2006; 195: 2149-2167.
    [73] Sprague MA, Geers TL. Spectral elements and field separation for an acoustic fluid subject to cavitation[J]. Journal of Computational Physics 2003; 184: 149-162.
    [74] Liu TG, Khoo BC, Yeo KS, Wang C. Underwater shock-free surface–structure interaction[J]. Int. J. Numer. Meth. Engng 2003; 58: 609-630.
    [75] Christon MA, Wineman SJ, Goudreau GL, Foch JD. A mixed time integration method for large scale acoustic fluid-structure interaction[C]. Presented at the American Society of Mechanical Engineers' Winter Annual Meeting, Chicago, IL, 9-11 Nov. 1994.
    [76] Chan SK. A modified finite element procedure for underwater shock analysis[C]. In: Proceedings of the 61st Shock and Vibration Symposium, Vol. 3, San Diego, CA, 1990. p. 87-101.
    [77] Chan SK. An improvement in the modified finite element procedure for underwater shock analysis[J]. In: Proceedings of the 63rd Shock and Vibration Symposium, Arlington, VA, 1992. p. 616-627.
    [78] Trevino T. Applications of arbitrary Lagrangian Eulerian (ALE) analysis approach to underwater and air explosion problems[D]. Master Thesis, Naval Postgraduate School Monterey, California, 2000.
    [79] Krueger SR. Simulation of cylinder implosion initiated by an underwater explosion[D]. Master Thesis, Naval Postgraduate School Monterey, California, 2006.
    [80] Brett JM. Numerical modelling of shock wave and pressure pulse generation by underwater explosions[J]. DSTO-TR-0677, 1998.
    [81] Swegle JW, Attaway SW. On the feasibility of using smoothed particle hydrodynamics for underwater explosion calculations[J]. Comput. Mech. 1995; 17: 151-168.
    [82] Couch R, Faux D. Simulation of underwater explosion benchmark experiments with ALE3D[R]. Lawrence Livermore National Laboratory, Report UCRL-CR-123819, 1996.
    [83] McKeown RM, Grande R, Mentges JM. Simulations of underwater explosions against submerged structures using the DYSMAS/ELC code– Part B: Analysis of an unstiffened cylinder[C]. In: Proceedings of the 65th Shock and Vibration Symposium, Vol. II, 1994. p. 253-261.
    [84] Wardlaw A Jr, McKeown R, Luton A. Coupled hydrocode prediction of underwater explosion damage[C]. In: 48th Bomb and Warhead Conference, May 1999.
    [85] Kiddy KC. Transient interaction of fluid-coupled elastic shell systems using fluid finite elements[R]. Naval Surface Warfare Center, Technical report NSWC TR 81-153, 1981.
    [86] Chertock G. Effects of underwater explosion on elastic structures[C]. In: Propulsion Hydroelasticity, Proceedings of the 4th Symposium on Naval Hydrodynamics, Office of Naval Research, Washington, DC, 1964.
    [87] Geers TL. Residual potential and approximate methods for three dimensional fluid structure interaction problems[J]. J. of the Acoustical Society of America 1971; 49: 1505-1510.
    [88] Geers TL. Doubly asymptotic approximations for transient motions of submerged structures[J]. J. of the Acoustical Society of America 1978; 64: 1500-1508.
    [89] Geers TL, Felippa CA. Doubly asymptotic approximations for vibration analysis of submerged structures[J]. J. Acoust. Soc. Am. 1983; 73: l152-1159.
    [90] Friedman MB, Shaw RP. Diffraction of pulses by cylindrical obstacles of arbitrary cross section[J]. J. Appl. Mech. 1962; 29: 40-46.
    [91] Waldo Jr GV. An approximate model for the pressure that develops when an acoustic wave interacts with a curved and complaint surface[C]. In: Proceedings of the 65th Shock and Vibration Symposium, Vol. II, 1994. p. 185-198.
    [92] Lam KY, Zhang ZJ, Gong SE, Chen ES. Transient response of a two-layered elastic cylindrical shell impinged by an underwater shock wave[J]. Composites Part B: engineering 1998; 29B: 673-685.
    [93] Lam KY, Zhang ZJ, Gong SW, Chen ES. Transient response of orthotropic composite cylinder exposed to underwater shock wave[J]. Composite Structures 1998; 43: 179-194.
    [94] Everstine GC. A NASTRAN implementation of the doubly asymptotic approximation for underwater shock response[C]. In: NASTRAN: Users' Experiences, NASA TM X-3428, National Aeronautics and Space Administration, Washington, DC, 1976. p. 207-228.
    [95] DeRuntz JA, Brogan FA. Underwater shock analysis of non-linear structures, a reference manual for the USA-STAGS code[R]. Lockheed Palo Alto Research Laboratory, Report No. LMSC-D633864, 1979.
    [96] Neilson HC, Everstine GC, Wang YF. Transient response of a submerged fluid-coupled double-walled shell structure to a pressure pulse[J]. Journal of the Acoustical Society of America 1981; 70: 1776-1782.
    [97] Zilliacus S. Fluid-structure interaction and adina[J]. Computers and Structures 1983; 17: 763-773.
    [98] Giltrud ME. The numerical prediction of the dynamic response of a cylindrical shell in an acoustic medium[R]. Naval Surface Weapons Center, Technical report NSWC TR 79-287, 1980.
    [99] Everstine GC, Henderson FM, Schuetz LS. Coupled NASTRAN/boundary element formulation for acoustic scattering[C]. In: Fifteenth NASTRAN Users' Colloquium, August, 1987. p. 250-265.
    [100] Everstine GC. Treatment of static preload effects in acoustic radiation and scattering[C]. In: Sixteenth NASTRAN Users' Colloquium, NASA CP-2505, National Aeronautics and Space Administration, Washington, DC, 1988. p. 138-152.
    [101] Everstine GC, Cheng RS. Coupled BE/FE/BE approach for scattering from fluid-filled structures[C]. In: Eighteenth NASTRAN Users' Colloquium, NASA CP-3069, 1990. p. 150-164.
    [102] Everstine GC, Henderson FM. Coupled finite element/boundary element approach for fluid-structure interaction[J]. J. Acoust. Soc. Am. 1990; 87: 1938-1947.
    [103] Miller RD. On the explicit modeling of fluid regions using DYNA/DAA[C]. In: Proceedings of the 64th Shock and Vibration Symposium, Vol. I, 1993. p. 435-445.
    [104] Miller RD, Moyer ET, Amir GG. UNDEX response prediction using DYNA/DAA with DAA2[C]. In: Proceedings of the 64th Shock and Vibration Symposium, Vol. I, 1993. p. 446-456.
    [105] Miller RD. On the fluid–structure coupling features of DYNA/DAA using a reduced fluid mesh (RFM)[C]. In: Proceedings of the 65th Shock and Vibration Symposium, Vol. I, 1994. p. 207-216.
    [106] Arden KE. Use of MSC/NASTRAN in predicting structural response to an underwater explosion[C]. In: Proceedings of MSC 1995 World Users' Conference, 1995. Paper No. 51.
    [107] Liang CC, Hsu CY, Lai WH. A study of transient responses of a submerged spherical shell under shock waves[J]. Ocean Engineering 2000; 28: 71-94.
    [108] Kwon YW, Cunningham RE. Comparison of USA-DYNA finite element models for a stiffened shell subject to underwater shock[J]. Computers and Structures 1998; 66: 127-144.
    [109] Hallquist JO, Stillman DW. VEC/DYNA3D users manual (nonlinear dynamic analysis of structures in three dimensions[R]. Livermore Software Technology Corporation Report 1018, 1990.
    [110] DeRuntz JA. The underwater shock analysis code and its applications[C]. In: Proceedings of the 60th Shock and Vibration Symposium, Virginia Beach, VA, 1989.
    [111] Santiago LD. Fluid-interaction and cavitation effects on a surface ship model due to an underwater explosion[D]. Master Thesis, Naval Postgraduate School, Monterey, California, 1996.
    [112] Shin YS, Santiago LD. Surface ship shock modeling and simulation: two-dimensional analysis[J]. Shock and Vibration 1998; 5: 129-137.
    [113] Beiter KA. The effect of stiffener smearing in a ship-like box structure subjected to an underwater explosion[D]. Master Thesis, Naval Postgraduate School, Monterey, California, 1998.
    [114] Wood SL. Cavitation effects on a ship-like box structure subjected to anunderwater explosion[D]. Master Thesis, Naval Postgraduate School, Monterey, California, 1998.
    [115] Smith JR. Effect of fluid mesh truncation on the response of a floating shock platform (FSP) subjected to an underwater explosion (UNDEX)[D]. Master Thesis, Naval Postgraduate School, Monterey, California, 1999.
    [116] Schneider NA. Prediction of surface ship response to severe underwater explosions using a virtual underwater shock environment[D]. Master Thesis, Naval Postgraduate School, Monterey, California, 2003.
    [117] Schneider NA, Shin YS. Ship shock trial modeling and simulation of USS WINSTON S. CHURCHILL (DDG 81)[R]. NPS-ME-03-004, 2003.
    [118] Hart DT. Ship shock trial simulation of USS WINSTON S. CHURCHILL (DDG81): surrounding fluid effect[D]. Master Thesis, Naval Postgraduate School, Monterey, California, 2003.
    [119] Avcu M. Fluid-structure interaction effects resulting from hull appendage coupling[D]. Master Thesis, Naval Postgraduate School, Monterey, California, 2005.
    [120] Didoszak JM. Parametric studies of DDG-81 ship shock trial simulations[D]. Master Thesis, Naval Postgraduate School, Monterey, California, 2004.
    [121] Malone PE. Surface ship shock modeling and simulation: extended investigation[D]. Master Thesis, Naval Postgraduate School, Monterey, California, 2000.
    [122] Petrusa DC. Evaluation and analysis of DDG-81 simulated athwartship shock response[D]. Master Thesis, Naval Postgraduate School, Monterey, California, 2004.
    [123] Gong SW, Lam KY. Transient response of stiffened composite submersible hull subjected to underwater explosive shock[J]. Composite Structures 1998; 41: 27-37.
    [124] Gong SW, Lam KY. Transient response of floating composite ship section subjected to underwater shock[J]. Composite Structures 1999; 46: 65-71.
    [125] Gong SW, Lam KY. Analysis of layered composite beam to underwater shock including structural damping and stiffness effects[J]. Shock and Vibration 2002; 9: 283-291.
    [126] Gong SW, Lam KY. On attenuation of floating structure response to underwater shock[J]. International Journal of Impact Engineering 2006; 32: 1857-1877.
    [127] Liang CC, Tai YS. Shock responses of a surface ship subjected to noncontact underwater explosions[J]. Ocean Engineering 2006; 33: 748-772.
    [128] Fa SC, Li SM, Yu GY. Dynamic fluid-structure interaction analysis using boundary finite element method-finite element method[J]. Journal of Applied Mechanics 2005; 72: 591-598.
    [129] Bergersen JKL. Effect of surface coating on cylinders subjected to underwater shock[D]. Naval Postgraduate School, Monterey, California. Master thesis, 1992.
    [130] Lie ST, Yu G. Multi-domain fluid-structure interaction analysis with a stable time domain BEM/FEM coupling procedure[J]. Engineering Computations 2002; 19: 6-21.
    [131] Dyka CT, Ingel RP, Kirby GC. Stabilizing the retarded potential method for transient fluid-structure interaction problems[J]. International Journal for Numerical Methods in Engineering 1997; 40: 3767-3783.
    [132] Dyka CT, Ingel RP. Transient fluid-structure interaction in naval applications using the retarded potential method[J]. Engineering Analysis with Boundary Elements 1998; 21: 245-251.
    [133] Yu GY, Lie ST, Fan SC. Stable boundary element method/finite element method procedure for dynamic fluid-structure interactions[J]. Journal of Engineering Mechanics 2002; 128: 909-915.
    [134] Vasudevan R, Ranlet D. Submerged shock response of a linearly elastic shell of revolution containing internal structure - user’s manual for the ELSHOK code[R]. Defense Nuclear Agency, Report DNA-TR-81-184, 1982.
    [135] Daddazio RP, Atkatsh RS, Sandler IS, Chans S, Stultz KG, Ranlet Jr D, Smilowitz R. Inelastic response of structures subjected to underwater explosions[C]. In: Proceedings of the 2nd Asia-Pacific Conference on Shock & Impact Loads, 1997.
    [136] Ranlet D, Daddazio RP. A submerged shock response problem suitable for use as a benchmark[C]. In: Proceedings of the 68th Shock and Vibration Symposium, 1997. p. 96-104.
    [137] Atkatsh RS, Bieniek MP, Baron ML. Dynamic elasto-plastic response of shells in an acoustic medium– EPSA code[J]. Int. J. of Numerical Methods in Engineering 1983; 19: 811-824.
    [138] Atkatsh R, Chan KK, Daddazio R, Ranlet D. Theoretical developments for the EPSA computer program[R]. Defense Nuclear Agency, Technical report DNA-TR-87-155, 1987.
    [139] Atkatsh RS, Chan KK, Stultz Jr KG. EPSA reference manual[R]. Defense Nuclear Agency, Report DNA-TR-91-119, 1992.
    [140] Atkatsh RS, Chan KK, Stultz Jr KG, Dillworth R, Miranda ML. EPSA-II Input Handbook– Revision G[M]. Weidlinger Associates, 1994.
    [141] Chan KK, Atkatsh RS. EPSA topics: transient response of submerged spherical shells[J]. In: Proceedings of the 62nd Shock and Vibration Symposium, Vol. III, 1991. p. 578-586.
    [142] Daddazio RP, Stultz KG, Chan KK. Dynamic inelastic shock analysis of submerged stiffened shells using EPSA[C]. In: Proceedings of the 60th Shock and Vibration Symposium, Vol. V, 1989. p. 153-166.
    [143] Kalumuck KM, Duraiswami R, Chahine GL. Bubble dynamics fluid-structure interaction simulation by coupling fluid BEM and structural FEM codes[J]. J. of Fluids and Structures 1995; 9: 861-883.
    [144] Kalumuck KM, Chahine GL, Duraiswami R. Analysis of the response of a deformable structure to underwater explosion bubble loading using a fully coupled fluid-structure interaction procedure[C]. In: Proceedings of the 66th Shock and Vibration Symposium, Vol. II, 1995. p. 277-286.
    [145] Dike JJ, Jin PS, Revelli VD, Trento WP. Linking a hydrodynamic code and afinite element code to predict underwater explosion damage[R]. Sandia National Laboratory, Report SAND 92-8619/UC-705, 1993.
    [146] Slater JE, Erickson DA. Analysis of fluid-structure interaction during underwater explosions[C]. In: Proceedings of the 4th Canadian CFD Conference, 1996. p. 287-292.
    [147]刘建湖,吴有生.舰船非接触水下爆炸动力学的理论和应用[D].中国船舶科学研究中心博士论文,2002.3.
    [148]刘建湖、吴有生等,玻璃钢结构在水下爆炸冲击波作用下的动响应研究[J],船舶力学,2000;4:51-57
    [149]谌勇,沈荣赢.舰船板壳结构受冲击载荷时的变形及破损机理研究[D].上海交通大学博士学位论文,2005.11.
    [150] Waldo GV Jr. Reflected-afterflow virtual-source model compared to exact calculations for elastic cylinders attached by planar waves[J]. Shock and Vibration 1997; 4: 93-102.
    [151]姚熊亮,王玉红,史冬岩,候健.圆筒结构水下爆炸数值实验研究[J].哈尔滨工程大学学报,2002;Vol.23(1).
    [152]姚熊亮等.结构参数变化对双层圆柱壳冲击响应的影响[J].哈尔滨工程大学学报,2006;27:477-483
    [153] Kwon YW, Fox PK. Underwater shock response of a cylinder subjected to a side-on explosion[J]. Computers & Structures 1993; 48: 637-646.
    [154] Arami M, Kakinouchi T, Shibue T. Structural Response of a Thin Plate by Underwater Explosion Loading[C]. In: Proceedings of the Eleventh International Offshore and Polar Engineering Conference, Stavanger, Norway, 17-22 June 2001. p. 331-336.
    [155] Ergin A. The response behaviour of a submerged cylindrical shell using the doubly asymptotic approximation method (DAA)[J]. Computers and Structures 1997; 62: 1025-1034.
    [156] Brett JM, Yiannakopoulos G, van der Schaaf PJ. Time-resolved measurement of the deformation of submerged cylinders subjected to loading from a nearby explosion[J]. International Journal of Impact Engineering 2000; 24: 875-890.
    [157] Reid WD. The response of surface ships to underwater explosions[R]. DSTO-GD-0109, 1996.
    [158] Yiannakopoulos G. Acceleration measurements on naval vessels undergoing explosive shock testing[R]. AD-A268652, 1993.
    [159] Chung M, Brett J. Assessment of underwater blast effects on scaled, submerged cylindrical objects[R]. DSTO-TR-0575, 1997
    [160] Fiessler B, Han DK, Wardlaw Jr AB. Coupled hydrocode simulation of the Seneca lake flat plate test[C]. In: Proceedings of the 66th Shock and Vibration Symposium, Vol. III, 1995. p. 219-227.
    [161] Goertner JF, Thrun R, Berry JE. Underwater explosion bubble collapse against a flat plate[R]. 1987 NSWC Hydrotank Test Series Pressure Data Report, Naval Surface Warfare Center, Technical report NSWCDD/TR-93/98, 1993.
    [162] Thrun R, Goertner J, Harris G. Underwater explosion bubble collapse againsta flat plate[R]. Naval Surface Warfare Center, Technical report NSWCDD/TR-92/482, 1993.
    [163] Schmidt RM, Voss ME, Housen KR, Holsapple KA. Subscale experiments to measure shock and bubble loading on responding structures[C]. In: Sloshing, Fluid-Structure Interaction and Structural Response Due to Shock and Impact Loads, ASME PVP-Vol. 272, 1994.
    [164] Talley M, Mills D. Internal fluid models[R]. Naval Surface Warfare Center, Report CARDEROCKDIV-SSM-69-94/8, 1994.
    [165] McClure C. Preliminary report on explosive field tests in support of the hull deformation/rupture study[R]. Naval Surface Warfare Center, Technical note NSWCDD/TN-93/34, 1993.
    [166] Andelfinger U. Simulations of underwater explosions against submerged structures using the DYSMAS/ELC code– Part A[C]. In: Proceedings of the 65th Shock and Vibration Symposium, Vol. II, 1994. p. 243-251.
    [167] Lewis MW, Wilson TL. Response of a water-filled spherical vessel to an internal explosion[R]. Los Alamos, Draft report, 1996.
    [168] Gifford LN, Carlberg JR, Wiggs AJ, Sickles JB. Explosive testing of full thickness precracked weldments[R]. David Taylor Research Center, Report DTRC-SSPD-88-172-42, 1988.
    [169] Talley MA. Deep depth UNDEX simulator study[C]. In: Proceedings of the 62nd Shock and Vibration Symposium, Vol. IV, 1991. p. 807- 807T.
    [170] Shima A, Tomita Y, Gibson DC, Blake JR. The growth and collapse of cavitation bubbles near composite surfaces[J]. J. of Fluid Mechanics 1989; 203: 199-214.
    [171] Sandusky H. Dynamic measurements of plastic deformation in a water-filled aluminum tube in response to detonation of a small explosive charge[C]. In: Proceedings of the 67th Shock and Vibration Symposium, 1996.
    [172] Slater JE, Rude G. Experimental study of fluid–structure interaction during close-proximity underwater explosions[C]. In: Proceedings of the ASME PVP-96 Conference on Structures under Extreme Loading Conditions, Vol. 325, 1996. p. 1-10.
    [173] Waldo Jr GV. Comparison of the Virtual-Source Model to Exact Calculations[C]. In: Proceedings of the 66th Shock and Vibration Symposium, Vol. 1, October 1995.
    [174]《振动与冲击手册》编辑委员会,振动与冲击手册[M]第一卷基本理论与分析方法.国防工业出版社,1988; pp531-536
    [175] Love AEH. A treatise on the mathematical theory of elasticity[M]. New York: Dover Publications, 1944.
    [176] Flugge W. Stress in shells[M]. Berlin: Springer-Verlag, 1962.
    [177] DeRuntz JA, Geer TL, Felippa CA. The underwater shock analysis code (USA-Version 3)[R]. DNA 5615F, Defense Nuclear Agency, Washington, DC, 1980.
    [178] Florence AL, Abrahamson GR. A theory for critical loads to damage a cylindrical shell by a large underwater explosion[R]. AD-A042074, 1977.
    [179] Mouritz, AP, Saunders DS, Buckley S. The Damage and Failure of GRP Laminates by Underwater Explosion Shock Loading[J]. Composites 1994; 25: 431-437.
    [180] Mouritz AP. The effect of processing on the underwater explosion shockbehaviour of GRP laminates[J]. J. of Composite Material 1995; 29: 2488-2503.
    [181] Mouritz AP. The damage to stictched GRP laminates by underwater explosion shock loading[J]. Composite Science and Technology 1995; 55: 365-374.
    [182] Mouritz AP. The effect of underwater explosion shock loading on the flexural properties of GRP laminates[J]. Intl. J. Impact Engng. 1996; 18: 129-139.
    [183] Stultz Jr KG, Atkatsh RS, Chan KK. Single hull versus double hull design shock response of underwater vessels[C]. In: Proceedings of the 65th Shock and Vibration Symposium, Vol. II, 1994. p. 209-218.
    [184]郝志明,徐有矩等.横向冲击下短梁的剪切破坏研究[J].爆炸与冲击,22(1),2002,pp.52-55.
    [185]李卧东,陈胜宏.结构振动分析中的无网格法[J].计算力学学报,2003;20(6): pp756-763.
    [186]李卧东,陈晓波.无网格法在断裂力学中的应用[J].岩土力学与工程学报,2001;20(4): pp462-466.
    [187]李玉节,李国华,赵本立等,双层壳体对水下爆炸作用的影响研究[J],船舶力学,2006:10 :126-134
    [188]廖祖伟等,钢板泡沫材料复合夹层板抗爆性能试验研究[J],地下空间与工程学报,2005;1:402-07
    [189]刘理,刘士光,李天匀.轴向冲击载荷下圆柱壳的弹塑性屈曲分析[J].爆炸与冲击,20(2),2000,pp.168-171.
    [190]刘润泉,白雪飞,朱锡.舰船单元结构模型水下接触爆炸破口实验研究[J].海军工程大学学报,200l; 13(5): pp41-46.
    [191]刘永明,沈荣瀛,严济宽.减振浮筏系统多向冲击谱研究[J].上海交通大学学报,1997; Vol.31(9): pp13-17.
    [192]路石.地下开挖的无限元数值分析[J].铁道建筑, 2001(6).
    [193]穆建春,张铁光.刚塑性自由梁中部在横向冲击下的初始变形模式[J].爆炸与冲击,20(1),2000,pp.8-13.
    [194]裴智勇,吴卫国,翁长俭.高速船舱壁加筋板流固耦合振动分析[J].工程力学,2003;Vol. 20(2): pp159-162.
    [195]任志刚,田志敏,楼梦麟,聚氨酸泡沫复合夹层板抗爆特性分析[J],同济大学学报,2003:31:6-10.
    [196]宋宏伟,赵桂范,杜星文.提高汽车耐撞性的能量吸收结构撞击吸能特性研究[J].汽车技术,2000;11:pp11-14.
    [197]孙杰,朱立新等,玻璃钢蜂窝夹层复合材料抗爆性能研究[J],工程塑料应用,2003;v31:40-43
    [198]谭林森.组合柱壳在流场中受冲击载荷作用动响应分析[J].华中理工大学学报,1998;Vol. 26(4): pp103-105.
    [199]汪玉,华宏星.舰船现代冲击理论及应用[M].北京:科学出版社,2005年.
    [200]汪玉.舰艇水下爆炸试验及冲击分析技术[M].国防工业出版社,北京,2007年.
    [201]王国治.浮筏隔振装置抗基础冲击的研究[J].噪声与振动控制,2000(6): pp10-13.
    [202]王礼立.爆炸与冲击载荷下结构和材料动态响应研究新进展[J].爆炸与冲击,21(2),2001,pp.81-88.
    [203]王熙,卢国兴,余同希.复合材料管状结构的能量吸收性能[J].工程力学,2003; Vol.20: pp155-160.
    [204]魏俊,赵建华,梁越明,李剑荣.复合材料板受低速冲击时能量吸收的实验研究[J].实验力学,1998;Vol.13: pp207-211.
    [205]席丰,杨嘉陵,强脉冲载荷作用下弹-塑性薄圆板大绕度动力响应[J],爆炸与冲击,20(4),2000,pp.380-185.
    [206]尹华杰.无网格法及其在电磁场计算中的应用展望[J].电机与控制学报,2003;7(2): pp107-111,132.
    [207]俞统昌,王晓峰,王建灵.炸药的水下爆炸冲击波性能[J].含能材料,2003; Vol.11(4): pp182-186.
    [208]张振华,朱锡,白雪飞.水下爆炸冲击波的数值模拟研究[J].爆炸与冲击,2002;Vol.24(2):pp182-188.
    [209]张振华,朱锡,冯刚,孙雪荣,毛力奋.船舶在远场水下爆炸载荷作用下动态响应的数值计算方法[J].中国造船,2003;Vol.44(4): pp36-42.
    [210]赵艳林,燕柳斌.层状地基分析的半解析─无限元法[J].广西大学学报,1995;20(2):pp95-98
    [211]郑明军,何德坪,陈锋.多孔铝合金的压缩应力应变特征及能量吸收性能[J].中国有色金属学报,2001; Vol.11:pp81-85.
    [212]朱涛.用无网格法分析梁的振动问题[J].华中科技大学学报,2003; 20(2): pp75-77.
    [213]朱锡,白雪飞,黄若波,刘润泉,赵耀..船体板架在水下接触爆炸作用下的破口实验[J].中国造船,2003; 44(1): pp46-52.
    [214]朱锡,张振华,刘润泉,朱云翔.水面舰艇舷侧防雷结构模型抗爆实验研究[J].爆炸与冲击,2004; Vol.24(2): pp133-139.
    [215]朱锡、张振华等,水面舰艇舷侧防雷舱结构模型抗爆试验研究[J].爆炸与冲击, 2004; 24:133-139

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700